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1. Introduction
Extensive research is ongoing worldwide, with the goal to define the next generation “beyond LTE” system. It is envisioned that this next generation standard, typically referred to as 5G, will enable operation at frequency bands as high as 100GHz and will allow the support of a diverse set of services and in a number of different environments and scenarios.
The 3GPP Spatial Channel Model (SCM) [1] and the ITU based model [2,3] have been instrumental in the development and evaluation of technologies for LTE. They provide modelling support for a number of important channel attributes and for operating a number of important technologies including MIMO. The recently developed 3D-UMi and 3D-UMa channel models have provided additional flexibility to include the elevation dimension. This is because there is a new requirement that the two dimensional arrange antenna system will be deployed. These channel models, however, were designed and evaluated for operation at frequencies only as high as 6GHz. Consequently, it is important for 3GPP to develop a new channel model that will be validated for operation at frequencies up to, e.g., 100GHz, and will allow accurate performance evaluation of possible future technical specifications at higher frequency bands and over a representative set of possible environments and scenarios of interest.
This contribution highlights the efforts that are necessary in order to establish a new channel model that can be utilized for 5G evaluation for 3GPP evolution. This contribution also proposes to start channel modeling study in 3GPP. As part of these efforts, 3GPP needs to identify important scenarios and channel modelling requirements for 5G. The contribution also encourages member companies to conduct the measurement campaigns that are needed for developing a channel model that would meet these requirements. This contribution is also supported by Aalto University, Beijing University of Posts and Telecommunications, New York University (NYU WIRELESS), Univ. of Bristol and University of Southern California.
2. Current channel modelling activities for 5G
In its effort to develop a new channel model for 5G, it is important for 3GPP to leverage the findings of all the efforts that are conducted outside 3GPP. There are many existing and ongoing campaign efforts worldwide targeting 5G channel measurements and modelling. They include METIS2020 [4], COST2100/COST IC1004 [5,6], ETSI mmWave SIG, 5G mmWave Channel Model Alliance [7], MiWEBA [8], mmMagic [9], and NYU WIRELESS [10,11]. METIS2020, for instance, has focused on 5G technologies and has contributed extensive studies in terms of channel modelling. Their target requirements include a wide range of frequency bands (up to 86GHz), very large bandwidths (hundreds of MHz), fully three dimensional and accurate polarization modelling, spherical wave modelling, and high spatial resolution. The METIS channel models consist of a map-based model, stochastic model, and a hybrid model which can meet requirement of flexibility and scalability. The COST2100 channel model is a geometry-based stochastic channel model (GSCM) that can reproduce the stochastic properties of MIMO channels over time, frequency, and space. On the other hand, the 5G mmWave Channel Model Alliance is newly established and it focuses on channel measurement campaign database. NYU WIRELESS has conducted and openly published extensive urban propagation measurements at 28, 38 and 73 GHz for both outdoor and indoor channels, and has created large-scale and small-scale channel models using physically-based properties and the concept of spatial lobes to model multiple multipath time clusters that are seen to arrive in particular directions [12].
Additionally, we are aware that many parties have started and continue to conduct measurement campaigns, with the goal to collect various measurement data in various scenario and frequency bands and explore propagation characteristics for higher frequency. An overview of some of the recent channel measurements and ray tracing that have already been conducted and planned to be conducted is included in an accompanying addendum. It includes measurement for 0.8-86 GHz and ray tracing activities for the scenarios described in the annex. These measurements have as their goal the characterization of pertinent channel model parameters in the typical scenarios of interest, including pathloss, LOS-NLOS transition, O/I penetration loss, geometry-induced blockage, geometry-induced shadow fading, temporal shadow fading, and additional losses (atmosphere losses, small objects, foliage, etc.) and angular and delay characteristics. 
3. Channel modelling approaches in 3GPP
The new 5G channel model should provide realistic and high accuracy radio propagation models with low computational complexity in terms of future simulation campaigns. Since 5G channel modelling has been studied in many organizations, universities, and industrial alliances, it is possible to utilize these results to meet our 3GPP requirements. In addition, the new channel model should preferably be based on the existing 3GPP 3D channel model [13] but with extensions to cater for additional 5G modeling requirements and scenarios.
As a starting point, our proposed requirements and scenarios are described in the annex.
4. Summary
In this contribution, we have advocated the need for a new channel model that will support 5G activities across frequency bands of 0.5-100GHz and their evaluation in 3GPP. In support of our proposal, we have provided a set of preliminary 5G scenarios and channel modelling requirements in the annex. 
We encourage all 3GPP members to conduct measurement campaigns at frequency bands, environment and scenarios that would enable the development of a new model which would meet the 3GPP 5G channel modeling requirements. 
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Annex
Our proposed requirements and scenarios can serve as a starting point for discussion and towards defining 3GPP’s 5G radio channel and propagation modelling requirements: 
1.  Deployment scenarios
a. The new channel model should be developed for a small set of scenarios representing typical 5G practical usage scenarios. Potential scenarios may include the following:
i. Urban Micro (UMi) Street Canyon with O2O (outdoor to outdoor) and O2I (outdoor to indoor)
ii. Urban Micro (UMi) Open Square with O2O and O2I
iii. Indoor – Office 
iv. Indoor – Shopping Mall
v. Urban Macro with O2O and O2I
2.  Wide frequency range from 0.5GHz up to 100GHz
a. Frequency range will be between 0.5-100GHz. The joint propagation characteristics over different frequency bands should be addressed in multi-band operation, e.g., lowband and highband carrier aggregation evaluations. 
3.  Large bandwidth (up to 2GHz)
4.  Large arrays antenna configuration
a. Large antenna arrays with very high directivity with angular resolution down to 1 degree.
5. Mobility (up to T.B.D km/h)
a. The channel model structure should be prepared for small-scale mobility of both ends of the link in order to support scenarios such as D2D or V2V.
6. Spatial/Temporal/Frequency consistency
a. The model should provide spatial/temporal/frequency consistencies, characterized via e.g. cluster spatial consistence, inter-site correlation, correlation among frequency bands. This model should ensure that the channel states such as LOS/NLOS or outdoor/indoor locations and the second order statistics of the channel as well as the channel realizations change smoothly as a function of time, position, or frequency changes. The spatial/temporal/frequency consistencies should be supported for simulations where the channel consistency impacts the results (e.g. massive MIMO, mobility and beam tracking, etc.) but could possibly be optional for simpler studies.
7. Computational complexity
a. The model should be suitable for implementation in single-link simulation tools and in multi-cell, multi-link radio network simulation tools. Computational complexity and memory requirements should not be excessive. The 3GPP 3D channel model [13] is seen as the model for an acceptable level of complexity.
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Measurements: Street Canyon (Below 30 GHz)

