Page 1

3GPP TSG RAN WG5 Meeting #36
(
R5-072050
Athens, Greece, 20 - 24 August 2007
	CR-Form-v9.3

	CHANGE REQUEST

	

	(

	34.123-3
	CR
	2069
	(

rev
	-
	(

Current version:
	6.3.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Add a new ASP for MBMS test

	
	

	Source to WG:
(

	MCC TF160

	Source to TSG:
(

	R5

	
	

	Work item code:
(

	MBMS_Test
	
	Date: (

	20/07/2007

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	1. Test model and ASP should extended in order to implement MBMS RLC test case 7.2.4.3
2. Documentation is required for the implemented TTCN CRs.
2.1 Editorial corrections of a number of syntax errors in ASP definitions
2.2 New channel configurations are added for PTP Radio Bearer and for test case 11.5.1
2.3 New TSO o_OctToIA5
2.4 AP#35.09 to update the last paragraph of clause 8.14.1 on Access Information.

	
	

	Summary of change:
(

	1. The test model is extended in 6.14.1. A new ASP is added in 7.3.2.2.32c and 7.3.2.2.34c.
2. The changes done in TTCN are documented.

2.1 replace the first upper case letter by a lower case for the constant definitions in 7.3.2.2.34b and 7.3.2.2.35a
2.2 New channel configuration 8.3.55, 8.3.56, 8.3.57
2.3 New TSO o_OctToIA5 added in clause 8.7.1
2.4 The last paragraph and the pictures in 8.14.1 are updated.
2.5 New RBid and TrCh id in 8.2.4 and 8.2.2

	
	

	Consequences if
(

not approved:
	MBMS RLC 7.2.4.3 could not be implemented

	
	

	Clauses affected:
(

	6.14, 7.3.2.1, 7.3.2.2.32b, 7.3.2.2.32c, 7.3.2.2.34b, 7.3.2.2.34c, 7.3.2.2.35a, 8.2.2, 8.2.4, 8.3.55, 8.3.56, 8.3.57, 8.7.1, 8.14.1

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	X
	
	 Test specifications
	Editorial renaming of PCO in Change 1 (changes in clause 7.3.2.1, 7.3.2.2.32b) has a very minor TTCN impact

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

< Begin of changed clauses>

6.14
MBMS model (Rel-6 or later)

The MBMS test model illustrates the relationship between various channels, from logical channel to physical channels applied to the MBMS test. The MBMS-dedicatend stand-alone SCCPCH, MICH, MAC-m, MCCH, MSCH and MTCH are configured by the TTCN.

During softcombining, MTCHs which have the same logical channel identity but in different cells are connected to the same UM RLC.

[image: image1.emf]

MTCHs which have the

same logical channel

identity but in different

cells are connected to the

same UM RLC by the SS

Configured by the same

way as non-MBMS case

PDCP

PDCP

RB’s

 MAC_c/sh/m

Configured by

CRLC_Config_REQ (include

dl_UM_RLC_LI_size in

SS_DL_RLC_Mode)

Configured by

CPHY_RL_Setup

(MICH branch)

UM RLC

 Cell A

MICH

UM RLC

FACH

S-CCPCH

S-CCPCH

FACH FACH

MCCH

MSCH

MTCH MTCH

 MAC_c/sh/m

 Cell x

MICH

FACH

S-CCPCH

S-CCPCH

FACH FACH

MCCH

MSCH

MTCH

MTCH

DTCH

DCCH

DTCH

DCCH

NI sent by

CPHY_MBMS_NI_REQ

UM RLC

UM RLC

UM RLC

UM RLC

Configured by

CMAC_Config_REQ and

CMAC_MBMS_ConfigInf

o_REQ

Data transmitted with

RLC_UM_TestDataReq

Data transmitted with

RLC_UM_CriticalMCCHMsg_REQ

Data transmitted with

RLC_UM_MSCH_Msg_REQ

Data transmitted with

RLC_UM_ACCESSinfo_REQ

Configured by

CRLC_Config_REQ (include

dl_UM_RLC_LI_size in

SS_DL_RLC_Mode)

Figure 1: The model of MBMS testing

6.14.1
MBMS RLC test model

For RLC tests the MCCH critical messages can be sent as a DL sequence of PER encoded UM RLC PDUs in RLC TR mode. To achieve this, additionally to the normal UM radio bearer on MCCH, a TR radio bearer is configured with a negative RB Id. Both DL RBs are mapped onto the same logical channel but shall be used mutually exclusively.
[image: image2.wmf]

UM RLC

TR RLC

RLC_UM_CriticalMCCHMsg_REQ

RLC_TR_SeqOfRlcPdus_REQ

RB

8

RB

-

8

RLC

MAC

Figure 1: test model for MCCH scheduling using TM RLC entity
When changing from UM to TR the care should be taken on the sequence numbers used in the RLC PDUs. That can be achieved by querying the SN from SS with CRLC_SequenceNumber_REQ. When changing back to UM the RLC may continue with the sequence number following the last sequence number used before changing to TR mode. That implies, the UM part of the RLC in SS does not need to take care of the UM PDUs sent in TR mode. The UE will regard it as PDU lost.
To support re-synchronisastion the ‘specialLI’ of the RLC_UM_CriticalMCCHMsg_REQ following TR mode can be set to TRUE.
<Begin of changed clauses>
7.3.2.1
SAP and PCO for control primitives transmission and reception

Table 1: SAP declaration

	PCO Type Definition

	PCO Type
	CSAP

	Role
	LT

	Comment
	Control primitives transmission and reception

Table 2: PCO CPHY

	PCO Definition

	PCO Name
	CPHY

	PCO Type
	CSAP

	Role
	LT

	Comment
	Control Physical Layer

Table 3: PCO CRLC

	PCO Definition

	PCO Name
	CRLC

	PCO Type
	CSAP

	Role
	LT

	Comment
	Control RLC Layer

Table 4: PCO CMAC

	PCO Definition

	PCO Name
	CMAC

	PCO Type
	CSAP

	Role
	LT

	Comment
	Control MAC Layer

Table 5: PCO CBMC

	PCO Definition

	PCO Name
	CBMC

	PCO Type
	CSAP

	Role
	LT

	Comment
	Control BMC Layer

Table 6: ExternalAsn1Codec declaration

	PCO Type Definition

	PCO Type
	ExternalAsn1Codec

	Role
	LT

	Comment
	Control decoder primitives transmission and reception

Table 7: PCO CCodec
	PCO Definition

	PCO Name
	CCodec

	PCO Type
	ExternalAsn1Codec

	Role
	LT

	Comment
	Control asn.1 CONTAINING decoder

< Begin of changed clauses >
7.3.2.2.32b
DEC_PERbitstring

	ASN.1 ASP Type Definition

	Type Name
	DEC_PERbitstring_CNF

	PCO Type
	ExternalAsn1Codec

	Comment
	To receive the decoded BIT STRING.

	Type Definition

	SEQUENCE
{

containedType

ContainedType

}

	ASN.1 ASP Type Definition

	Type Name
	DEC_PERbitstring_REQ

	PCO Type
	ExternalAsn1Codec

	Comment
	To request decoding of the BITSTRING recived from UE in receivedBITSTRING with the type specified in containingType.

