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B.1.2.2.1
Generic model

The radio channels are created using the parameters listed in Table B.1.2.2.1-4. The channel realizations are obtained by a step-wise procedure [B2] illustrated in Figure B.1.2.2.1-1 and described below. It has to be noted that the geometric description covers arrival angles from the last bounce scatterers and respectively departure angles to the first scatterers interacted from the transmitting side. The propagation between the first and the last interaction is not defined. Thus, this approach can model also multiple interactions with the scattering media. This indicates also that e.g., the delay of a multipath component cannot be determined by the geometry. In the following steps, downlink is assumed. For uplink, arrival and departure parameters have to be swapped.

Figure B.1.2.2.1-1 Channel coefficient generation procedure
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General parameters:

Step 1:  Set environment, network layout, and antenna array parameters

a. Choose one of the scenarios (InH, UMi, …)

b. Give number of BS and UT

c. Give locations of BS and UT, or equally distances of each BS and UT and relative directions and (LOS and (LOS of each BS and UT

d. Give BS and UT antenna field patterns Frx and Ftx and array geometries

e. Give BS and UT array orientations with respect to north (reference) direction

f. Give speed and direction of motion of UT

g. Give system centre frequency

Large scale parameters:

Step 2:  Assign propagation condition (LOS/NLOS).

Step 3:  Calculate path loss with formulas of Table B.1.2.1-1for each BS-UT link to be modelled. 

Step 4:  Generate correlated large scale parameters, i.e. delay spread, angular spreads, Ricean K factor and shadow fading term like explained in [B2, section 3.3.1] (Correlations between large scale parameters). Limit random rms arrival and departure azimuth spread values to 104 degrees, i.e., (  = min(( ,104().

Small scale parameters:

Step 5:  Generate delays 
Delays are drawn randomly from the delay distribution defined in Table B.1.2.2.1-4. With exponential delay distribution calculate
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where r is the delay distribution proportionality factor, Xn ~ Uni(0,1), and cluster index n = 1,…,N. With uniform delay distribution the delay values n’are drawn from the corresponding range. Normalise the delays by subtracting the minimum delay and sort the normalised delays to ascending order:
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In the case of LOS condition, additional scaling of delays is required to compensate for the effect of LOS peak addition to the delay spread. The heuristically determined Ricean K-factor dependent scaling constant is
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where K [dB] is the Ricean K-factor defined in Table B.1.2.2.1-4.. The scaled delays
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are not to be used in cluster power generation.

Step 6:  Generate cluster powers P.

Cluster powers are calculated assuming a single slope exponential power delay profile. Power assignment depends on the delay distribution defined in Table B.1.2.2.1-4. With exponential delay distribution the cluster powers are determined by
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where 
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 is the per cluster shadowing term in [dB]. Average the power so that the sum power of all cluster powers is equal to one, i.e., 
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Assign the power of each ray within a cluster as Pn / M, where M is the number of rays per cluster.

Remove clusters with less than -25 dB power compared to the maximum cluster power.

Step 7:  Generate arrival angles ( and departure angles (.

As the composite PAS of all clusters is modelled as wrapped Gaussian (see Table B.1.2.2.1-4), except indoor hotspot scenario (InH) as Laplacian, the AoAs are determined by applying the inverse Gaussian function (13) or inverse Laplacian function (14) with input parameters Pn and RMS angle spread (
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In the equation (13) 
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 is the standard deviation of the arrival angles (the factor 1.4 is the ratio of Gaussian std and the corresponding “RMS spread”). Constant C  is a scaling factor related to total number of clusters and is given in the table below: 

Table B.1.2.2.1-1
	# clusters
	4
	5
	8
	10
	11
	12
	14
	15
	15
(InH)
	16
	19
	19
(InH)
	20

	C
	0.779
	0.860
	1.018
	1.090
	1.123
	1.146
	1.190
	1.211
	1.434
	1.226
	1.273
	1.501
	1.289


In the LOS case, constant C is dependent also on the Ricean K-factor. Constant C in (13) and (14) is substituted by CLOS. Additional scaling of the angles is required to compensate for the effect of LOS peak addition to the angle spread. The heuristically determined Ricean K-factor dependent scaling constant is 
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As for indoor  hotspot scenario, the scaling constant is:
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where K [dB] is the Ricean K-factor defined in Table B.1.2.2.1-4.

Assign positive or negative sign to the angles by multiplying with a random variable Xn with uniform distribution to the discrete set of {1,–1}, and add component 
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 to introduce random variation
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