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		< 30 GHz		NYU [39]		1.8		●		●		●

				CMCC		6		●		●		Aug.

				DCM		8		●				

				CMCC		10		TBD		TBD		

				Intel		10		Oct./Dec.		Oct./Dec.		Oct./Dec.

				Nokia/Aalborg		2, 10, 18		●				

				CMCC		14		Sep.		Sep.		

				Aalto		15		Sep.		Sep.		Sep.

				Huawei		15						

				Ericsson		15		●		●		●

				DCM		20, 26		●		Sep. (20)		Sep. (20)

				Huawei		28		●		Nov.		Nov.

				Intel		28		Oct./Dec.		Oct./Dec.		Oct./Dec.

				NYU [5][8][9][11][40] [47][48][49]		28		● [Summer 2012]		● [Summer 2012]		● [Summer 2012]

				NYU		28		Sep.		Sep.		Sep.

				Samsung		28		●		●		●

				Ericsson		28						

				Nokia/Aalborg		28		Aug. - Sep.		Aug. - Sep.		

				CMCC		28		Sep.		Sep.		

				Aalto		28		●		●		●

				Qualcomm		29		Oct.		TBD		TBD

												



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: Street Canyon (Above 30 GHz)

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		30 - 60 GHz		Huawei		30-40						

				DCM		37		●				

				NYU		38						

				Intel		41, 60		July (60)
Oct./Dec. (41)		Sep (60)
Oct./Dec. (41)		Sep. (60)
Oct./Dec. (41)

				Ericsson		60						

				Huawei		60		Nov.		Nov.		Nov.