	Type Definition

	SEQUENCE
{

receivedBITSTRING

BIT STRING,

containingType

ContainingPERbitstringType

}

	ASN.1 PDU Type Definition

	Type Name
	ContainedType

	PDU Type
	ContainingDecoder

	Comment
	

	Type Definition

	CHOICE
{

ue_CapabilityContainer_IEs

UE_CapabilityContainer_IEs,

rrcConnectionSetupComplete_r3_add_ext_IEs
RRCConnectionSetupComplete_r3_add_ext_IEs,

ueCapabilityInformation_r3_add_ext_IEs

UECapabilityInformation_r3_add_ext_IEs,

interRATHandoverInfo_r3_add_ext

InterRATHandoverInfo_r3_add_ext_IEs

}

	ASN.1 Type Definition

	Type Name
	ContainingPERbitstringType

	Comment
	

	Type Definition

	ENUMERATED

{

ue_CapabilityContainer_IEs
(0),

rrcConnectionSetupComplete_r3_add_ext_IEs
(1),

ueCapabilityInformation_r3_add_ext_IEs
(2),

interRATHandoverInfo_r3_add_ext_IEs
(3)

}

7.3.2.2.32c
ENC_PERbitstring

	ASN.1 ASP Type Definition

	Type Name
	ENC_PERbitstring_CNF

	PCO Type
	ExternalAsn1Codec

	Comment
	To receive the encoded BIT STRING.

	Type Definition

	SEQUENCE
{

encodedBITSTRING

BIT STRING

}

	ASN.1 ASP Type Definition

	Type Name
	ENC_PERbitstring_REQ

	PCO Type
	ExternalAsn1Codec

	Comment
	To request encoding of asn.1 PDU or IE.

	Type Definition

	CHOICE
{

mcchMessage

MCCH_Message
}

7.3.2.2.34b
RLC_UM_CriticalMCCHMsg (Rel-6 or later)
	ASN.1 ASP Type Definition

	Type Name
	RLC_UM_CriticalMCCHMsg_REQ

	PCO Type
	DSAP

	Comment
	To request to transmit critical MCCH messageList using unacknowledged mode. This ASP is valid only for the RLC entity configured for the logical channel MCCH.

When an RLC_UM_CriticalMCCHMsg_REQ with non-empty uM_Messages is received the SS stops ongoing critical MCCH information transmission in the modification period indicated by startingTime. At the same time, the SS starts transmitting the set of critical MCCH messageList passed by the ASP in the same order as they appear in the uM_MessageList, and then repeats the transmission in each nextrepetition period until another RLC_UM_CriticalMCCHMsg_REQ is received to modify the critical messages at start of the next modification period.

When an RLC_UM_CriticalMCCHMsg_REQ without uM_Messages is received the SS stops the ongoing critical MCCH message transmission at the modification period specified by startingTime.

If specialLI is set to TRUE all SUDs sent within the RLC_UM_CriticalMCCHMsg_REQ have the special LI set to indicate beginning of the RLC SDU.

	Type Definition

	SEQUENCE
{

cellId

INTEGER(-1..63),

routingInfo

RoutingInfo,

startingTime

INTEGER(0..4095),

-- pointing to the first frame of a modification

uM_Messages

MCCH_MessageList OPTIONAL,

specialLI

BOOLEAN DEFAULT FALSE
}

	ASN.1 Type Definition

	Type Name
	MCCH_MessageList

	Comment
	MBMSAccessInformation shall not be included in the MCCH_MessageList.

	Type Definition

	SEQUENCE (SIZE(1..maxNumMCCHMsgs))OF MCCH_MessageType

	ASN.1 Type Definition

	Type Name
	maxNumMCCHMsgs

	Comment
	For covering the configuration with 20 neighbouring cells

	Type Definition

	INTEGER (25)

7.3.2.2.34c
RLC_TR_SeqOfRlcPdus
	ASN.1 ASP Type Definition

	Type Name
	RLC_TR_SeqOfRlcPdus_REQ

	PCO Type
	DSAP

	Comment
	To request to transmit a sequence of RLC PDUs using transparent mode:

The first PDU is sent in the frame at startingTime, the other PDUs are subsequently sent in the following frames. This primitive can be used e.g. to send fully coded RLC PDUs of critical messages at the beginning of a repetition period.

Each sequence of RLC PDUs is sent just once i.e. not repeated at the beginning of the next repetition period.

Therefore the sequence may also contain Access Information.

Furthermore the sequence may contain corrupted PDUs.

	Type Definition

	SEQUENCE
{

cellId

INTEGER(-1..63),

routingInfo

RoutingInfo,

startingTime
INTEGER(0..4095),

-- pointing to the first frame of a modification

seqOfPdus

MCCH_RlcPduList
}

	ASN.1 Type Definition

	Type Name
	MCCH_RlcPduList

	Comment
	Each RLC PDU is completely encoded and consists of RLC UM header and RLC SDU

	Type Definition

	SEQUENCE (SIZE(1..maxNumMCCHRlcPdus)) OF BIT STRING

	ASN.1 Type Definition

	Type Name
	maxNumMCCHRlcPdus

	Comment
	Maximum number of RLC PDUs in RLC tests of MCCH

	Type Definition

	INTEGER (64)

<Begin of changed clauses>
7.3.2.2.35a
RLC_UM_MSCH_Msg (Rel-6 or later)

	ASN.1 ASP Type Definition

	Type Name
	RLC_UM_MSCH_Msg_REQ

	PCO Type
	DSAP

	Comment
	To request to transmit MSCH_MessageList using unacknowledged mode. The ASP is applied to the RLC entity configured for the logical channel MSCH.

	Type Definition

	SEQUENCE
{

cellId

INTEGER(-1..63),

routingInfo

RoutingInfo,

mSCH_REPconfiguration

MSCH_REPconfiguration,

uM_Messages

MSCH_MessageList

}

	ASN.1 Type Definition

	Type Name
	MSCH_REPconfiguration

	Comment
	MSCH_ REPconfiguration describes when a serie of MSCH scheduling repetitions start and how long the scheduling period is.
The scheduledSFN fulfils:

SFN = ((SFNss / MSCH_REP + 1) * MSCH_REP + MSCH_OFF + (SCTO / 10ms)) mod 4096,

where SFNss is taken from the value of MICH_CFN provided by SS via CPHY_MBMS_MICH_CFN_CNF.

The SS shall start sending the 1st SCHEDULING INFORMATION message on the frame indicated by scheduledSFN and succesively send the remaining MSCH messages in the list on the 1st TTI of every mSCH_REP.

	Type Definition

	SEQUENCE
{

scheduledSFN

INTEGER(0..4095),

mSCH_REP

ENUMERATED { sp32(0), sp64(1), sp128(2), sp256(3), sp512(4), sp1024(5) }

}

	ASN.1 Type Definition

	Type Name
	MSCH_MessageList

	Comment
	Multiple MSCH messages can be submitted to the SS. Every scheduling period a new message in the sequence is transmitted according to the appearing order in the sequence.

	Type Definition

	SEQUENCE (SIZE(1.. maxNumMSCHMsgs))OF SS_MSCH_Message

	ASN.1 Type Definition

	Type Name
	SS_MSCH_Message

	Comment
	noSend of SS_MSCH_Message is applied to the scheduling period when no MBMS service data are sent on all MTCH.

