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Abstract

In the last SCM conference call on June 26, 2002, there was a suggestion that
for the ray-based channel model every sub-ray departure angle should be associated
to every sub-ray arrival angle, instead of having a one-to-one relationship as in [1].
For a given M sub-rays we show that randomly associating one angle of arrival to
one angle of departure gives far less relative error, where we take as a reference
the correlation-based channel model. We propose a slight modi�cation to the ray-
based channel model proposed in SCM033R1 by Motorola that tends to give less
error when compared to the correlation-based channel model. We also show that as
the number of sub-rays increases the ray-based and the correlation-based channel
models essentially match. We give some examples in terms of relative error which
demonstrate that even for low correlations a hundred sub-rays gives less than 10
percent error in terms of correlations. In terms of BER, simulations with 20 sub-
rays suÆce.

1 Introduction

For clarity of exposition we suppress the multipath power delay pro�le index as well as all

temporal variations. The antenna spacings are denoted as dt and dr, and all distances are

measured in wavelengths. Hence, the distance between antennas t and t0 (t; t0 are integers)

is given as (t� t0)dt: and similarly for r and r0: In order to calibrate models we hold mean

angle of arrival (AoA), mean angle of departure (AoD), and both transmit and receive

angle spreads, �t and �r, to be constant. For the purposes of this discussion we can also

ignore lognormal shadowing.
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2 Correlation-Based Channel Model

Brie
y, for a power angle spectrum pt(�) with support from [��; �) the transmit correla-

tion between antennas t and t0 is given by:

�(t; t0) =
Z �

��
exp(j2�(t� t0)dt sin(AoD � �))pt(�)d�: (1)

Similarly, the receive correlation �(r; r0) is given by the above equation but substituting

r for t, and AoA for AoD: The propagation coeÆcients H are given as:

H =
p
� ~H

p
�; (2)

where ~H is i.i.d. complex Gaussian. We let 
 denote the Kronecker product, and vec(H)

be the elements of H; read in a vector format. The correlation between all propagation

coeÆcients is given as:

E[vec(H)vec?(H)] = �
� (3)

This essentially says that the correlation between h(r; t) and h(r0; t0) is given as

E[h(r; t)h?(r0; t0)] =
�Z �

��
exp(j2�(r � r0)dr sin(AoD � �))pr(�)d�

�
�Z �

��
exp(j2�(t� t0)dt sin(AoD � �))pt(�)d�

�
: (4)

We will evaluate how close di�erent ray-based models approach this correlation. We hold

the number of sub-rays M �xed.

3 Ray-Based Channel Model - Version 1

In the ray-based spatial channel model as proposed by Motorola in [1], every propagation

coeÆcient is described as a sum of M sub-rays with random initial phases �m. Every sub-

ray m has equal power; however, sub-rays have di�erent angles of departure, �m, (resp.

angles of arrival, �m ) in reference to the mean composite AoD (resp. AoA). For a �xed

M; these sub-ray angles are �xed, but the assignment of departure to arrival is a random

permutation �. Hence, the source of randomness is twofold: random initial phases and
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random assignment of sub-ray arrival to departure angles. With this in mind we know

that the baseband propagation coeÆcient from antenna t to antenna r is given as:

h(r; t) = (1=
p
M)

MX
m=1

exp(j2��m + j2�(t� 1)dt sin(AoD � �m)

+j2�(r � 1)dr sin(AoA� ��(m))): (5)

We wish to calculate the cross-correlation between channel propagation coeÆcients. Since

randomness is twofold, using the chain rule we �x the permutation �rst, and average with

respect to �m. Then we average with respect to all permutations.

E[h(r; t)h?(r0; t0)] = (1=M)E�(m);�(m0)[E (m); (m0)[
MX
m=1

MX
m0=1

exp(j2��m

+j2�(t� 1)dt sin(AoD � �m)

+j2�(r � 1)dr sin(AoA� ��(m))

�j2��0m � j2�(t0 � 1)dt sin(AoD � �m0)

�j2�(r0 � 1)dr sin(AoA� ��(m0)))j�]]: (6)

Since initial phases are independent, the double summation collapses into a single sum,

keeping only the terms where m0 = m: We have:

E[h(r; t)h?(r0; t0)] = (1=M)E�(m)[
MX
m=1

exp(j2�(t� t0)dt sin(AoD � �m)

exp(j2�(r � r0)dr sin(AoA� ��(m)))]: (7)

