Page 1

3GPP TSG-RAN WG5 Testing
R5s160048

01 Dec 2016 – 31 Dec 2016

	CR-Form-v11.1

	CHANGE REQUEST

	

	
	36.523-3
	CR
	3043
	rev
	-
	Current version:
	12.4.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Corrections to XID/ IPv6 handling in LTE-GERAN test cases

	
	

	Source to WG:
	Rohde & Schwarz

	Source to TSG:
	R5

	
	

	Work item code:
	TEI8_Test
	
	Date:
	2016-01-08

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-12

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	Current TTCN GERAN procedures only allow sequential processing to transfer messages in UL-TBF or DL-TBF. To handle concurrent UL/DL TBF is not foreseen in TTCN.

Following scenario causes a problem with certain UE implementation configured in IPv6 mode:

After PDP Context Activation Accept the UE requests for an UL-TBF to transfer XID-Req. When that UL-TBF is completed TTCN triggers a DL-TBF and ImmediateAssignment(DL) to send XID-Response.
For ImmediateAssignment(DL) the UE’s paging block is calculated and there may be a time of up to 1.6 seconds until ImmediateAssignment is actually sent on the UEs paging block. During that time the UE also got Router Solicitation to send and requests for a new UL-TBF, which can’t be treated by TTCN during ongoing DL-TBF.

The problems are:

1. Requests for UL-TBF can’t be handled when DL-TBF is ongoing – main problem is the time between initiating DL-TBF and when ImmediateAssignment(DL) is sent. As soon as DL-TBF has started UE will not send ChannelRequests.

2. TTCN doesn’t have an indicator when a DL-TBF is completed.

Way to handle above scenario is to use timers or to introduce features as concurrent TBF handling or delayed TBF. The changes in this CR propose a solution with timers because introduction of more TBF handling features will cause further complications at other places and ASP extensions would be required.

As a general improvement and to get a closer foreseeable range for the timer values (problem 1. above) it is proposed to reduce the paging system parameter BS_PA_MFRMS from value = 6 to the minimum value = 2 multi frames. With the new value = 2 the next UE’s paging block occurs at a much earlier time than with value = 6. The not foreseeable duration from initiating a DL-TBF until completion of DL-TBF is getting much shorter. See calculation:

BS_PA_MFRMS = 6: next paging opportunity may occur only after 6 multiframes which is a maximum of 51*6 frames = 1,41 secs (+offset for calculation)

BS_PA_MFRMS = 2: next paging opportunity may occur only after 2 multiframes which is a maximum of 51*2 frames = 0,47 secs (+offset for calculation)

	
	

	Summary of change:
	solution with timers:

When UL-TBF with XID-Request and without Router Solicitation is finished the DL-TBF is delayed by a timer until UE has requested for the second UL-TBF to transfer the Router Solicitation and until that UL-TBF is completed.

After that the RouterAdvertisement must be treated with priority because of short timeout (2 secs). IP-PTC anyway triggers the DL-TBF and a timer has to be used until this DL-TBF is completed. TTCN doesn’t have a trigger to indicate completed DL-TBF and TTCN can’t queue a second message (XID-Response) into the ongoing DL-TBF. Then a further DL-TBF is initiated to send XID-Response (longer timeout of 5 secs).

It may happen that UE has already a further RouterSolicitation request in it’s queue and for that reason after sending XID-Response the option for a further RouterSolicitation procedure is handled.

System parameter for paging BS_PA_MFRMS changed from value 6 to minimum value 2 (coding ‘100’ to ‘000’).

	
	

	Consequences if not approved:
	A conformant UE will not pass XID and RouterSolicitation procedures.

	
	

	Clauses affected:
	All LTE-GERAN TCs with PDP context activation on GERAN:

6.2.3.21 – 6.2.3.30, 9.2.3.4.1, 9.2.3.1.6

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	

	affected:
	
	X
	 Test specifications
	

	(show related CRs)
	
	X
	 O&M Specifications
	

	
	

	Other comments:
	

1 Table of Contents

11
Table of Contents

2
Correction to test procedures
2
2.1
f_GERAN_LLC_XID ()
2
2.2
fl_SendXIDRes ()
5
2.3
template cs_G_CommonCellConfigInfoDef
7

2 Correction to test procedures
2.1 f_GERAN_LLC_XID ()
	Object name
	f_GERAN_LLC_XID ()

	Reason for change
	Current TTCN GERAN procedures only allow sequential processing to transfer messages in UL-TBF or DL-TBF. To handle concurrent UL/DL TBF is not foreseen in TTCN.

