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1 Introduction
In RAN#88e, a new SID: Study on further enhancements for data collection (RP-201304) has been approved. The major objective of this SID is about the following aspect:
· Study high level principles for RAN intelligence enabled by AI, the functional framework (e.g. the AI functionality and the input/output of the component for AI enabled optimization) and identify the benefits of AI enabled NG-RAN through possible use cases e.g. energy saving, load balancing, mobility management, coverage optimization, etc.
It was discussed whether "beam management" is explicitly listed as one of the possible use cases. However, it was removed due to the possible need of RAN1 involvement. Nevertheless, companies have shown their strong interests in AI applications in physical layer. In this contribution, we elaborate a potential application of predictable mobility for beam management in FR2 UE high mobility scenarios [1], such as high speed railway (HSR) and high way.
The advanced HSR wireless communication network, i.e., FR2, has following notable features including: high-speed trains up to 500 km/h; high-density UEs up to 100 on one carriage; and high-quality services such as real-time HD video transmission. Meanwhile, the current mobile network for the HSR system, i.e., FR1, is far from satisfactory due to the scarcity of the spectrum resources. Therefore, it is essential to use millimeter wave (mmWave) spectrum above 6 GHz for the explosively growing demand in the advanced HSR system. 
To keep low implementation cost while still benefit from antenna array, analog beamforming (BM) has been widely used for FR2 mmWave communication. The current beam management procedure which includes beam measurement, beam reporting and beam indication. For UE mobility, beam switching/updating is determined according to beam dwelling time. In general, beam dwelling time depends on multiple factors including UE speed, distance between BS and UE and beam-width of the UE beams. It can be observed that the beam dwelling time can be as small as 7ms. The current beam management performs well in FR1 where the UEs moves at a low speed and beam width is wide, but is inefficient for FR2 with narrow beams and high-speed UEs. In high-speed mobile scenarios, this procedure is inefficient due to the following reasons:
· Beam tracking overhead. Regarding beam measurement, the overhead caused by frequent beam tracking can be very huge, due to small beam dwelling time. When UE number increases to 50 and train speed is 500km/h, the report shows that almost all time frequency resource is occupied by beam training [2].	
· Time delay. Regarding beam reporting and beam indication, the corresponding latency is mainly produced by activating candidate beams from radio resource control (RRC) pool. The report [2] demonstrates that the latency can be up to 25ms with 20ms synchronization signal block (SSB) periodicity.
· Frequent handoff. Regarding initial access, current beam management needs beam measurement to determine the BS-UE beam pair. The change of connected BS can be very frequent due to the limited BS maximal service range and high UE mobility. The frequent change of connected BS can ruin the user experience. 
Therefore, to reduce the beam training overhead, the time delay, and the negative influence caused by frequent handoff in the HSR scenarios, it is essential to improve the current beam management framework.
Summarily, to utilize mmWave bandwidth resources in FR2 high speed scenarios, it is significant to develop new techniques to reduce the beam training overhead, time delay and handoff influence in current beam management. It is beneficial to develop UE mobility prediction to enhance the current beam management, and AI technology can be considered. Potential standardization impacts include enhancements on beam measurement, beam reporting, beam indication and fall-back approach from predictable mobility to legacy one.
2 Description
To improve the current beam management FR2 high speed scenarios, we propose to use beam prediction to replace the beam measurement and reporting. In this contribution, we propose a learning-aided model-driven beam prediction scheme, in which a complete beam prediction process is composed of an observation sub-process and a subsequent transmission sub-process. In the observation sub-process, the BS side receives a group of received pilot signals and measurements at the UE receiver including Doppler frequencies and time of arrivals (ToAs) at different instants, to estimate UE location and speed. Then in the transmission sub-process, the BS side predicts the optimal Tx/Rx beams within a period of future time with fine time granularity, with the estimated UE location and speed. The simulation result shows that
· In FR2 HSR scenarios, the UE mobility prediction-based method significantly outperforms the current beam management-based method (more than 60% improvement), in terms of UE throughput. The performance gain is achieved mainly by saving beam training overhead.
· Compared to the model-driven predictable methods, the learning-aided predictable method has higher estimation accuracy and better robustness, and has higher cell-edge UE throughput.
The detailed technical introduction is given in Appendix A, and the subsequent simulation results is given in Appendix B.
3 Conclusion
Observation: For FR2 high mobility in track-based high-speed scenarios such as HSR and highway, it can be observed that 
· Due to limited service range, narrow beam width, high UE mobility and short beam dwelling time, the current beam management suffers from large beam training overhead, significant time delay, and frequent handoff.
Proposal: Consider predictable mobility for beam management as an enhancement aspect for improving UE experience in FR2 high mobility scenario (e.g., high-speed railway and high-way) in a Rel-18 WI.
· Study the implementation and design of predictable mobility for beam management in various scenarios.
· Evaluate the performance gain and cost of  predictable mobility for beam management in a more concrete and comprehensive manner.