This expectation is with respect to random permutations. Hence it can be calculated as:

E[h(r; t)h?(r0; t0)] = (1=M)(1=M !)
X
�

MX
m=1

exp(j2�(t� t0)dt sin(AoD � �m))

exp(j2�(r � r0)dr sin(AoA� ��(m)))

= (1=M)(1=M !)
MX
m=1

exp(j2�(t� t0)dt sin(AoD � �m))

X
�

exp(j2�(r � r0)dr sin(AoA� ��(m))): (8)

Now we make a substitution �(m) = m0; and note that m0 is �xed for (M � 1)! per-

mutations. The inner summation is now with respect to m0; only scaled with (M � 1)!:
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E[h(r; t)h?(r0; t0)] =

 
(1=M)

MX
m=1

exp(j2�(t� t0)dt sin(AoD � �m))

!
 
(1=M)

MX
m0=1

exp(j2�(r � r0)dr sin(AoA� �m0))

!
: (9)

The transmit power angle spectrum for AoD is a truncated Laplacian, given as:

pt(�) = C(1=�t
p
2) exp(�

p
2j�j=�t)I[��;�)(�): (10)

Here, C is the normalization constant, �t is the transmit angle spread, and I is the indicator

function. For reference, the cumulative distribution function of the above is given as:

Ft(�) = (1� exp(�
p
2�=�t))

�1f(1=2)[exp(
p
2�=�t)� exp(�

p
2�=�t)]I[�1;0)(�)

+[1� (1=2)(exp(
p
2�=�t) + exp(�

p
2�=�t))]I[0;1)(�)g: (11)

We let um be a quantization spacing of the unit interval [0; 1); and let �m = F�1
t (um):

The �rst term in equation (9) becomes the integral sum for the following

(1=M)
MX
m=1

exp(j2�(t� t0)dt sin(AoD � F�1
t (um))

�
Z �

��
exp(j2�(t� t0)dt sin(AoD � F�1

t (u))du

=
Z �

��
exp(j2�(t� t0)dt sin(AoD � �))pt(�)d�: (12)

Here, the last equality is given using the change of variables formula. Also, the last

expression is the exact correlation between propagation coeÆcients from antennas t and

t0: Note that this integral is approximated by M terms, which is the total number of

sub-rays. Similarly the second expression in (9) is an approximation for the correlation

between propagation coeÆcients to antennas r and r0: A slight di�erence with the Motorola

proposal is that we do not further rescale �m = F�1
t (um) and �m0 = F�1

r (u0m) in order

to achieve the desired rms angle spread. In the Motorola proposal we have that �m =

�tF
�1
t (um)=

qP
m jF�1

t (um)j2: Without rescaling, the Riemann sums in equation (12) are

in general a better approximation to the integral because they are evaluated based on the

uniform spacing of the domain. Some examples are given below.
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3.1 Example 1

Here we discuss two cases, one with high correlation and one with low correlation. We

would like to evaluate the relative error using di�erent �m; or �m0 :

Case 1 is de�ned by �t = 35Æ; AoD = 67:5Æ; together with half-wavelength spacing

between antennas. The actual correlation is calculated to be �0:6948 + j0:342:

Case 2 is de�ned by �r = 5Æ; AoA = 20Æ; together with 10 wavelength spacing between

antennas. The actual correlation is calculated to be �0:0617+ j0:034: The following three

tables summarize the results for the correlation relative error. The correlation relative

error is computed by �nding the di�erence betweeen the correlation found with the ray-

based model and the actual correlation and then dividing by the actual correlation. For

example, if the actual correlation were 0.5 and the ray-based correlation were 0.6, then

(0:6� 0:5)=0:5 = 0:2 = 20% is the correlation relative error.

Table 1. Correlation Relative Error, M = 10

Case 1 Case 2
�m = �tF

�1
t (um) 008.89 % 211.30 %

�m = �tF
�1
t (um)=

qP
m jF�1

t (um)j2 016.90 % 253.61 %

Table 2. Correlation Relative Error, M = 20

Case 1 Case 2
�m = �tF

�1
t (um) 006.03 % 035.83 %

�m = �tF
�1
t (um)=

qP
m jF�1

t (um)j2 010.12 % 116.63 %

Table 3. Correlation Relative Error, M = 100

Case 1 Case 2
�m = �tF

�1
t (um) 002.25 % 007.95 %

�m = �tF
�1
t (um)=

qP
m jF�1

t (um)j2 003.34 % 001.18 %

3.2 Example 2

Here we provide uncoded BER performance plots of the LMMSE detector for di�erent

channel models in Figure 1. The system uses 4-transmit and 4-receive antennas (4 � 4),

with the receive part given as in Case 1, and the transmit part given as in Case 2 above.
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Figure 1: BER with di�erent channel models with 4 transmit and 4 receive antennas.