Following scenario causes a problem with certain UE implementation configured in IPv6 mode:

After PDP Context Activation Accept the UE requests for an UL-TBF to transfer XID-Req. When that UL-TBF is completed TTCN triggers a DL-TBF and ImmediateAssignment(DL) to send XID-Response.
For ImmediateAssignment(DL) the UE’s paging block is calculated and there may be a time of up to 1.6 seconds until ImmediateAssignment is actually sent on the UEs paging block. During that time the UE also got Router Solicitation to send and requests for a new UL-TBF, which can’t be treated by TTCN during ongoing DL-TBF.

The problems are:

1. Requests for UL-TBF can’t be handled when DL-TBF is ongoing – main problem is the time between initiating DL-TBF and when ImmediateAssignment(DL) is sent. As soon as DL-TBF has started UE will not send ChannelRequests.

2. TTCN doesn’t have an indicator when a DL-TBF is completed.

Way to handle above scenario is to use timers or to introduce features as concurrent TBF handling or delayed TBF. The changes in this CR propose a solution with timers because introduction of more TBF handling features will cause further complications at other places and ASP extensions would be required.

It is proposed to discuss further TBF handling features required for such scenarios at the next MCC160 conference call. In the meanwhile a solution with timers has to be used.

	Summary of change
	Current solution with timers:

When UL-TBF with XID-Request and without Router Solicitation is finished the DL-TBF is delayed by a timer until UE has requested for the second UL-TBF to transfer the Router Solicitation and until that UL-TBF is completed.

After that the RouterAdvertisement must be treated with priority because of short timeout (2 secs). IP-PTC anyway triggers the DL-TBF and a timer has to be used until this DL-TBF is completed. TTCN doesn’t have a trigger to indicate completed DL-TBF and TTCN can’t queue a second message (XID-Response) into the ongoing DL-TBF. Then a further DL-TBF is initiated to send XID-Response (longer timeout of 5 secs).

	Source of change
	\Common\GERAN\GERAN_CommonFunctions.ttcn

	MCC160 Comment
	

Before change:

	<<SKIPPED CODE>>

 function f_GERAN_LLC_XID(GERAN_CellId_Type p_CellId,

 boolean p_RAUComplete,

 template LLCUnitDataIndType p_Expected_G_RA_UpdComplete := cr_G_RA_UpdComplete,

 boolean p_WaitToSendResponse := false,

 boolean p_ExpectingSNDCP := false)

 runs on GERAN_PTC return boolean // @sic R5s130368, R5s150824 sic@

 {

 var B10_Type v_BCCH_ARFCN := f_GERAN_GPRSFreq_Get(p_CellId); // @sic R5s120587 sic@

 var G_L2_DATAMESSAGE_IND v_ChanReq;

 var G_LLC_DATAMESSAGE_IND v_XID;

 var boolean v_ReceivedSN := false; // @sic R5s150824 sic@

 timer t_Wait10S := 10.0;

 t_Wait10S.start;

 alt {

 [p_RAUComplete] G_LLC.receive(car_G_LLC_UnitData_IND(p_Expected_G_RA_UpdComplete)) // @sic R5s120837 sic@

 {

 repeat;

 }

 [] G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketResourceRequestAny))

 {

 G_RLC.send(cas_G_RLC_ControlMsg_REQ_PACCH(p_CellId, tsc_PhyCh1, 1, tsc_UplinkTFI, cs_PacketUplinkAssignment(v_BCCH_ARFCN, substr(oct2bit(f_GERAN_TA_Get(p_CellId)),1, 6)))); // @sic R5s120587 sic@

 repeat;

 }

 [] G_LLC.receive(car_G_LLC_XID_IndAny)

 -> value v_XID

 {

 t_Wait10S.stop;

 // Wait for end of TBF

 // RACE CONDITION: Do we need to check the flag here ???