Appendix A:
Learning-aided model-driven beam prediction scheme
In this contribution, we propose a learning-aided model-driven beam prediction scheme, in which a complete beam prediction process is composed of an observation sub-process and a subsequent transmission sub-process, as shown in Fig. A-1. More concretely, given a group of received pilot signals and measurements at the UE receiver including Doppler frequencies and time of arrivals (ToAs) at different instants, we predict the optimal Tx/Rx beams within a period of future time with fine time granularity. As shown in Fig. A-1, the observation instants are depicted with black, and the transmission instants are depicted with blue. During observation, the interval is 100ms, and the observation number is 3, thus the duration of observation is 200ms. During transmission, the time granularity is up to a millisecond level (greatly smaller than the beam dwelling time), i.e., 1.25ms, and the transmission number is 1001, thus the duration of transmission is up to a second level, i.e., 1.25s. The adjacent transmissions are close-packed along time. The duration of a complete beam prediction process is 0.2s + 1.25s = 1.45s, and two adjacent prediction processes overlap for an observation sub-process. 
[image: beam_prediction - 副本]
Figure A-1 Illustration of the observation sub-process and transmission sub-process along time
The beam prediction can be carried out in a purely model-driven manner, but it cannot perform well in scenarios with implicit environment priors and system models. On the other hand, the purely data-driven approach which outputs high-dimensional BS-UE beam pair indexes, is difficult to be realized by an end-to-end deep neural network (DNN). Consequently, we propose a learning-aided model-driven beam prediction scheme, which equivalently transform the high-dimensional beam prediction into two cascaded stages, i.e., parameter estimation and hybrid beamforming. 
[image: beam_prediction - 副本 (3)]
Figure A-2 Procedure of learning-aided model-driven beam prediction
As shown in Fig. A-2, in the first step of beam prediction procedure, the parameters of the parametric motion model such as projected location on x-axis and speed, are required to be estimated by different observations. At each instant, the BS transmits all horizontal pilot beams. The first observation is the received downlink pilot signal, and the second observation is the measured ToA and Doppler frequency which reflect the relative distance and velocity between the BS and UE, respectively. The information exchange and measurement acquisition between the BS and the UE is carried out  as follows
· These two observations, i.e., the received downlink pilot signal and the measured ToA and Doppler frequency, are then feedback to the BS for further parameter estimation via the uplink. 
· With input being the received pilot signals and the measurements, the parameter estimations are independently and separately carried out by the maximal likelihood (ML) method, , respectively. The output of ML estimators both are projected location on x-axis and speed of UE, and two parameter sets are derived.
· The ToA can be realized by some positioning technology, and Doppler frequency can be estimated at the UE receiver by carrier frequency offset (CFO) estimation and residual CFO (RCFO) estimation.
Ignoring the effects of acceleration, the result from the ML estimator is the sufficient statistics for the following beam prediction. To further improve the estimation accuracy and robustness, we propose to use a data-driven data fusion module. 
Ignoring the effects of acceleration, the result from the ML estimator is the sufficient statistics for the following beam prediction. In the parameter estimation step, we already have two estimated parameter sets which are derived from different observations independently. According to the statistical theory, there exists an optimal estimation from a group of independent observations. Meanwhile, the optimality is only guaranteed when the following assumptions hold true:
· The estimations are unbiased;
· The variances of estimated variables are known.
