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Introduction
In this contribution, we provide our view on AI based physical layer enhancement.
Discussion
AI for communication 
With the increasing complexity of 5G and future network deployment, traditional approach to network deployment, design and operation is considered as inadequate. AI/ML based approach for wireless network optimization is becoming one of the fundamental building blocks for 5G and future networks. 3GPP RAN3 led Rel-17 study item on enhancement for data collection for NR and EN-DC studies the AI/ML framework, use case, the input/output and the location of AI inference case by case [1]. Many SON related use cases have been identified such as AI/ML based load balancing, traffic steering and mobility management etc.   
 
AI/ML for physical layer has gained tremendous interest in academic research in recent years. Wireless communication and signal processing methods are typically model based, where statistical model such as channel model and noise distribution etc needs to be known or explicitly estimated. When model is known and accurate, the model-based approach is proven to be optimal and has controllable complexity. However, to estimate the model, large training overhead may be needed. For example, in massive MIMO, the RS overhead linearly increases with number of Tx and Rx. Machine learning provides powerful model-independent tools to learn from the data instead of explicitly state the statical model. [3] provides a good overall review on model based, data-based approach and combined approach for wireless communication, particularly on physical layer design. 

Since AI/ML for physical layer takes a very different approach in wireless communication and signaling processing, the evaluation methodology is also very different from traditional method. It is important for 3GPP to study and establish a common evaluation methodology to evaluate different use cases and specification impact to apply AI/ML in air interface design. The study may include but not limited to  
· Study and align the evaluation methodology used for AI/ML for physical layer 
· Align methodology to generate synthesized data set, and AI model and parameter description per use case. 
· Study evaluation metric comparing to traditional model-based algorithm and design.  
· Identify interested use case with potential standard impact
· Identify signalling exchange required to enable the use case.

Proposal 1:  Study AI/ML related physical layer enhancement use case and evaluation methodology.  

Example use cases
Many use cases have been identified in recent years in research papers. Example use cases include beam management, CSI feedback, channel estimation, positioning etc. Here we present a few use cases as motivating examples for further study.  
AI based beam selection
In Rel-15/Rel-16/Rel-17, several mechanisms to facilitate beam selection were introduced, including L1-RSRP/L1-SINR measurement and reporting, TCI and spatial relation based beam indication, as well as beam failure recovery for both PCell and SCell. The first step for beam management is beam measurement. Currently UE needs to measure a lot of NW beams based on several UE beams to identify the potential best NW-UE beam pair. 
The measurement for all SSBs could cause higher UE power consumption and increase system overhead. Although network has to transmit all SSBs with regard to UEs in different directions, it cannot multiple PDSCH for a UE in the symbols with SSB that UE is measuring, since UE may apply Rx beam sweeping to receive the SSB and cannot decode the PDSCH correctly. 
With the help of AI, it may be possible that UE only needs to measure limited number of beams and to identify a potential beam search space (BSS) based on the limited number of beams. Then UE can try to measure the beams in a BSS to find out the best beam. As shown in Figure 1, UE does not need to measure the all the beams, but it only needs to measure a subset of beams at the initial stage and with the help of machine learning, a new BSS can be identified for next step measurement. The final beam selection can be performance based on the measurement result from the BSS.
[image: ]
Figure 1: An example for AI facilitating beam selection

Then the second issue is whether AI can provide some performance gain. The non-AI based approach is selected as the baseline, where the beam search space can be identified based on the spatial correlation from the best beam among the best measured in the first step. The metric is the accuracy for the BSS, where a correct BSS is defined as a BSS that includes the best beam. Table 1 illustrates some preliminary results to compare the AI based and non-AI based BSS identification. The simulation is based on 100000 L1-RSRP measurement results between each UE and gNBs beam pairs, which are generated from system level simulation. 70% of the data is used for training and 30% is used for validation. The machine learning is based on 1 hidden layer.
Table 1: Some simulation results on ratio for correct BSS identification
	Number of beams in BSS
	Number of measured Beams in the first step