 G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketControlAcknowledgement)); // RACE CONDITION

 G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.xid.sAPI, v_XID.xid.xID_Info, enum2int(p_CellId))); // @sic R5-135000 sic@

 if (p_WaitToSendResponse) { // @sic R5s141389 sic@

 f_Delay (3.0);
 }

 fl_SendXIDRes(p_CellId, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.xid.sAPI, omit, enum2int(p_CellId))); // @sic R5s130195 Baseline Moving sic@

 }

 [] G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketControlAcknowledgement))

 {

 // RACE CONDITION: Do we need to set a flag here ???

 repeat;

 }

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase))

 -> value v_ChanReq

 {

 f_GERAN_ULTBFOnePhase(p_CellId, v_ChanReq.access); // @sic R5s120050 MCC160 implementation sic@

 repeat;

 }

 [p_ExpectingSNDCP] G_SN.check(receive (?)) // @sic R5s150824 sic@

 {

 t_Wait10S.stop;

 v_ReceivedSN := true;

 }

 [] t_Wait10S.timeout {} // No XID coming

 }

 return v_ReceivedSN; // @sic R5s130368 sic@

 } //end of f_GERAN_LLC_XID

After change:

	<<SKIPPED CODE>>

 //--

 /*

 * @desc Function to receive an optional XID (and optional PRR and poss. RAU Complete too)

 * @param p_CellId

 * @param p_RAUComplete - Set to true if this is called after/during an RAU procedure, so that we also have to wait for RAUComplete

 * @param p_Expected_G_RA_UpdComplete - If above parameter is true, use this template

 * @param p_WaitToSendResponse - Set to true if possible the UE can send an IPv6 Router Solicitation at the same time, to avoid the answers clashing in the same DL TBF

 * @param p_ExpectingSNDCP (default value: false)

 * @return boolean

 * @status APPROVED (IMS_IRAT, LTE_A_IRAT, LTE_IRAT)

 */

 function f_GERAN_LLC_XID(GERAN_CellId_Type p_CellId,

 boolean p_RAUComplete,

 template LLCUnitDataIndType p_Expected_G_RA_UpdComplete := cr_G_RA_UpdComplete,

 boolean p_WaitToSendResponse := false,

 boolean p_ExpectingSNDCP := false)

 runs on GERAN_PTC return boolean // @sic R5s130368, R5s150824 sic@

 {

 var B10_Type v_BCCH_ARFCN := f_GERAN_GPRSFreq_Get(p_CellId); // @sic R5s120587 sic@

 var G_L2_DATAMESSAGE_IND v_ChanReq;

 var G_LLC_DATAMESSAGE_IND v_XID;

 var boolean v_ReceivedSN := false; // @sic R5s150824 sic@

 timer t_Wait10S := 10.0;
 timer t_WaitForRouterSol := 2.3; //@FS Wait for RouterSolicitation procedure

 t_Wait10S.start;

 alt {

 [p_RAUComplete] G_LLC.receive(car_G_LLC_UnitData_IND(p_Expected_G_RA_UpdComplete)) // @sic R5s120837 sic@

 {

 repeat;

 }

 [] G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketResourceRequestAny))

 {

 G_RLC.send(cas_G_RLC_ControlMsg_REQ_PACCH(p_CellId, tsc_PhyCh1, 1, tsc_UplinkTFI, cs_PacketUplinkAssignment(v_BCCH_ARFCN, substr(oct2bit(f_GERAN_TA_Get(p_CellId)),1, 6)))); // @sic R5s120587 sic@

 repeat;

 }

 [] G_LLC.receive(car_G_LLC_XID_IndAny)

 -> value v_XID

 {

 t_Wait10S.stop;

 // Wait for end of TBF

 // RACE CONDITION: Do we need to check the flag here ???