Firstly, due to the complexity and randomness of the practical wireless communication scenario, such as imperfect hardware and inaccurate models, the above assumptions cannot hold true and thus the performance gap between the theoretical and practical results is conspicuous. Thus, the bias and variance of the estimated results are difficult to be derived in a practical environment. Furthermore, it is significant to design a module to process estimation results from multiple independent sources. Secondly, there exists a potential mapping function between the projected location and the estimation accuracy. For example, when the UEs are far away from the BS, the estimation variance by the received pilot signals is very large due to high path loss and limited angular resolution, and vice versa. This indicates that using this mapping function can improve the estimation precision. To further improve both the estimation accuracy and robustness, we propose a learnable data fusion module to implicitly estimate the corresponding bias and variance.
[image: data_fusion - 副本]
Figure A-3 Illustration of data fusion network
To distinguish the estimation results, we mark the parameter set derived by the received pilot signals with lower marker ‘p’, and similarly mark the parameter set derived by the measurements with lower marker ‘m’. As shown in Fig. A-3, The input and output of the data fusion module is described as
· The estimation results (projected location and speed of UE) of the ML estimators are then concatenated as the input of the data fusion network, and the output is refined estimation result. 
The data fusion network is composed by a location sub-network and a speed sub-network, a location operating module and a speed operating module. The topologies of the two sub-networks are the same, and similarly the topologies of the two modules are the same.
In principle, the sub-network learns to estimate the variances and offsets of the input estimations implicitly, assigns the weights and biases for the input estimations. The proposed data fusion network shares the same principle as that of the well-studied attention networks, which also adjust the weights by the input features. The output of the overall data fusion network are the projected location on x-axis and speed of UE. Only the sub-networks are required to be trained, and the training can be realized in a supervised manner, i.e., the training data are labeled. Compared to the regular end-to-end AI design, the proposed data fusion network is light-weighted, inherently against over-fitting, and have a good interpretability.
The ML estimators and track-based BM are carried out with arbitrary track functions such as linear tracks and non-linear tracks, under the assumption that the explicit track function is known. In practice, the track function can be unknown. Additionally, to handle the unknown non-linearity of tracks, we propose a learnable non-linear mapping module. This module can be learned by some parametric function in a supervised data-driven manner, and the labeled data set can be offline collected by geometric measurements, such as aerial photography and satellite photography. Due to the determinacy of the tracks, the learnable non-linear mapping module does not require any online fine-tuning or periodic update.
Appendix B:
Simulation result
B.1 Link-level evaluation for predictable mobility
Link-level scenario with a linear track. We begin by a link-level HSR FR2 mmWave wireless communication scenario, and both a linear track and a non-linear track are considered. Firstly, as shown in Fig. B-1, the track is modeled as a straight line which is black thick solid, and the BSs are cross located at both sides of the track. Secondly, the non-linear track is also considered which is black thick solid, as shown in Fig. B-2. 
The minimal BS to track distance is 5m. The inter-BS distance is 200m. Antenna configuration for each BS is [M, N, P, Mg, Ng] = [4, 8, 2, 2, 2], and each BS is composed of 3 sectors, and each sector covers 120° range. The UEs (labeled with orange circle) move along the track at a constant speed, and the moving direction can be the direction of increasing or decreasing x. The assumed speed of a UE is in the set {120, 256} km/h, and a small acceleration with mean being 0.1m/s^2 has been considered.  A total of 50 UEs with 3 panels ([M, N, P, Mg, Ng] = [1, 4, 2, 1, 3] as agreed in R17 FeMIMO EVM) are considered as a typical case. We consider 4 candidate UE beams for a UE panel, and hybrid BM with DFT codebook and MMSE precoding. The channel model takes 3GPP TR 38.901 UMa for reference, and gradual changes of physical path(s)/cluster(s) while UEs travel along the track, are modeled by the spatial consistency model in TR 38.901.