	Type Definition

	CHOICE {

mSCH_Message

MSCH_MessageType,

noSend

NULL}

	ASN.1 Type Definition

	Type Name
	maxNumMSCHMsgs

	Comment
	Covering a sufficiently long duration of multiple MSCH scheduling periods for test

	Type Definition

	INTEGER (64)

<Begin of changed clauses>
8.2.2
Transport channels

Table 35: Transport channel identities

	Type
	Min. No.
	Current Config.
	Identities

(value assigned)
	Direction
	Comments

	BCH
	1
	1
	tsc_BCH1 (11)
	downlink
	

	FACH
	1
	1
	tsc_FACH1 (13)

tsc_FACH2 (14)

tsc_FACH3 (16)

tsc_FACH4 (17)

tsc_FACH5 (23)
	downlink
	

	PCH
	1
	1
	tsc_PCH1 (12)

tsc_PCH2 (30)
	downlink
	

	DCH
	n
	4
	tsc_UL_DCH1 (1)

tsc_UL_DCH2 (2)

tsc_UL_DCH3 (3)

tsc_UL_DCH4 (4)

tsc_UL_DCH5 (5)

tsc_UL_DCH6 (21)
	uplink
	tsc_UL_DCH1 for RAB1-1 or RAB1,

tsc_UL_DCH2 for RAB1-2 or RAB2,

tsc_UL_DCH3 for RAB1-3,

tsc_UL_DCH4 RAB2,

tsc_UL_DCH5 for SRB/RAB3,

tsc_UL_DCH6 for SRB.

	DCH
	n
	4
	tsc_DL_DCH1 (6)

tsc_DL_DCH2 (7)

tsc_DL_DCH3 (8)

tsc_DL_DCH4 (9)

tsc_DL_DCH5 (10)

tsc_DL_DCH6 (22)
	downlink
	tsc_DL_DCH1 for RAB1-1 or RAB1,

tsc_DL_DCH2 for RAB1-2 or RAB2,

tsc_DL_DCH3 for RAB1-3,

tsc_DL_DCH4 for RAB2,

tsc_DL_DCH5 for SRB,

tsc_DL_DCH6 for SRB.

	USCH
	1
	N/A
	tsc_USCH1(20)
	uplink
	TDD only

	DSCH
	1
	N/A
	tsc_DSCH (19)
	downlink
	

	RACH
	2
	1
	tsc_RACH1 (15)

tsc_RACH2 (31)
	uplink
	

	CPCH
	1
	N/A
	tsc_CPCH1(32)
	uplink
	

	FAUSCH
	N/A
	N/A
	tsc_FAUSCH1(18)
	uplink
	Not in Release 99

	HSDSCH
	1
	1
	N/A
	downlink
	Rel-5 or later

	E-DCH
	1
	1
	N/A
	uplink
	Rel-6 or later

<Begin of changed clauses>
8.2.4
Radio bearers

	Identities

(value assigned)
	Direction
	Type
	RLC mode
	Service domain
	Comments

	tsc_RB_BCCH (-1)
	downlink
	
	TM
	NA
	BCCH-BCH

	tsc_RB_PCCH (-2)
	downlink
	
	TM
	NA
	PCCH PCH

	tsc_RB_BCCH_FACH (-3)
	downlink
	
	TM
	NA
	BCCH FACH

	tsc_RB_2ndPCCH (-4)
	downlink
	
	TM
	NA
	Second PCCH PCH SCPCCH

	tsc_RB_2ndCCCH (-5)
	uplink
	
	TM
	NA
	Second CCCH RACH PRACH

	tsc_RB_UM_7_RLC (-10)
	downlink
	RAB
	TM
	CS
	For UM RLC tests using 7 bit LIs

	tsc_RB_UM_7_RLC (-10)
	uplink
	RAB
	TM
	CS
	For UM RLC tests using 7 bit LIs

	tsc_RB_UM_15_RLC (-11)
	downlink
	RAB
	TM
	CS
	For UM RLC tests using 15 bit LIs

	tsc_RB_UM_15_RLC (-11)
	uplink
	RAB
	TM
	CS
	For UM RLC tests using 15 bit LIs

	tsc_RB_AM_7_RLC (-12)
	downlink
	RAB
	TM
	CS
	For AM RLC tests using 15 bit LIs

	tsc_RB_AM_7_RLC (-12)
	uplink
	RAB
	TM
	CS
	For AM RLC tests using 7 bit LIs

	tsc_RB_AM_15_RLC (-13)
	downlink
	RAB
	TM
	CS
	For AM RLC tests using 15 bit LIs

	tsc_RB_AM_15_RLC (-13)
	uplink
	RAB
	TM
	CS
	For AM RLC tests using 15 bit LIs

	tsc_RB_DCCH_FACH_MAC (-14)
	downlink
	SRB3
	TM
	CS
	For MAC tests using DCCH mapped to FACH

	tsc_RB_DCCH_FACH_MAC (-14)
	uplink
	SRB3
	TM
	CS
	For MAC tests using DCCH mapped to FACH

	tsc_RB_DCCH_DCH_MAC (-15)
	downlink
	SRB3
	TM
	CS
	For MAC tests using DCCH mapped to DCH

	tsc_RB_DCCH_FACH_MAC (-15)
	uplink
	SRB3
	TM
	CS
	For MAC tests using DCCH mapped to DCH

	tsc_RB3_DCCH_RRC_(-16)
	uplink
	SRB3
	AM
	CS or PS
	For RRC test cases to route UL NAS messages

	tsc_RB_CCCH_FACH_MAC (-18)
	downlink
	SRB0
	TM
	CS or PS
	For MAC test using downlink SRB0 on TM

	tsc_RB_BCCH_FACH_RAB (-19)
	downlink
	
	TM
	NA
	BCCH FACH

	tsc_RB_DTCH_E_DCH_MAC(-20)
	uplink
	RAB
	TM
	PS
	For MAC_es_e tests

	tsc_RB_DTCH_E_DCH_MAC1(-21)
	uplink
	RAB
	TM
	PS
	For MAC_es_e tests

	tsc_RB_DTCH_E_DCH_MAC2(-22)
	uplink
	RAB
	TM
	PS
	For MAC_es_e tests

	tsc_RB0 (0)
	uplink
	SRB0
	TM
	CS or PS
	The service domain for which the most recent security negotiation took place. CCCH