 G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketControlAcknowledgement)); // RACE CONDITION

 G_CLLC.send(cas_G_CLLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.xid.sAPI, v_XID.xid.xID_Info, enum2int(p_CellId))); // @sic R5-135000 sic@

 if (p_WaitToSendResponse) { // @sic R5s141389 sic@

// f_Delay (3.0);
 //@FS Begin: Handle another UL-TBF for RouterSolicitation and wait until RouterAdvertisement finished

 t_WaitForRouterSol.start;

 alt {

 // Reiceive Channel Request

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase)) -> value v_ChanReq

 {

 // finish configuring the TBF

 f_GERAN_ULTBFOnePhase(p_CellId, v_ChanReq.access);

 repeat;

 }

 [] G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketControlAcknowledgement))

 {

 //and discard Channel Requests before and until sending RouterAdvertisement finished

 alt {

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase))

 {

 repeat;

 }

 [] t_WaitForRouterSol.timeout {} // until sending RouterAdvertisement finished

 }

 }

 [] t_WaitForRouterSol.timeout {} // until sending RouterAdvertisement finished

 }

 //@FS End: Handle another UL-TBF for RouterSolicitation and wait until RouterAdvertisement finished
 }

 fl_SendXIDRes(p_CellId, cas_G_LLC_XID_Req(f_GERAN_TLLI_Get(p_CellId), v_XID.xid.sAPI, omit, enum2int(p_CellId))); // @sic R5s130195 Baseline Moving sic@

 }

 [] G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketControlAcknowledgement))

 {

 // RACE CONDITION: Do we need to set a flag here ???

 repeat;

 }

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase))

 -> value v_ChanReq

 {

 f_GERAN_ULTBFOnePhase(p_CellId, v_ChanReq.access); // @sic R5s120050 MCC160 implementation sic@

 repeat;

 }

 [p_ExpectingSNDCP] G_SN.check(receive (?)) // @sic R5s150824 sic@

 {

 t_Wait10S.stop;

 v_ReceivedSN := true;

 }

 [] t_Wait10S.timeout {} // No XID coming

 }

 return v_ReceivedSN; // @sic R5s130368 sic@

 } //end of f_GERAN_LLC_XID

2.2 fl_SendXIDRes ()
	Object name
	fl_SendXIDRes ()

	Reason for change
	Current TTCN GERAN procedures only allow sequential processing to transfer messages in UL-TBF or DL-TBF. To handle concurrent UL/DL TBF is not foreseen in TTCN.

Following scenario causes a problem with certain UE implementation configured in IPv6 mode:

After PDP Context Activation Accept the UE requests for an UL-TBF to transfer XID-Req. When that UL-TBF is completed TTCN triggers a DL-TBF and ImmediateAssignment(DL) to send XID-Response.
For ImmediateAssignment(DL) the UE’s paging block is calculated and there may be a time of up to 1.6 seconds until ImmediateAssignment is actually sent on the UEs paging block. During that time the UE also got Router Solicitation to send and requests for a new UL-TBF, which can’t be treated by TTCN during ongoing DL-TBF.

The problems are:

1. Requests for UL-TBF can’t be handled when DL-TBF is ongoing – main problem is the time between initiating DL-TBF and when ImmediateAssignment(DL) is sent. As soon as DL-TBF has started UE will not send ChannelRequests.

2. TTCN doesn’t have an indicator when a DL-TBF is completed.

Way to handle above scenario is to use timers or to introduce features as concurrent TBF handling or delayed TBF. The changes in this CR propose a solution with timers because introduction of more TBF handling features will cause further complications at other places and ASP extensions would be required.

It is proposed to discuss further TBF handling features required for such scenarios at the next MCC160 conference call. In the meanwhile a solution with timers has to be used.

	Summary of change
	Current solution with timers:

When UL-TBF with XID-Request and without Router Solicitation is finished the DL-TBF is delayed by a timer until UE has requested for the second UL-TBF to transfer the Router Solicitation and until that UL-TBF is completed.

After that the RouterAdvertisement must be treated with priority because of short timeout (2 secs). IP-PTC anyway triggers the DL-TBF and a timer has to be used until this DL-TBF is completed. TTCN doesn’t have a trigger to indicate completed DL-TBF and TTCN can’t queue a second message (XID-Response) into the ongoing DL-TBF. Then a further DL-TBF is initiated to send XID-Response (longer timeout of 5 secs).