				Qualcomm		60		Oct.		TBD		TBD

												

		> 60 GHz		Aalto		63		Sep.		Sep.		Sep.

				Huawei		73		● 		Nov.		Nov.

				NYU [3][5][6][40][47]		73		● [Summer 2013]		● [Summer 2013]		● [Summer 2013]

				NYU		73		TBD		TBD		TBD

				Intel		82		Oct./Dec.		Oct./Dec.		Oct./Dec.

												

												



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: Open Area

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		< 30 GHz		Nokia / AAU		10		●				

				Intel		10		Oct.		Aug.		Oct.

				CMCC		14		Sep.		Sep.		

				Nokia / AAU		2, 10,18		●				

				Nokia/AAU		28		Aug.-Sep.				

				Samsung		28		TBD 
(July or Sep)		TBD (Sep)		TBD (Sep)

				Intel		28		Oct.		Aug.		Oct.

				Qualcomm		29		●		TBD		TBD

												

		30 - 60 GHz		Qualcomm		60		Sept		TBD		TBD

				Univ. of Bristol		60		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)

				Intel		41		Oct.		Sep.		Oct.

												

												

		> 60 GHz 		Aalto		63		●		●		●

				NYU [1][4]		73		● [Spring 2014]		● [Spring 2014]		● [Spring 2014]

				NYU		73		TBD		TBD		TBD

				Intel		82		Oct.		Sep.		Oct.

												



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: UMi O2I

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		< 30 GHz		NYU [19][26][28]		1.9, 5.85		●				

				DCM		8, 26		July				

				Nokia/Aalborg		10		●				

				Ericsson		6, 15, 28		●		●		●

				Nokia/Aalborg		20		●				

				Nokia/Aalborg		28		Sep.				

				Samsung		28		TBD (July)				

				NYU [8][10][11][40]		28		● [Summer 2012]		● [Summer 2012]		● [Summer 2012]

				Ericsson		28						

				Intel		10, 28		Nov. 		Nov.		Nov.

		30 - 60 GHz		DCM		37		July				

				Ericsson		60		●		●		●

				Intel		41		Nov.		Nov.		Nov.

												

												

		> 60 GHz 		Intel		82		Nov.		Nov.		Nov.

												

												

												

												



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: UMa O2O

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		< 30 GHz		CMCC		6		Sep.		Sep. 		

				Nokia/Aalborg		2, 10, 18, 28		●				

				CMCC		14		TBD		TBD		

												

												

		30 - 60 GHz		NYU [12]-[15][24]		38		● [Summer 1998 & Summer 2011]		● [Summer 1998 & Summer 2011]		

												

												

												

												

		> 60 GHz 										

												

												

												

												



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: Office (Below 30 GHz)

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		< 30 GHz		NYU [19][21][22][26][27][41]-[43]		1.3, 1.9, 2.5, 4.0, 5.85		●		●		

				CMCC		6		Sep.		Sep. 		

				Intel		10, 28		Nov.		Nov		Nov

				CMCC		14		●		●		

				Ericsson		2, 4, 6, 15		●		●		●

				Huawei		15		Sept.		Nov.		Nov.

				DCM		8, 20, 26		●		Sep (20)		Sep (20)

				Huawei		28		●		Sept.		Nov.

				NYU [2][10][11]		28		● [Summer 2012 & Summer 2014] 		 ● [Summer 2012 & Summer 2014]		● [Spring 2014]

				Samsung		28		TBD		TBD		TBD

				Ericsson		28		TBD				

				CMCC		28		Sep. 		Sep. 		

				BUPT		28		●		●		

				Qualcomm		29		●		TBD		TBD



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: Office (Above 30 GHz)

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		30 - 60 GHz		Huawei		30-40						

				DCM		37		July				

				Intel		41		Nov.		Nov		Nov

				Ericsson		60		●		●		●

				NYU [20]-[22]		60		● [2000]		● [2000]		

				Univ. of Bristol		60		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)

				Huawei		60		Sept.		Nov.		Nov.

				Qualcomm		60		July		TBD		TBD

		> 60 GHz 		Aalto		63, 70		●		●		●

				Huawei		72		●		Sept.		Nov.