	tsc_RB0 (0)
	downlink
	SRB0
	UM
	CS or PS
	CCCH

	tsc_RB1 (1)
	uplink
	SRB1
	UM
	CS or PS
	DCCH

	tsc_RB1 (1)
	downlink
	SRB1
	UM
	CS or PS
	DCCH

	tsc_RB2 (2)
	uplink
	SRB2
	AM
	CS or PS
	DCCH

	tsc_RB2 (2)
	downlink
	SRB2
	AM
	CS or PS
	DCCH

	tsc_RB3 (3)
	uplink
	SRB3
	AM
	CS or PS
	DCCH

	tsc_RB3 (3)
	downlink
	SRB3
	AM
	CS or PS
	DCCH

	tsc_RB4 (4)
	uplink
	SRB4
	AM
	CS or PS
	DCCH

	tsc_RB4 (4)
	downlink
	SRB4
	AM
	CS or PS
	DCCH

	tsc_RB5 (5)
	uplink
	
	TM
	
	DCCH

	tsc_RB5 (5)
	downlink
	
	TM
	
	DCCH

	tsc_RB_MCCH(8)
	downlink
	SRB
	UM
	PS
	Rei-6 or later

	tsc_RB_MCCH_RLC_TR(-8)
	downlink
	SRB
	TM
	PS
	Rel-6 or later

	tsc_RB_MSCH(9)
	downlink
	SRB
	UM
	PS
	Rel-6 or later

	tsc_RB10 (10)
	uplink
	RAB#1-1
	TM
	CS
	or RAB1

	tsc_RB10 (10)
	downlink
	RAB#1-1
	TM
	CS
	or RAB1

	tsc_RB11 (11)
	uplink
	RAB#1-2
	TM
	CS
	or RAB2

	tsc_RB11 (11)
	downlink
	RAB#1-2
	TM
	CS
	or RAB2

	tsc_RB12 (12)
	uplink
	RAB#1-3
	TM
	CS
	

	tsc_RB12 (12)
	downlink
	RAB#1-3
	TM
	CS
	

	tsc_RB13 (13)
	uplink
	RAB#2
	TM
	CS
	

	tsc_RB13 (13)
	downlink
	RAB#2
	TM
	CS
	

	tsc_RB_MTCH1(14)
	downlink
	RAB
	UM
	PS
	Rel-6 or later, media contents

	tsc_RB_MTCH2(15)
	downlink
	RAB
	UM
	PS
	Rel-6 or later, media contents

	tsc_RB_MTCH3(16)
	downlink
	RAB
	UM
	PS
	Rel-6 or later, media contents

	tsc_RB17 (17)
	uplink
	RAB#2
	AM
	PS
	Rel-5 or later, 2nd AM RAB for HS

	tsc_RB17 (17)
	downlink
	RAB#2
	AM
	PS
	Rel-5 or later, 2nd AM RAB for HS

	tsc_RB20 (20)
	uplink
	RAB#1
	AM
	PS
	

	tsc_RB20 (20)
	downlink
	RAB#1
	AM
	PS
	

	tsc_RB21 (21)
	uplink
	RAB#2
	UM
	PS
	

	tsc_RB21 (21)
	downlink
	RAB#2
	UM
	PS
	

	tsc_RB22 (22)
	uplink
	RAB#2
	AM
	PS
	

	tsc_RB22 (22)
	downlink
	RAB#2
	AM
	PS
	

	tsc_RB23 (23)
	uplink
	RAB#2
	AM
	PS
	2nd AM RAB for PS

	tsc_RB23 (23)
	downlink
	RAB#2
	AM
	PS
	2nd AM RAB for PS

	tsc_RB24 (24)
	uplink
	RAB#2
	AM
	PS
	2nd AM RAB for PS

	tsc_RB24 (24)
	downlink
	RAB#2
	AM
	PS
	2nd AM RAB for PS

	tsc_RB25 (25)
	uplink
	RAB#1
	AM
	PS
	Rel-5 or later:

DTCH on DPCH associated HS-DSCH

Rel-6 or later:

DTCH on E-DCH

	tsc_RB25 (25)
	downlink
	RAB#1
	AM
	PS
	Rel-5 or later

DTCH on HS-DSCH

	tsc_RB26 (26)
	uplink
	RAB#1
	UM
	PS
	Rel-5 or later

	tsc_RB26 (26)
	downlink
	RAB#1
	UM
	PS
	Rel-5 or later

	tsc_RB27 (27)
	uplink
	RAB#2
	UM
	PS
	Rel-5 or later

	tsc_RB27 (27)
	downlink
	RAB#2
	UM
	PS
	Rel-5 or later

	tsc_RB28 (28)
	uplink
	RAB#3
	AM
	PS
	Rel-5 or later

	tsc_RB28 (28)
	downlink
	RAB#3
	AM
	PS
	Rel-5 or later

	tsc_RB29 (29)
	downlink
	SRB0
	AM
	PS
	RB Id for Radio bearer that carries the 2nd CCCH in the DL

	tsc_RB30 (30)
	downlink
	
	UM
	
	CTCH FACH

	tsc_RB31 (31)
	downlink
	
	UM
	
	Second CTCH FACH

The RB values 0 to 5 are used for the signalling bearers. The values 10 to 15 are assigned to the CS RAB sub-flows. The values 15 to 29 are assigned to the PS RAB sub-flows. The value 30 is assigned to the CBSMS/BMC service.

Table 37: RB identities mapping between 34.123-1 & 34.123-3

	RAB Combinations
	34.123-1
	34.123-3

	Single CS RAB
	RB5
	tsc_RB10

	
	RB6
	tsc_RB11

	
	RB7
	tsc_RB12

	Single PS RAB
	RB5
	tsc_RB20

	
	RB7
	tsc_RB20

	
	RB8
	tsc_RB20

	CS+PS Multi RABs
	RB5
	tsc_RB10

	
	RB6
	tsc_RB11, tsc_RB20

	
	RB7
	tsc_RB12

	
	RB8
	tsc_RB20

	
	RB9
	tsc_RB22

	CS+CS Multi RABs
	RB5
	tsc_RB10

	
	RB6
	tsc_RB11

	
	RB7
	tsc_RB12

	
	RB8
	tsc_RB13

	PS+PS Multi RABs
	RB5
	tsc_RB20

	
	RB6
	tsc_RB22

	
	RB7
	tsc_RB20

	
	RB8
	tsc_RB24

	Single PS (HSDPA) RAB
	RB5
	tsc_RB25

	PS+PS Multi (HSDPA) RAB
	RB5
	tsc_RB26

	
	RB6
	tsc_RB27

	
	RB7
	tsc_RB25

	
	RB8
	tsc_RB28

	
	RB9
	tsc_RB17

	Single PS (HSUPA) RAB
	RB5
	tsc_RB25

	CS + PS Multi (HSUPA) RAB
	RB5
	tsc_RB10

	
	RB6
	tsc_RB11

	
	RB7
	tsc_RB12

	
	RB8
	tsc_RB25

< Begin of changed clauses >
8.3.54
MBMS channel configuration (Rel-6 or later)

The MBMS channel configurations are configured in addition to any existing configurations defined in 8.3.

8.3.54.1
Configuration cell_MBMS_MCCH (Rel-6 or later)

The configuration is based on 3GPP TS 34.108 [Error! Reference source not found.], 6.10.2.4.3.

The configuration is applied to the MBMS tests.

Table 8: cell_MBMS_MCCH

	RB Identity
	tsc_RB_MCCH

(8)

	LogCh Type
	MCCH

	LogCh Identity
	tsc_MCCH1

(1)

	RLC mode
	UM

	MAC priority
	1

	TrCH Type
	FACH

	TrCH identity
	tsc_FACH3

(16)

	PhyCh Type
	Secondary CCPCH

	PhyCH identity
	tsc_S_CCPCH2

(10)

8.3.54.2
Configuration cell_MBMS_MCCH_One_MTCH (Rel-6 or later)

The configuration is based on 3GPP TS 34.108 [Error! Reference source not found.], 6.10.2.4.3.

The configuration is applied to the MBMS tests.