It may happen that UE has already a further RouterSolicitation request in it’s queue and for that reason after sending XID-Response the option for a further RouterSolicitation procedure is handled.

	Source of change
	\Common\GERAN\GERAN_CommonFunctions.ttcn

	MCC160 Comment
	

Before change:

	<<SKIPPED CODE>>

 //--

 /*

 * @desc Function to send the XID Response if we've received and XID - only to be called from f_GERAN_LLC_XID

 * @param p_CellId

 * @param p_Msg

 * @param p_Rpt (default : true)

 * @status APPROVED (IMS_IRAT, LTE_A_IRAT, LTE_IRAT)

 */

 function fl_SendXIDRes(GERAN_CellId_Type p_CellId,

 template (value) G_LLC_DATAMESSAGE_REQ p_Msg, // @sic R5s120967 sic@

 boolean p_Rpt := true) runs on GERAN_PTC

 {

 var G_L2_DATAMESSAGE_IND v_ChanReq;

 timer t_Wait5S := 5.0;

 f_GPRS_SendDownlinkMsg(p_CellId, 1, p_Msg); // @sic R5s120802 sic@

 t_Wait5S.start;

 alt {

 [] t_Wait5S.timeout {}

 [] G_LLC.receive(car_G_LLC_XID_IndAny)

 {

 if (p_Rpt) {// already send response, so ignore this

 repeat;

 }

 }

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase))

 -> value v_ChanReq

 {

 t_Wait5S.stop;

 f_GERAN_ULTBFOnePhase(p_CellId, v_ChanReq.access, car_G_LLC_XID_IndAny); // @sic R5s120050 MCC160 implementation sic@

 }
 } // end of alt

 } // end of fl_SendXIDRes

After change:

	<<SKIPPED CODE>>

 //--

 /*

 * @desc Function to send the XID Response if we've received and XID - only to be called from f_GERAN_LLC_XID

 * @param p_CellId

 * @param p_Msg

 * @param p_Rpt (default : true)

 * @status APPROVED (IMS_IRAT, LTE_A_IRAT, LTE_IRAT)

 */

 function fl_SendXIDRes(GERAN_CellId_Type p_CellId,

 template (value) G_LLC_DATAMESSAGE_REQ p_Msg, // @sic R5s120967 sic@

 boolean p_Rpt := true) runs on GERAN_PTC

 {

 var G_L2_DATAMESSAGE_IND v_ChanReq;

 timer t_Wait5S := 5.0;

 f_GPRS_SendDownlinkMsg(p_CellId, 1, p_Msg); // @sic R5s120802 sic@

 t_Wait5S.start;

 alt {

 [] t_Wait5S.timeout {}

 [] G_LLC.receive(car_G_LLC_XID_IndAny)

 {

 if (p_Rpt) {// already send response, so ignore this

 repeat;

 }

 }

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase))

 -> value v_ChanReq

 {

// t_Wait5S.stop;

 //@FS Also another ChannelRequest for RouterSolicitation may come - Configure UL-TBF

 f_GERAN_ULTBFOnePhase(p_CellId, v_ChanReq.access /*, car_G_LLC_XID_IndAny*/); // @sic R5s120050 MCC160 implementation sic@

 repeat;

 }

 [] G_RLC.receive(car_G_RLC_ControlMsg_IND(p_CellId, tsc_PhyCh1, cr_PacketControlAcknowledgement))

 {

 //@FS and wait until RouterAdvertisement triggered by IP_PTC is sent

 // discard Channel Requests before and until sending RouterAdvertisement finished

 alt {

 [] G_L2.receive(car_G_L2_ACCESS_IND(p_CellId, tsc_PhyCh0, tsc_RACH, ?, ?, cr_ChanReqOnePhase))

 {

 repeat;

 }

 [] t_Wait5S.timeout {} // wait until sending RouterAdvertisement finished

 }

 }

 [] t_Wait5S.timeout {}
 } // end of alt

 } // end of fl_SendXIDRes

2.3 template cs_G_CommonCellConfigInfoDef
	Object name
	template cs_G_CommonCellConfigInfoDef