	
	4
	8
	12
	16

	
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI
	AI
	non-AI

	1
	40.45%
	17.49%
	60.58%
	32.52%
	65.91%
	31.27%
	75.83%
	61.73%

	2
	59.32%
	18.18%
	80.40%
	33.12%
	84.99%
	31.81%
	92.58%
	62.23%

	4
	75.47%
	34.20%
	91.72%
	53.48%
	95.37%
	59.19%
	98.50%
	88.33%

	6
	83.70%
	36.61%
	95.58%
	55.50%
	98.08%
	62.04%
	99.53%
	88.68%

	8
	88.81%
	37.77%
	97.43%
	56.78%
	99.16%
	65.03%
	99.85%
	89.42%



It can be observed that with the help of AI, significant accuracy gain for BSS identification accuracy can be observed. It would be necessary to study the potential benefit from AI with regard to beam measurement and selection.
AI based channel estimation   
Apply deep learning for channel estimation is an example where the statistical model is unknown. Conventionally pilot-based channel estimation methods, i.e., LMMSE channel estimator uses the pilot values in time-frequency grids to find the channel response for all the data tones. Mis-matched channel statistics and noise variance degrade the practical LMMSE channel estimation performance in modem implementation.  
For data based deep learning approach, the time-frequency response of a fading communication can be modelled as a two-dimensional image [4]. The channel estimation problem has similarity to the super resolution deep neutral network in image processing application. This scheme in [4] considers the pilot values as a low-resolution image and uses a super resolution network cascaded with a denoising image restoration network to estimate the channel. The estimation error shows that the presented algorithm is comparable to the minimum mean square error (MMSE) with full knowledge of the channel statistics, and it is better than approximate LMMSE.
The above method can be further extended to the space dimension in spatial domain in MIMO channel estimation. A 3D CNN can be used to exploit the time, frequency, and spatial domain correlation to further improve the channel estimation performance compared to the 2D CNN method in [4]. The high-level concept is shown in Fig. 2.  Fig 3 shows the channel estimation MSE comparing the 3D CNN channel net versus linear interpolation and practical 5G channel estimator. More than 3dB normalized MSE gain is observed comparing to practical NR 5G channel estimator. 
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Fig. 2 channel estimation across time/freq/space as 3D CNN [5]. 
[image: ]
Fig. 3. Performance comparison of 3D CNN channel net versus traditional channel estimation 
AI based hybrid beamforming    
Data driven AI/ML based approach is shown to be an efficient tool to solve complex optimization problem. As an example, here we apply AI/ML to hybrid beamforming optimization problem.  
Hybrid beamforming is the key beamforming architecture used in massive MIMO and FR2 design. Fig. 4 shows the overall hybrid beamforming architecture with TXRU virtualization mode 1 and mode 2 [6]. 
[image: Diagram

Description automatically generated]
Fig. 4. Hybrid antenna architecture with 2 types of analog precoding design.
 The design of the precoders and combiners can be formulated as a non-convex manifold optimization problem as 
 [image: ]             (1),
where Fopt is the fully digital optimal precoder, which can be calculated from the singular value decomposition of the full channel matrix. FRF and FBB are the analog and digital precoder to be optimized.
To solve the non-convex manifold optimization problem, the search complexity can be very large to find the optimal analog and digital precoder combination. Here we use a deep neutral network including convolutional layers and fully connected layers to solve the optimization task. The results are shown in Fig. 5, where the CNN results are compared to the full search of the optimization problem. It can be shown that the CNN provides similar performance with much less complexity compared to solving the manifold optimization problem directly. 
       [image: ]
Fig. 5. Result comparing CNN based approach versus optimization-based approach in hybrid antenna architecture  

Possible specification impact to enable AI/ML 
In general, the high-level framework captured in [2] can be used as reference, including: 

· The detailed AI/ML algorithms and models for use cases are out of specification scope.
· The input/output and the location of AI inference should be studied case by case.
· Training aspects, offline training versus online training can be studied. 
· Potential signaling aspects can be studied per use case.
 
Proposal 2:  Study required signalling between NW and UE per use case.  

Conclusion
In this contribution, we discussed aspects on AI based enhancement. Based on the discussion, the following proposals have been achieved.
Proposal 1:  Study AI/ML related physical layer enhancement use case and evaluation methodology.  
Proposal 2:  Study required signalling between NW and UE per use case.  
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