Table 9: cell_MBMS_MCCH_One_MTCH

	RB Identity
	tsc_RB_MCCH

(8)
	tsc_RB_MTCH1

(14)

	LogCh Type
	MCCH
	MTCH

	LogCh Identity
	tsc_MCCH1

(1)
	tsc_MTCH1

(1)

	RLC mode
	UM
	UM

	MAC priority
	1
	1

	TrCH Type
	FACH
	FACH

	TrCH identity
	tsc_FACH3

(16)
	tsc_FACH4

(17)

	PhyCh Type
	Secondary CCPCH
	Secondary CCPCH

	PhyCH identity
	tsc_S_CCPCH2

(10)
	tsc_S_CCPCH3

(13)

8.3.55
Configuration of PS Cell_DCH_64kPS_AM_RAB
The configuration is based on 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.1.26. The RB0/UM-CCCH is referred to 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.3.2.1.2 and RB0/TM-CCCH is referred to 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.4.1.1.1.
The configuration is applied to MBMS tests in the DCH state where a PS RAB on DTCH is setup for the interactive or background service class.
Table 10: Uplink configuration of PS Cell_DCH_64kPS_AM_RAB
	RB Identity
	tsc_RB22
(22)
	Same as uplink configuration of Cell_DCH_StandAloneSRB on DPCH
	Same as uplink configuration of Cell_DCH_StandAloneSRB on PRACH

	LogCh Type
	DTCH
	
	

	LogCh Identity
	tsc_UL_DTCH2
(8)
	
	

	RLC mode
	AM
	
	

	TrCH Type
	DCH
	
	

	TrCH identity
	tsc_UL_DCH1

(1)
	
	

	PhyCh Type
	DPDCH
	PRACH

	PhyCH identity
	tsc_UL_DPCH1

(20)
	tsc_PRACH1

(8)

Table 11: Downlink configuration of PS Cell_DCH_64kPS_AM_RAB
	RB Identity
	tsc_RB22
(22)
	Same as downlink configuration of Cell_DCH_StandAloneSRB on DPCH
	Same as downlink configuration of Cell_DCH_StandAloneSRB on sCCPCH

	LogCh Type
	DTCH
	
	

	LogCh Identity
	tsc_DL_DTCH2
(8)
	
	

	RLC mode
	AM
	
	

	MAC priority
	1
	
	

	TrCH Type
	DCH
	
	

	TrCH identity
	tsc_DL_DCH1

(6)
	
	

	PhyCh Type
	DPCH
	Secondary CCPCH

	PhyCH identity
	tsc_DL_DPCH1

(26)
	tsc_S_CCPCH1

(5)

8.3.56
Configuration of PS Cell_MBMS_PTPRB
The configuration is based on, clause 6.10.2.4.1.58. The RB0/UM-CCCH is referred to 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.3.2.1.2 and RB0/TM-CCCH is referred to 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.4.1.1.1. The configuration is applied to MBMS PTP RB test cases.

The uplink configuration is same in clause 8.3.2 Cell_DCH_StandAloneSRB

Table 12: Downlink configuration of Cell_MBMS_PTPRB
	RB Identity
	tsc_RB21

(21)
	Same as downlink configuration of Cell_DCH_StandAloneSRB on DPCH
	Same as downlink configuration of Cell_DCH_StandAloneSRB on sCCPCH

	LogCh Type
	DTCH
	
	

	LogCh Identity
	tsc_DL_DTCH2
(8)
	
	

	RLC mode
	UM
	
	

	MAC priority
	1
	
	

	TrCH Type
	DCH
	
	

	TrCH identity
	tsc_DL_DCH2
(7)
	
	

	PhyCh Type
	DPCH
	Secondary CCPCH

	PhyCH identity
	tsc_DL_DPCH1

(26)
	tsc_S_CCPCH1

(5)

8.3.57
Configuration of PS Cell_MBMS_PTPRB_AM
The configuration is based on, clause 6.10.2.4.1.58. The RB0/UM-CCCH is referred to 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.3.2.1.2 and RB0/TM-CCCH is referred to 3GPP TS 34.108 [Error! Reference source not found.], clause 6.10.2.4.4.1.1.1. The configuration is applied to MBMS PTP RB test cases, with additional PS RAB established.
The uplink configuration is same in clause 8.3.8 Cell_DCH_64kPS_RAB_SRB and Cell_PDCP_AM_RAB.
Table 13: Downlink configuration of PS Cell_MBMS_PTPRB_AM
	RB Identity
	tsc_RB20

(20)
	tsc_RB21

(21)
	Same as downlink configuration of Cell_DCH_StandAloneSRB on DPCH
	Same as downlink configuration of Cell_DCH_StandAloneSRB on sCCPCH

	LogCh Type
	DTCH
	DTCH
	
	

	LogCh Identity
	tsc_DL_DTCH1

(7)
	tsc_DL_DTCH2

(8)
	
	

	RLC mode
	AM
	UM
	
	

	MAC priority
	1
	1
	
	

	TrCH Type
	DCH
	DCH
	
	

	TrCH identity
	tsc_DL_DCH1
(6)
	tsc_DL_DCH2

(7)
	
	

	PhyCh Type
	DPCH
	Secondary CCPCH

	PhyCH identity
	tsc_DL_DPCH1

(26)
	tsc_S_CCPCH1

(5)

<Begin of changed clauses>
8.7.1
Test suite operation definitions in the common modules
Table 14: TSO definitions in BasicM

	TSO Name
	Description

	o_AuthRspChk
	Type of the result: BOOLEAN
Parameters:

p_AuthRsp : AuthRsp

p_AuthRspExt : AuthRspExt

p_K : BITSTRING

p_RAND : BITSTRING

p_Ext : BOOLEAN

Description

Checks the input parameter p_AuthRsp and p_AuthRspExt, both received in an Authentication Response, according to the authentication algorithm defined in the following procedure.

The extension, p_AuthRspExt, is optional. Its presence is indicated by p_Ext.

Returns TRUE if the Authentication Response contained in parameters p_AuthRsp and eventually p_AuthRspExt is correct, FALSE otherwise.

The value of tcv_Auth_n indicates whether the AuthRspExt has been provided by the UE or not (n=31, or 31 < n < 128). See 3GPP TS 34.108 [Error! Reference source not found.] clause 8.1.2.

If not the parameter p_AuthRspExt is not to be used.

Algorithm (without the knowledge of tcv_Auth_n):

===

if NOT p_Ext EvaluateAuthRsp else EvaluateAuthRspAndAuthRspExt

EvaluateAuthRsp:

==============

resultbitstring = o_BitstringXOR(XRES, AuthRsp)

if resultbitstring is all 0s then there is a match.

EvaluateAuthRspAndAuthRspExt:

============================

XREShigh = o_BitstringXtract(XRES, 32, 32, 0)

/* XRES divides into 2 parts: the higher part of 32 bits related to AuthRsp and the lower part related to AuthRspExt */

/* SourceLength of 32 is only to ensure usage of the procedure */

resultbitstring = o_BitstringXOR(XREShigh, AuthRsp)

if resultbitstring is all 0s then there is a match for the first 32 bits:EvaluateAuthRspExt else Authentication failed.

EvaluateAuthRspExt:

=================

/* As AuthRespExt may not be octet aligned the last octet indicated in AuthRspExt is not used for checking */

if (AuthRspExt.iel = 1)

then Authentication passed

/* there was only 1 possibly incomplete octet which is not used */

else

{

AuthRspExthigh = o_BitstringXtract(AuthRspExt.authRsp, ((AuthRspExt.iel -1)* 8), (AuthRspExt.iel -1)* 8, 0)

/* extract (AuthRspExt.iel -1)* 8 bits starting from bit 0 */

XRESlow = o_BitstringXtract(XRES, ((AuthRspExt.iel -1)* 8 + 32), (AuthRspExt.iel -1)* 8, 32)

/* extract (AuthRspExt.iel -1)* 8 bits starting from bit 32 */

resultbitstring = o_BitstringXOR(XRESlow, AuthRspExthigh, (AuthRspExt.iel -1)* 8)

if resultbitstring is all 0s then there is a match for the bits following the first 32 bits else Authentication failed

	o_BitstringChange
	Type of the result: BITSTRING

Parameters:

P_Str: BITSTRING

p_Len: INTEGER

p_Offset: INTEGER

Description

Performs the manipulation of a bitstring by toggling the bit identified by p_Offset. The length of the string to be manipulated is specified in p_Len. This is only provided to help ensure that the p_Offset is less than p_Len.