	Reason for change
	As a general improvement and to get a closer foreseeable range for the timer values (problem 1. above) it is proposed to reduce the paging system parameter BS_PA_MFRMS from value = 6 to the minimum value = 2 multi frames. With the new value = 2 the next UE’s paging block occurs at a much earlier time than with value = 6. The not foreseeable duration from initiating a DL-TBF until completion of DL-TBF is getting much shorter. See calculation:

BS_PA_MFRMS = 6: next paging opportunity may occur only after 6 multiframes which is a maximum of 51*6 frames = 1,41 secs (+offset for calculation)

BS_PA_MFRMS = 2: next paging opportunity may occur only after 2 multiframes which is a maximum of 51*2 frames = 0,47 secs (+offset for calculation)

	Summary of change
	System parameter for paging BS_PA_MFRMS changed from value 6 to minimum value 2 (coding ‘100’ to ‘000’).

	Source of change
	\Common\GERAN\ GERAN_CellInfo.ttcn

	MCC160 Comment
	

Before change:

	<<SKIPPED CODE>>

 template (value) GERAN_CommonCellInfo_Type cs_G_CommonCellConfigInfoDef (O2_Type p_CellIdentity):=

 { /* @status APPROVED (IMS_IRAT, LTE_A_IRAT, LTE_IRAT) */

 gamma := '00100'B,

 downlinkPowerLevel := 63, // Downlink transmission power level Vemf().

 cellIdentity := p_CellIdentity, // cell identity

 mcc := '001'H, // mobile country code = 001 (decimal)

 mnc := '01F'H, // mobile network code = 01 (decimal)

 plmn := '00F110'O, // PLMN

 lac := '0001'O, // location area code = '0001'O

 rac := '05'O, // routing area code. Default = '05'O

 nmo := '00'B, // network mode of operation. Default = '00'B

 ncc := '001'B, // PLMN colour code = '001'B

 bcc := '101'B, // BS colour code = '101'B

 dTX := '10'B, // Uplink discontinuous transmission not used. (indecation in BCCH)

 dtx8 := '0'B, // Uplink discontinuous transmission not used. (indecation in SACHH)

 dtx65 := '10'B, // Uplink discontinuous transmission not used. (indecation in SACHH)

 splitPGcycle := cs_SplitPGCycleInitial, // no split pg cycle on CCCH. value taken from PIXIT. (shall be PICS qustion?)

 timingAdvance := bit2oct(px_TimingAdvance), // timing advance value = 30 * 48/13 us @sic R5s120587 sic@

 tSC := px_TSC, // training sequence code for dedicated channels.

 controlChDesr := {

 mSCRelease := '1'B, // MSC release

 att := '1'B, // attach-detach allowed

 bS_AG_BLKS_RES := '010'B, // base station access grant blocks reservation

 cCCH_CONF := '001'B, // CCCH configuration

 si22Ind := '0'B, // @sic R5s130195 Baseline Moving sic@

 cBQ3 := '00'B, // cell bar qualify 3 @sic R5s130195 Baseline Moving sic@

 spareBits := '00'B, // spare bits

 bS_PA_MFRMS := '100'B, // number of multiframes for paging request

 t3212 := '00'O // t3212 value

 }, // Control channel description 44.018, clause 10.5.2.11

 rachCtrlParams := {

 maxretx := '00'B, // maximum retransmissions

 txInteger := '0010'B, // Tx integer, number of slots to spread transmission

 cellBarAccess := '0'B, // cell barred for access

 re := '1'B, // call reestablishment allowed

 acc_2 := '00000'B, // access control class 15-11

 ec := '0'B, // emergency call allowed

 acc_1 := '0000000000'B // access control class 9-0

 }, // RACH control Parameters 44.018 clause 10.5.2.29

 cellSelParams := {

 cellReselHysteresis := '110'B, // cell reselected hysteresis

 mS_TXPWR_MAX_CCH := '01010'B, // MS maximum TX power for CCH @sic R5s120602 sic@

 acs := '0'B, // additional reselect parameter indicator

 neci := '1'B, // half rate support

 rXLEV_ACCESS_MIN := '011001'B // MS minimum received signal level @sic R5s120602, R5-123793 sic@

