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1 Introduction

In recent papers [2],[3] it has been shown that, apart from the shadowing of the path-loss, the narrowband angle-spread and delay spread also follow lognormal fluctuations in macrocellular environments. In addition, the lognormal fluctuations of these quantities have been measured to be cross-correlated with each other. Furthermore, the shadowing path-loss fluctuations between different base-stations have long been known to be correlated, although the corresponding angle-spread and delay spread fluctuations between different base-stations have been assumed to be uncorrelated. In this contribution, we analyze the joint correlations between path-loss, delay-spread and angle-spread for same and different base-stations and propose a model, which deals with all of them in a very simple way.

2 Statement of the problem

We wish to generate Gaussian correlated random variables for the logarithm of the path-loss, delay-spread and angle-spread for M separate base-stations. These random variables can be written as a vector Zin, where n=1,…,M is the base station index and i =1,2,3 represents the delay-spread, angle-spread and path-loss, in that order. We assume that the correlations for a given base-station n to be independent of n and to be given by 



[image: image1.wmf]ij

jn

in

A

Z

Z

=


(1)
where the overbar represents the expectation value and the matrix A is
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where ρpd, ρpa, ρad are the correlations between path-loss and delay-spread, path-loss and angle-spread and delay-spread and angle-spread respectively. 

The cross-correlations between different base-stations have only been measured for the path-loss fluctuations. Therefore it is implicitly assumed that cross-correlations between angle-spread and delay-spread are zero. Thus the correlations between different base-stations are given by
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where the matrix B is
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and ρbb is the base to base path-loss shadowing correlation. Alternatively, and without any experimental backing, one might have argued that the matrix B should be replaced by B’
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However, in this contribution we will assume the form of Eq. 4, which has also been assumed in [1]. From the above considerations we see that the full correlations between the different Z’s can be given by 
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(6)
which can be written in a block-matrix form as the 3Mx3M matrix Σ,
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where the matrix B appears M-1 times in each row. 

It should be stressed that, since the matrix Σ is a covariance matrix of 3M Gaussian numbers Zin, its eigenvalues have to be non-negative, or equivalently the matrix has to be non-negative definite.  Due to the structure of the matrix Σ, its eigenvalues can be easily inferred from the matrices A and B. In particular, its spectrum includes a triplet λk, where i =1,2,3, which are the eigenvalues of the matrix A+(M-1)B, i.e.
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where vjk is the j-th component of the k-th eigenvector associated with the eigenvalue λk.  Note that these λ-eigenvalues are all positive, since they are eigenvalues of a sum of positive definite matrices A, B. The remaining 3(M-1) eigenvalues consist of (M-1) degenerate copies of the triplet μk of the eigenvalues of the matrix A-B, i.e. 
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where again wjk is the j-th component of the k-th eigenvector associated with the eigenvalue μk.  These μ-eigenvalues however are not generally always non-negative. 

3 Positive Definiteness of Σ
3.1   Existing Approach

In the current standards channel model text [1] the adopted values of the cross-correlations between path-loss, delay-spread and angle-spread for the same base-station have been taken from COST259 [3] and are:
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In addition, ρbb, the cross-correlation of the path-loss between different base-stations general this value has been assumed [4] to be 
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In addition, using the parameter values of Eqs. 10-11, we find that there are M-1 negative eigenvalues of the matrix Σ. Specifically, the μ-eigenvalues from Eq. 9 are:
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(12)

As we see μ3 is negative. (It should be noted that μ3 would be negative with the use of the matrix B’ of Eq. 5, rather than Eq. 4). Thus we conclude that the parameters chosen do not constitute a physical combination of parameters. 

3.2   Proposed Solution

We thus have to choose a different set of parameters that ensures positive-definiteness of Σ.  Since unfortunately there is no single measurement campaign in the literature, which has measured all desired parameters, we have to settle for less. We choose to keep the value of ρbb = 0.5 and the structure of the matrix Σ in Eqs. 2, 4 and 7. For the cross-correlations between delay-spread, angle-spread and path-loss we propose the following values:
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The above numbers are taken from Row 2 in Table 4 in [2]. For simplicity we have taken ρpd=ρpa and equal to the average of the two corresponding values in the Table (-0.54 and –0.5 respectively). The reason is that it somewhat simplifies the analysis below (we end up diagonalizing a 2x2 matrix rather than a 3x3 matrix). However, due to the closeness of the two values we do not expect any differences in the behavior. We have chosen the second row from that paper, because it has values consistent also with those of row 5, of the suburban environment. (Also the choice of rows 1 and 3 also gives negative μ3 in Eq. 12). 
The above numbers ensure that the Σ is positive-definite (see discussion below). 

4 Cross-correlations between different Base-Stations

4.1  Existing Approach

In [1], the random variables Zin are generated from 3M+1 random i.i.d. variables Xin and X0 as follows:
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(14)
where the matrix Cij is the matrix square root of Aij , i.e. 
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For same cell coefficients, n=m,  the above equation gives the right answer. Also for different cells, n(m, and i =j=3 it is also correct. However for n(m, and i or j not equal to 3, it introduces spurious correlations, which are undesired. 

4.2  Proposed Solution

The spurious correlations can be eliminated by the introduction of 3 additional Gaussian random numbers. Let us make the hypothesis that the Zin can be written as follows:
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where Xnk (n=1,…,M and k=1,2,3) and Yk (k=1,2,3) are i.i.d. Gaussian zero-mean, unit-variance random variables and C and D are (yet unspecified) 3x3 real symmetric matrices. The cross-correlations of the Zin can be expressed as
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Requiring Eq. 6 to be correct, we conclude that C and D are given by
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where the matrices A and B are given by Eqs. 2 and 4. We immediately see again that, if some eigenvalues of A-B are negative we run into the same problems as discussed above. From the above equation, and assuming positive definiteness of Σ (or equivalently the matrix A-B) we can determine the matrices C and D:
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where we have expressed the matrix C=([A – B] in terms of μk and wik (k,i=1,2,3), the k-th eigenvalue and eigenvector of the matrix A – B. These quantities can be expressed as:
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where the k-th column of the above matrix represents the k-th eigenvector of the matrix A – B. 

5 Summary

In summary we have presented a unified way to correctly generate correlated lognormal variables for the Delay-spread, Angle-spread and Path-loss, which are correlated also between different base-stations. We have also proposed correlation parameters that are consistent with the requirements of non-negative definite correlation matrices.
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