Returns a resulting bitstring of length p_Len.

EXAMPLE 1:
o_BitstringChange('010101'B, 6, 5) produces '010100'B.

EXAMPLE 2:
o_BitstringChange('010101'B, 6, 0) produces '110101'B.

	o_BitstringConcat
	Type of the result: BITSTRING

Parameters:

P_Str1: BITSTRING

p_Str2: BITSTRING

p_Len1: INTEGER

p_Len2: INTEGER

Description

Performs the concatenation of 2 bitstrings of possibly different lengths.

The bit significance is from left to right, i.e. the MSB is at the left-hand side.

Returns a resulting bitstring p_Str1 || p_Str2 of length p_ Len1 + p_Len.

EXAMPLE:
o_BitstringConcat('010101'B,'11'B) produces '01010111'B of

length 6 + 2 = 8.

	o_BitstringXOR
	Type of the result: BITSTRING

Parameters:

P_Str1: BITSTRING

p_Str2: BITSTRING

p_Len: INTEGER

Description

Performs an XOR operation using 2 bitstrings of the same length (p_Len).

Returns a resulting Bitstring of length p_Len.

EXAMPLE:
o_BitstringXOR('0011'B, '0101'B, 4) produces '0110'B.

	o_BitstringXtract
	Type of the result: BITSTRING

Parameters:

P_Str: BITSTRING

p_SrcLen: INTEGER

p_TargetLen: INTEGER

p_Offset: INTEGER

Description

Performs the wrap around extract of a bitstring. The length of the string from which extraction is to be made is specified in p_SrcLen. The length of the bitstring to be extracted is indicated as p_TargetLen, the offset in the original string is indicated in p_Offset.

The bit position 0 is at the left side.

Returns a resulting bitstring of length p_TargetLen.

EXAMPLE 1:
o_BitstringXtract('101010'B, 6, 2, 1) produces '01'B.

EXAMPLE 2:
o_BitstringXtract('101010'B, 6, 4, 3) produces '0101'B, wrapping around.

EXAMPLE 3:
o_BitstringXtract('111000'B, 6, 4, 3) produces '0111'B, wrapping around.

	o_BMC_DrxScheduling
	Type of the result: BMC_ResultOfSchedulingLevel2
Parameters:

p_BMC_CBS_Message1 : BMCCBSMESSAGE

p_BMC_CBS_Message2 : BMCCBSMESSAGE

p_BMC_CB_RepPeriod : INTEGER

p_BMC_NoOfBroadcast_Req : INTEGER

p_Offset : BMC_DRX_Offset
Description

This TSO shall calculate all BMC CBS schedule Messages for the CBS messages as described in 3GPP TS 34.123-1, clause 7.4.3.1.

The TSO has to precalculate the CTCH Block SETs needed, i.e. it shall have all necessary knowledge (RLC segmentation, MAC handling, if needed) to predict the CTCH with BMC contents for the given input to be sent.

The TSO shall consider the BMC CBS Scheduling Level2 as described in 3GPP TS 25.324 [Error! Reference source not found.], 3GPP TR 25.925 [Error! Reference source not found.] and the description of BMC test architecture and test method in the present document, clause 6.8.

The TSO calculates the BMC CBS Schedule messages to predict its next BlockSet to be sent. In addition, a DRX scheduling Bitmap is created for each CTCH allocated TTI aligned to the pre-calculated offset in between 2 CTCH Block Sets.

The principle of DRX shall be followed by this TSO. I.e. BMC Messages shall be sent blockwise (CTCH Block Set) with predicted offset in between 2 Block Sets.

The TSO shall consider the following aspects to calculate the DRX Selection Bitmap and to create the BMC CBS Schedule messages:

1.
The first CTCH Block Set consists of the first BMC CBS Schedule message predicting the offset, length and content of the following Block Set where the BMC CBS Message1 shall be send as new message.

2.
The BMC CBS Message1 shall be repeated for p_BMC_CB_RepPeriod multiplied by p_BMC_NoOfBroadcast_Req times before the BMC CBS Message2 is broadcasted.

3.
The BMC CBS Schedule Messages shall be the last message of a CTCH Block Set, i.e. on the end of a Block Set.

4.
If no further repetition of BMC CBS Messages is needed, no further BMC CBS Schedule message shall be created.

output parameter:

DrxSelectionBitmap: The TSO creates a Bitmap as Octetstring for scheduled CTCH allocated TTI as described in 3GPP TS 34.123-3: clause 6.8.2 BMC test method and architecture.

CBS_Schedule_Message01, CBS_Schedule_Message02, CBS_Schedule_Message03:Considering the given BMC PDUs BMC_DRX_Offset and BMCCBSMESSAGE to be sent, the BMC Schedule messages have to be created according the given parameter.

	o_CheckStringStartWith
	Type of the result: BOOLEAN

Parameters:

p_SourceString: IA5String

p_StartString : IA5String

Description

o_CheckStringStartWith returns TRUE if the p_sourceString start with the p_StartString.

Otherwise it returns FALSE.

EXAMPLE:
o_CheckStringStartWith ("+CLCC:1,0,0,2,0;", "+CLCC:1,0,0")=TRUE */.

	o_ComputeSM_ContentsSpec
	Type of the result: OCTETSTRING

Parameters:

p_NumOfChars: INTEGER

p_Text: IA5String

Description

This operation provides a short message's contents with a specified number of characters 'p_NumOfChars', each represented by 7 bits. 'p_Text' is used as contents of the short message. If 'p_Text' contains less than 'p_NumOfChars' characters, 'p_Text' is repeated until the short message reaches the 'p_NumOfChars' characters long. The bits are arranged acc. to 3GPP TS 23.038 [Error! Reference source not found.], clause 6.1.2.1.1.

max. 160 characters, i.e. 140 octets.

	o_ConcatStrg
	Type of the result: IA5String

Parameters:

P_String1: IA5String

p_String2: IA5String

Description

o_ConcatString concatenates 'p_String1' and 'p_String2' and returns the resulting string.

EXAMPLE:
o_ConcatString ("AT+CBST=0" , ",0") = "AT+CBST=0,0"

	o_ConvertIMSI
	Type of the result: IMSI_GSM_MAP

Parameters:

P_Imsi : HEXSTRING

The input parameter `p_Imsi` is a BCD string (subset of HEXSTRING), the result is of type IMSI_GSM_MAP.

	o_ConvertTMSI
	Type of the result: TMSI_GSM_MAP

Parameters:

p_Tmsi : OCTETSTRING

Description

The input parameter 'p_Tmsi' is an OCTETSTRING; the result is of type TMSI_GSM_MAP.

	o_ConvertPTMSI
	Type of the result: P_TMSI_GSM_MAP

Parameters:

p_PTMSI : OCTETSTRING

Description

The input parameter `PTMSI` is a OCTETSTRING, the result is of type P_TMSI_GSM_MAP.

	o_ConvtPLMN
	Type of the result: TMSI_GSM_MAP

Parameters: OCTETSTRING
p_MCC, p_MNC : HEXSTRING

Description

the functions of o_ConvtPLMN are as following:

1.
The least significant HEX of p_MNC is removed from p_MNC and inserted into p_MCC in the position left to the third HEX to form a new p_MCC of 4 HEXs, then swap the first HEX (left most, most significant Hex) with the second HEX of the new p_MCC.