 }, // Cell Selection Parameters 44.018 clause 10.5.2.4

 radioLinkTimeout := '0001'B, // RADIO-LINK-TIMEOUT = 8 SACCH blocks

 nccPermitted := '02'O, // NCC permitted = 0000 0010

 dN_Ind := '0'B, // dynamic ARFCN mapping not used

 tlli := tsc_TLLI_Initial,

 oldTlli := tsc_TLLI_Initial

 };

After change:

	<<SKIPPED CODE>>
 template (value) GERAN_CommonCellInfo_Type cs_G_CommonCellConfigInfoDef (O2_Type p_CellIdentity):=

 { /* @status APPROVED (IMS_IRAT, LTE_A_IRAT, LTE_IRAT) */

 gamma := '00100'B,

 downlinkPowerLevel := 63, // Downlink transmission power level Vemf().

 cellIdentity := p_CellIdentity, // cell identity

 mcc := '001'H, // mobile country code = 001 (decimal)

 mnc := '01F'H, // mobile network code = 01 (decimal)

 plmn := '00F110'O, // PLMN

 lac := '0001'O, // location area code = '0001'O

 rac := '05'O, // routing area code. Default = '05'O

 nmo := '00'B, // network mode of operation. Default = '00'B

 ncc := '001'B, // PLMN colour code = '001'B

 bcc := '101'B, // BS colour code = '101'B

 dTX := '10'B, // Uplink discontinuous transmission not used. (indecation in BCCH)

 dtx8 := '0'B, // Uplink discontinuous transmission not used. (indecation in SACHH)

 dtx65 := '10'B, // Uplink discontinuous transmission not used. (indecation in SACHH)

 splitPGcycle := cs_SplitPGCycleInitial, // no split pg cycle on CCCH. value taken from PIXIT. (shall be PICS qustion?)

 timingAdvance := bit2oct(px_TimingAdvance), // timing advance value = 30 * 48/13 us @sic R5s120587 sic@

 tSC := px_TSC, // training sequence code for dedicated channels.

 controlChDesr := {

 mSCRelease := '1'B, // MSC release

 att := '1'B, // attach-detach allowed

 bS_AG_BLKS_RES := '010'B, // base station access grant blocks reservation

 cCCH_CONF := '001'B, // CCCH configuration

 si22Ind := '0'B, // @sic R5s130195 Baseline Moving sic@

 cBQ3 := '00'B, // cell bar qualify 3 @sic R5s130195 Baseline Moving sic@

 spareBits := '00'B, // spare bits

 bS_PA_MFRMS := '000'B, // number of multiframes for paging request

 t3212 := '00'O // t3212 value

 }, // Control channel description 44.018, clause 10.5.2.11

 rachCtrlParams := {

 maxretx := '00'B, // maximum retransmissions

 txInteger := '0010'B, // Tx integer, number of slots to spread transmission

 cellBarAccess := '0'B, // cell barred for access

 re := '1'B, // call reestablishment allowed

 acc_2 := '00000'B, // access control class 15-11

 ec := '0'B, // emergency call allowed

 acc_1 := '0000000000'B // access control class 9-0

 }, // RACH control Parameters 44.018 clause 10.5.2.29

 cellSelParams := {

 cellReselHysteresis := '110'B, // cell reselected hysteresis

 mS_TXPWR_MAX_CCH := '01010'B, // MS maximum TX power for CCH @sic R5s120602 sic@

 acs := '0'B, // additional reselect parameter indicator

 neci := '1'B, // half rate support

 rXLEV_ACCESS_MIN := '011001'B // MS minimum received signal level @sic R5s120602, R5-123793 sic@

 }, // Cell Selection Parameters 44.018 clause 10.5.2.4

 radioLinkTimeout := '0001'B, // RADIO-LINK-TIMEOUT = 8 SACCH blocks

 nccPermitted := '02'O, // NCC permitted = 0000 0010

 dN_Ind := '0'B, // dynamic ARFCN mapping not used

 tlli := tsc_TLLI_Initial,

 oldTlli := tsc_TLLI_Initial

 };