[image: link_linear_track]
Figure B-1 Link-level HSR scenario with a single linear track
Link-level scenario with a non-linear tracks. The configuration is the same as that of the linear case, except for the track modeling. In theory, the non-linear track can be any surjections, and the proposed beam prediction scheme is applicable for general non-linear tracks. A typical HSR track is modeled as a circular arc with radius being 5500m, according to the national regulation “Code for Design of High Speed Railway” in China [2]. In this sub-section, we consider a more stringent track modeled as f(x) = 0.0036*(x - 5)^2 + 11 (m).
[image: link_nonlinear_track]
Figure B-2 Link-level HSR scenario with a single non-linear track
Regarding traditional beam management approach, the period of beam tracking is set to 10 ms, and for each beam tracking, we only consider horizontally tracking 3 candidate BS Tx beams (current, left and right) and 3 candidate UE Rx beams (current, left and right), i.e., using 9 CSI-RS resources. The traditional beam management is regarded as a benchmark. Besides, three predictable methods are considered, namely method only with pilot signal in Fig. A-2,  method only with measurement in Fig. A-2, and the proposed method with data fusion. The former two methods are model-driven, and the proposed method is both model-driven and data-driven. 
The simulation results of parameter estimation with respect to the projected location are provided in Fig. B-3. As a result, it can be observed that both the location and velocity estimation accuracy by measurements are high when the UEs are far away from the BS, while the accuracy is low when the UEs are close to the BS. Meanwhile, the estimations derived by the received pilot signals becomes more accurate when the BS to UE distance is reduced, because the corresponding path loss is reduced and the SNR of the signals is increased. Besides, the AoD of the UE is also easy to be distinguished in this range. When the UE moves far away form the BS, the variances of estimation sharply increased. We also observe that the proposed data fusion method has lower estimation error than the other two methods. We derive a summary as follows
Observation-2: From evaluation results of estimation error for three parameter estimation approaches, it can be observed that 
· Generally, the estimation accuracies by measurements are more accurate than that by received pilot signals when the UEs are away from the connected BS, but the estimation accuracies by received pilot signals are more accurate than that by measurements when the UEs are around the connected BS. 
· The proposed data fusion method has the highest accuracy with respect to the projected location, both in the estimations of location and speed, and the robustness of the estimation is improved.
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Figure B-3 Location and velocity estimation error in the link-level HSR scenario
The simulation results for three approaches with respect to beam prediction accuracy and mean UE throughput, are provided in Tab. B-1. We derive a summary as follows
Observation-3: From evaluation results of beam prediction accuracy and mean UE throughput for three predictable approaches, it can be observed that
· Compared the methods only considering pilot signals and only considering measurements, the proposed data fusion method has the highest beam prediction accuracy and mean UE throughput, both in the HSR scenario with linear and non-linear tracks.
[bookmark: _GoBack]
Table B-1 Beam prediction accuracy and  mean UE throughput in the link-level HSR scenario
	KPI
	Scenario
	Only considering pilot signals
	Only considering measurements
	Using the data fusion module