2.
Swap the first Hex with the second HEX of the remaining part of p_MNC and append it to the new p_MCC formed in Step1 above.

EXAMPLE 1:
o_ConvtPLMN('123'H, '456'H) = '216354'O.

EXAMPLE 2:
o_ConvtPLMN ('234'H, '01F'H) = '32F410'O.

	o_FirstDigit
	Type of the result: B4

Parameters:

p_BCDdigits : HEXSTRING

Description

The input parameter p_BCDdigits shall be a BCD string (subset of HEXSTRING), the result is a BITSTRING[4] of a binary representation of one BCD digit.

The function of the o_FirstDigit is to return the first (most significant) digit of the input parameter 'p_BCDdigits'.

EXAMPLE 1:
o_FirstDigit('12345') = '0001'B.

EXAMPLE 2:
o_FirstDigit('012345678') = '0000'B.

	o_GetBit
	Type of the result: BITSTRING
Parameters:
p_Source: BITSTRING

p_DataLength: INTEGER

Description

o_GetBit returns the BITSTRING of length p_DataLength extracted from p_Source.

The extraction shall start in the bit position 0 (at the left).

	o_GetN_OctetsFromPRBS
	Type of the result: OCTETSTRING

Parameters:

p_Start, p_N: INTEGER

Description

This operation returns N octets from a repeated pseudo random bit sequence, starting with octet position p_Start. The PRBS is the 2047 bit pseudo random test pattern defined in ITU-T Recommendation O.153 [Error! Reference source not found.] for measurements at 64 kbit/s and N x 64 kbit/s

o_GetN_OctetsFromPRBS(p_Start, p_N) generates an OCTETSTRING containing p_N octets starting from octet number p_Start in the PRBS.

Requirements

p_Start 0

p_N (1

Definition

Define the 2 047 bit PRBS sequence b(i) as an m-sequence produced by using the following primitive (over GF(2)) generator polynomial of degree 11:

X^11 + X^9 + 1

This sequence is defined recursively as:

b(i) = 1

, i = 0,1,...,10

b(i) = b(i - 2) + b(i - 11) modulo 2
, i = 11,16,...,2046

The OCTETSTRING, o(j) generated by the present TSO is produced by extracting p_N octets from the repeated sequence b(i) as follows:

o(j,k) = b(((n_Start + j) * 8 + k) modulo 2047)

where:

j = 0,1,..,p_N - 1

k = 0,1,..7

o(j,k) is the kth bit of the jth octet in o(j),

o(j,0) is the MSB of the jth octet in o(j),

o(j,7) is the LSB of the jth octet in o(j),

Example results:

o_GetN_OctetsFromPRBS(0, 25) and o_GetN_OctetsFromPRBS(2047, 25) both return:

'FFE665A5C5CA3452085408ABEECE4B0B813FD337873F2CD1E2'O

o_GetN_OctetsFromPRBS(255, 25) and o_GetN_OctetsFromPRBS(255 + 2047, 25) both return

'01FFCCCB4B8B9468A410A81157DD9C9617027FA66F0E7E59A3'O

	o_GetPI
	Type of the result: BITSTRING

Parameters:

p_Imsi : HEXSTRING
p_Np: INTEGER

Description

PI = drx_index mod np

The drx_index is calculated as described hereafter:

drx_index = (p_Imsi / 8192))

 This calculation is defined in TS 25.304 clause 8.3.

NOTE: the IMSI is passed as HEXSTRING, the relevant conversion shall be done.

	o_GetSC_TimeStamp
	Type of the result: TP_ServCentreTimeSt

Parameters:

p_timezone : TZONES

This operation provides the hexstring containing the Service Centre Time Stamp (SCTS) according to 3GPP TS 23.040 [Error! Reference source not found.], clauses 9.2.2.1 and 9.2.3.11. The TSO reads the current time of the test systems clock and transforms the time in combination with the input parameter 'timezone' into a service centre time stamp.

Example:

2002 April 18, 15:32:46, timezone=4

o_GetSC_TimeStamp returns 20408151236440

TPSCTS is HEXSTRING[14]

	o_HexToDigitsMCC
	Type of the result: MCC

Parameters:

p_BCDdigits : HEXSTRING

Description

The input parameter p_BCDdigits shall be a BCD string (subset of HEXSTRING), the result is a SEQUENCE (SIZE(3)) OF digit (MCC).

NOTE:
The length of p_BCDdigits shall be 3. User shall take the responsibility of fulfilling this requirement.

EXAMPLE 1:
o_HexToDigitsMCC('111'H) = {1, 1, 1}.

EXAMPLE 2:
o_HexToDigitsMCC('123'H) = {1, 2, 3}.

	o_HexToDigitsMNC
	Type of the result: MNC

Parameters:

p_BCDdigits : HEXSTRING

Description

The function of this operation is:

1.
The least significant HEX is removed if it is 'F' and the operation returns SEQUENCE (SIZE(2)) OF Digit.

2.
The operation returns SEQUENCE (SIZE(3)) OF Digit if all 3 HEX digits in p_BCDdigits are BCD Digit.

EXAMPLE 1:
o_HexToDigitsMNC('123'H) = {1, 2, 3}.

EXAMPLE 2:
o_HexToDigitsMNC('13F'H) = {1, 3}.

	o_HexToIA5
	Type of the result: IA5String

Parameters:

p_String: HEXSTRING

Description

o_HEX_TO_IA5 converts hexadecimal string 'p_String' to an IA5 String

EXAMPLE:
o_HEX_TO_IA5 ('15A'H) = "15A".

	o_IA5_ToOct
	Type of the result: OCTETSTRING

Parameters:

p_String : IA5String

Description

o_IA5_ToOct converts the string p_String from IA5String type to OCTETSTRING.

Each character is mapped onto an octet, and bit 8 is set to 0. This TSO shall be used to convert Access Point Numbers for example. See 3GPP TS 24008, clause 10.5.6.1

EXAMPLE:
o_IA5_ToOct ("15A") = '313541'O.

	o_IA5_BMC_ToOct
	Type of the result: OCTETSTRING

Parameters:

p_String :IA5String_BMC

p_DCS: TP_DataCodingScheme

Description

o_IA5_BMC_ToOct converts the string p_String from IA5String_BMC type to OCTETSTRING.

p_DCS determines how this is done (refer to 3GPP TS 23.038 [Error! Reference source not found.] clause 5).

If a 7 bit packing is to be applied then proceed as described in 3GPP TS 23.038 [Error! Reference source not found.] clause 6.1.2.2.1 and clause 6.2.1. This is the default case.

If 8bit data is to be used then proceed as described in 3GPP TS 23.038 [Error! Reference source not found.] clause 6.2.2.

If UCS2is to be used then proceed as described in 3GPP TS 23.038 [Error! Reference source not found.] clause 6.2.3.

The type IA5_BMC implies that the length of p_String is restricted to 1..1395 octets.