				NYU [2][4]		73		● [Spring & Summer 2014]		● [Spring & Summer 2014]		● [Spring & Summer 2014]

				Intel		82		Nov.		Nov		Nov



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Measurements: Shopping Mall

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters

		< 30 GHz		CMCC		6		TBD		TBD		

				Nokia/Aalborg		2, 10, 18		●				

				Intel		10, 28		Dec.		Dec.		Dec.

				CMCC		14		Jul.		Jul.		

				Aalto		15		●		●		●

				Aalto		28		●		●		●

				Samsung		28		●		●		●

				Nokia/Aalborg		28		Sep.				

				BUPT		28		●		●		

				Qualcomm		29		June		TBD		

		30 - 60 GHz		Intel		41		Dec.		Dec.		Dec.

				Qualcomm		60		June		TBD		

				Univ. of Bristol		60		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)

												

												

		> 60 GHz 		Aalto		63, 70		●		●		●

				Intel		82		Dec.		Dec.		Dec.

												

												



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Ray Tracing
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Ray Tracing: Street Canyon

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters		Location Details

		< 30 GHz		Aalto		15		Nov.		Nov.		Nov.		Greater Helsinki area

				Aalto		28		Nov.		Nov.		Nov.		Greater Helsinki area

				Samsung		28		●		●		●		Daejeon, Korea 
/ Same location for measurement campaign

				Samsung		28		●		●		●		Ottawa

				Samsung		28		●		●		●		NYU Campus
/ Same location for NYU measurement campaign

				USC		28		●		●		●		

				Nokia		5.6,10.25,
28.5		●		●		●		Madrid-grid

		30 - 60 GHz		Nokia		39.3		●		●		●		Madrid-grid

														

														

														

														

		> 60 GHz 		Aalto		63		Nov.		Nov.		Nov.		Greater Helsinki area

				Nokia		73		●		●		●		NYU Campus plus Madrid-grid

														

														

														



- Completed: please denote via  ●

- Planned: please specify month or list TBD







‹#›
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Ray Tracing: Open Area

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters		Location Details

		< 30 GHz		Nokia		5.6,10.25,
28.5		●		●		●		Madrid-grid

				Univ. of Bristol		28		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)		Bristol / London

				Samsung		28		●		TBD		TBD		NY Time-Square

														

														

		30 - 60 GHz		Nokia		39.3		●		●		●		Madrid-grid

				Univ. of Bristol		40 / 60		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)		Bristol / London

														

														

														

		> 60 GHz 		Aalto		63		●		●		●		Helsinki city center

				Nokia		73.5		●		●		●		Madrid-grid

														

														

														



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Ray Tracing: UMa O2O

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters		Location Details

		< 30 GHz		Nokia		5.6,10.25,
28.5		●		●		●		Madrid-grid

				Nokia/Aalborg		10, 18, 28, 39.3, 73.5		Sep.		Sep.		Oct.		Aalborg  (same location as measurement  campaigns)

				Samsung		28		●		●		●		Ottawa

				Samsung		28		●		●		●		NYU Campus

				Univ. of Bristol		28		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)		Bristol / London

		30 - 60 GHz		Univ. of Bristol		40 / 60		TBD (Spring 2016)		TBD (Spring 2016)		TBD (Spring 2016)		Bristol / London

														

														

														

														

		> 60 GHz 												

														

														

														

														



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Ray Tracing: Office

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters		Location Details

		< 30 GHz		Samsung		28		TBD		TBD		TBD (Sep)		Open-Office

														

														

														

														

		30 - 60 GHz												

														

														

														

														

		> 60 GHz 		Aalto		63, 70		●		●		●		Large office, meeting room, cafeteria

				Nokia		73		●		●		●		Open-office at NYU campus

														

														

														



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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Ray Tracing: Shopping Mall

		Band		Party		GHz		Pathloss & Shadowing		Large Scale Parameters		Small Scale Parameters		Location Details

		< 30 GHz		Samsung		28		TBD		TBD		TBD (Sep)		Shopping-mall like environment
/ Same location for measurement campaign

														

														

														

														

		30 - 60 GHz												

														

														

														

														

		> 60 GHz 		Aalto		63, 70		●		●		●		A shopping mall in Helsinki area

														

														

														

														



- Completed: please denote via  ●

- Planned: please specify month or list TBD
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