The multipath pro�le is Vehicular A. The number of sub-rays is chosen to be M = 20: We

see that 20 sub-rays suÆces to closely match the correlation-based channel model with

the ray-based one. We also see that with scaling the ray-based model gives some more

diversity and slighty deviates from the correlation-based channel model.

3.3 Example 3 - Random vs. Non-Random Subray Assignment

In case that subray angles of arrival are asociated with subray angles of departure on

any �xed 1 � 1 basis, represented by permutation �, then the cross correlation between

propagation coeÆcients would be given by equation (7), only without the expectation. In

that case, correlation between propagation coeÆcients when r = r0; or t = t0 will be well

approximated. However, if r 6= r0; and t 6= t0; then the approximation will be poor. This

is obvious from comparing equations (4) and (7). We provide simulation results for this

case in Table 4: Table 5 represents random subray assignment.
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Table 4. Correlation Relative Error - Non Random Sybray Assignment.

h(1,1) h(2,1) h(1,2) h(2,2)
h(1,1) 000.17 % 002.80 % 001.37 % 046.03 %
h(2,1) 002.80 % 000.09 % 114.61 % 001.62 %
h(1,2) 001.37 % 114.61 % 000.28 % 007.29 %
h(2,2) 046.03 % 001.62 % 007.29 % 000.54 %

Table 5. Correlation Relative Error - Random Subray Assignment

h(1,1) h(2,1) h(1,2) h(2,2)
h(1,1) 000.06 % 007.17 % 001.33 % 009.57 %
h(2,1) 007.17 % 000.05 % 007.07 % 001.21 %
h(1,2) 001.33 % 007.07 % 000.01 % 008.30 %
h(2,2) 009.57 % 001.21 % 008.30 % 000.12 %

These tables con�rm that a random permutation is necessary in order to accurately obtain

accurate cross-correlations when t 6= t0 and r 6= r0:

4 Ray Tracing Channel Model - Version 2

In the case that every sub-ray angle of departure is associated with every sub-ray angle

of arrival, the only source of randomness is the initial phases �k;l. Let �k; 1 � k � K

be sub-ray angles of departure, relative to the mean AoD. Also, let �l; 1 � l � L be

sub-ray angles of arrival, relative to mean AoA. The total number of sub-rays is M = LK:

Propagation coeÆcients are given as

h(r; t) = (1=
p
KL)

X
k;l

exp(j2��k;l + j2�(t� 1)dt sin(AoD � �k)

+j2�(r � 1)dr sin(AoA� �l)): (13)

Again, using the independence of �k;l, we have that

E[h(r; t)h?(r0; t0)] =
X
k;l

exp(j2�(t� t0)dt sin(AoD � �k)

+j2�(r � r0)dr sin(AoA� �l))

=

 
KX
k=1

exp(j2�(t� t0)dt sin(AoD � �k))

! 
LX
l=1

exp(j2�(r � r0)dr sin(AoA� �l))

!
: (14)

Since �k = F�1
t (uk) and �l = F�1

r (ul), the above is still a valid approximation for the

true correlation value given in equation (4), however the equation (9) is a much better
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approximation because K � M and L � M , since KL = M . Hence, we will obtain a

much better granularity with Version 1, rather that with Version 2, for the same M:

5 Conclusion

We demonstrated that random 1� 1 subray assignment gives the smallest approximation

error for a �xed number of subrays. There is no advantage in associating every subray

angle of departure with every subray angle of arrival. We have also shown that rescaling

after quantization of the truncated Laplacian PAS tends to give increase relative error, at

least for the cases considered. Hence, it may be omitted.

References

[1] Motorola, SCM-033R1, \Spatial Channel Model Issues", SCM Adhoc, July 2002.

[2] Lucent, \Parameter Mapping for Spatial Channel Modelling", 3GPP2-C50-20010709, July 2001.

8