	Beam prediction accuracy
	Linear
	94.54%
	97.65%
	98.38%

	
	Non-linear
	93.57%
	97.77% 
	98.92%

	Mean UE throughput (Mbps)
	Linear
	80.29
	82.35
	82.68

	
	Non-linear
	76.41
	79.49  
	 80.00 


The simulation results of UE throughput are provided in Fig. B-4. As a result, it can be observed that there is significant performance gain in terms of throughput when introducing predictable BM approach for high mobility. We derive a summary as follows
Observation-4: From evaluation results of UE throughput in a link-level HSR scenario for three predictable  approaches along with baselines, it can be observed that 
· Regarding UPT in both linear and non-linear tracks, there is significant performance gain for predictable BM approaches over traditional beam management approach. The traditional method is regarded as baseline, there is more than 60% performance gain for predictable approaches in terms of 95%-ile and mean UPT, and more than 40% to 50% gain for AI-aided approach in terms of 5%-edge UPT. The performance gain is achieved from the saving of huge RS overhead.
· Regarding UPT for predictable BM approaches in both linear and non-linear tracks, the performance gain are almost the same, in terms of 95%-ile and mean UPT. Meanwhile, the AI-aided approach has a significant performance gain in terms of 5%-edge UPT, which is beneficial for user fairness. 
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Figure B-4 UPT in the link-level HSR scenario
B.2 System-level evaluation for predictable mobility
SLS scenario. We consider a system-level HSR FR2 mmWave wireless communication scenario, as shown in Fig. B-5.  The SLS HSR scenario is composed of 4 tracks, 10 BSs, and 50 UEs. As shown in Fig. B-5, ‘Track1’ is a non-linear track and ‘Track2’ is a linear track, and they have a overlapped range when x is larger than the location of BS3, and are segregated when x is smaller than the location of BS3. ‘Track3’ is a straight line, ‘Track4’ is comprised of a straight line and a curved line with radius being 4000m. The BSs from 1 to 7 are accessible for UEs on the tracks from 1 to 3, and BSs from 8 to 10 are only accessible for UEs on the ‘Track4’. A total of 50 UEs are initially located at the start/end ranges of four tracks. Since a long-term beam prediction is considered, the information of UE mobility is delivered across the adjacent BSs when a handoff occurs:
· When a UE moves across adjacent service ranges, the former BS transmits the UE track ID, speed and location with time to the latter BS via the core network.
[image: link_nonlinear_track]
Figure B-5 SLS HSR scenario with multiple (non)-linear tracks
B.3 Simulation results of SLS scenario
Then we evaluate SLS performance for predictable beam management based approach compared with traditional beam management as a baseline. Firstly, beam prediction accuracy of each BS is list in Tab. B-2.
Table B-2 Beam prediction accuracy of each BS in the SLS HSR scenario
	Beam prediction accuracy
	Only considering pilot signals
	Only considering measurements
	Using the data fusion module

	BS1
	95.64%  
	96.91%
	99.41%

	BS2
	95.23%
	96.29%
	99.50%

	BS3
	93.41%
	97.87%
	99.23%

	BS4
	96.14% 
	96.70%
	99.37%

	BS5
	95.82%
	97.77%
	99.52%

	BS6
	95.85% 
	98.09% 
	99.44%

	BS7
	95.49% 
	97.08% 
	99.48%

	BS8
	92.52% 
	98.24% 
	99.11%

	BS9
	92.53%  
	98.58%
	99.12%

	BS10
	92.74%  
	98.59%
	99.08%

	Average over all BSs
	94.99% 
	97.36% 
	99.38%



Secondly, mean UE throughput of each BS is list in Tab. B-3.
Table B-3 Mean UE throughput of each BS in the SLS HSR scenario
	Beam prediction accuracy
	Only considering pilot signals
	Only considering measurements
	Using the data fusion module

	BS1
	2003.54
	2013.95
	2028.54

	BS2
	1994.13
	1991.94
	2040.21

	BS3
	2027.85 
	2052.47 
	2049.28

	BS4
	2064.28
	2070.08 
	2101.39

	BS5
	2037.80  
	2051.88
	2058.28

	BS6
	2109.09 
	2146.41 
	2150.67

	BS7
	2009.09  
	2017.57
	2032.17

	BS8
	1970.25 
	2000.12 
	1989.38

	BS9
	2023.61 
	2064.07 
	2048.70

	BS10
	2003.06 
	2045.08 
	2029.97

	Average over all BSs
	2031.72
	2048.06 
	2062.29



The simulation results of UE throughput are provided in Fig. B-6.
[image: figure_4]
Figure B-6 UPT in the SLS HSR scenario
The simulation results of SLS scenario are similar to those of link-level scenarios.
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