(Refer to 3GPP TS 23.041 [Error! Reference source not found.], 3GPP TS 23.038 [Error! Reference source not found.], 3GPP TS 25.324 [Error! Reference source not found.])

This TSO will always generate a BMC encoded message of 15 page of information. If the input message stream (p_String) is less than the size of required octet, then the input message will be concatenated to generate a string of required length based on p_DCS.

	o_IA5_IP_ToOct
	Type of the result: OCTETSTRING

Parameters:

p_String: IA5String

p_IP_V4: BOOLEAN

Description

o_IA5_IP_ToOct converts the string p_String from IA5String type to OCTETSTRING.

In case of IPv4, p_String represents an IP address consisting of a number of fields of digits, separated by dots. Each one of the numbers of which the IP address consists is converted into one octet. The dots separating the numbers are ignored.

EXAMPLE 1:
o_IA5_IP_ToOct ("200.1.1.80", TRUE) = 'C8010150'O.

EXAMPLE 2:
o_IA5_IP_ToOct ("200.1.1.80.100", TRUE) should result in an appropriate error message.

EXAMPLE 3:
o_IA5_IP_ToOct ("300.1.1.80", TRUE) should result in an appropriate error message.

In case of IPv6, p_String represents an IP address consisting of a number of fields of hexadecimal digits, separated by ":".

a) In case of uncompressed IPv6 format each value separated by ";" is converted to 2 octets. The ":" separating the numbers are ignored.

EXAMPLE 1: o_IA5_IP_ToOct(FEDC:BA98:7654:3210:FEDC:BA98:7654:3210, FALSE) = 'FEDCBA9876543210FEDCBA9876543210'O

EXAMPLE 2: o_IA5_IP_ToOct(FEDC:BA98:7654:3210:FEDC:BA98:7654, FALSE) should result in an appropriate error message.

EXAMPLE 3: o_IA5_IP_ToOct(1080:0:0:0:8:800:200C:417A,FALSE) = '108000000000000000080800200C417A'O

EXAMPLE 4: o_IA5_IP_ToOct(1080:0:0:0:8:800:20H:417A,FALSE) should result in an appropriate error message.

b) In case of compressed IPv6 format the use of "::" indicates multiple groups of 16-bits of zeros. The "::" can only appear once in an address.

EXAMPLE 1: o_IA5_IP_ToOct(FF01::101,FALSE) = 'FF010000000000000000000000000101'O

EXAMPLE 2: o_IA5_IP_ToOct(FEDC::7654:3210:FEDC::BA98:7654:3210, FALSE) should result in an appropriate error message.

p_IP_V4 is a BOOLEAN. When TRUE, an IP Version 4 address is to be converted, the maximum length of which is 4 octets, otherwise an IP Version 6 address is to be converted, the maximum length of which is 16 octets. See 3GPP TS 24.008 [9], clause 10.5.6.4.

	o_IA5_DigitsToOct
	Type of the result: OCTETSTRING

Parameters:

p_String: IA5String

Description

o_IA5_DigitsToOct converts the string p_String from IA5String type to OCTETSTRING.

Each pair of characters is considered a pair of numbers to be mapped onto 1 octet.

Each character of p_String shall represent a digit (0..9).

In case the number of characters is odd, then a filler '1111'B is used to fill the last octet required to represent the digits. See 3GPP TS 24.008 [Error! Reference source not found.], clause 10.5.4.7.

EXAMPLE 1:
o_IA5_DigitsToOct ("0613454120") = '6031541402'O.

EXAMPLE 2:
o_IA5_DigitsToOct ("06134541209") = '6031541402F9'O.

EXAMPLE 3:
o_IA5_DigitsToOct ("A6134541209") should result in an appropriate error message.

	o_IntToOct
	Type of the result: OCTETSTRING

Parameters:

p_N : INTEGER

p_L: INTEGER

Description

o_IntToOct converts the INTEGER `p_N` into OCTETSTRING with length = 'p_L'.

EXAMPLE 1:
o_IntToOct(14,1) = '0E'O.

EXAMPLE 2:
o_IntToOct(18,1) = '12'O.

EXAMPLE 3:
o_IntToOct(18,2) = '0012'O.

	o_IntToIA5
	Type of the result:IA5String

Parameters:

p_N : INTEGER; p_L: INTEGER

Description

o_IntToIA5 converts the INTEGER `p_N` into IA5 String with length = 'p_L'.

EXAMPLE 1:
o_IntToIA5(160,3) = "160";

EXAMPLE 2:
o_IntToIA5(160,4) = " 160";

EXAMPLE 3:
o_IntToIA5(160,2) = "60".

	o_OctetstringConcat
	Type of the result: OCTETSTRING

Parameters:

p_Str1, p_Str2: OCTETSTRING

Description

o_OctetstringConcat Performs the concatenation of 2 octetstrings of possibly different lengths.

The octet significance is from left to right, i.e. the MSB is at the lefthand side.

Returns a resulting octetstring p_Str1 || p_Str2.

EXAMPLE:
o_OctetstringConcat('135'O, '9A38'O) = '1359A38'O.

	o_OctToBit
	Type of the result: BITSTRING

Parameters:

p_OctetStr: OCTETSTRING

Description

Converts an OCTETSTRING into a BITSTRING.

The size of the resulting BITSTRING is 8 times the size of the input OCTETSTRING.

	o_OctToIA5
	Type of the result: IA5String

Parameters:

p_String : OCTETSTRING

Description

o_Oct_ToIA5 converts the string p_String from OCTETSTRING type to IA5String.
Each octet is mapped onto a pair of characters. Nibbles 0 - F are translated into "0" - "F".
For example:

o_Oct_ToIA5 ('3BF541'O) = "3BF541”

	o_OctToInt
	Type of the result: INTEGER

Parameters:

p_oct : OCTETSTRING

Description

Transform an OCTETSTRING of length 1 to 4 into an unsigned 32 bits IINTEGER value.

If the input octet string is larger than 4, then only the first 4 octets shall be considered.

	o_OeBit
	Type of the result: BITSTRING

Parameters:

p_BCDdigits: HEXSTRING

Description

The input parameter 'p_BCDdigits' is a BCD string (subset of HEXSTRING), the result is BITSTRING[1].

The function of the o_OeBit is as the follows:

1.
It returns '1'B, if the length of the 'p_BCDdigits' is odd.

2.
It returns '0'B, if the length of the 'p_BCDdigits' is even.

EXAMPLE 1:
o_OeBit('12583') = '1'B.

EXAMPLE 2:
o_OeBit('87259957') ='0'B.

	o_OtherDigits
	Type of the result: OCTETSTRING

Parameters:

p_BCDdigits : HEXSTRING

Description

The input parameter ` p_BCDdigits ` is a BCD string (subset of HEXSTRING), the result is an even string of BCD digits, with eventually a filler 'F'H used. */

The function of the o_OtherDigits is as the follows:

1.
If the number of the 'p_BCDdigits' is odd, the operation removes the most significant digit, and then reverses the order of each pair of digits.

2.
If the number of the 'p_BCDdigits' is even, first the operation suffixes the `bcddigits` with 'F'H, then removes the most significant digit, and then reverses the order of each pair of digits.

EXAMPLE 1:
o_OtherDigi('12345') = '3254',

EXAMPLE 2:
o_OtherDigi('12345678') ='325476F8'.

See o_FirstDigit for the handling of the first digit.

	o_RoutingParameterIMSIResponsePaging
	Type of the result: RoutingParameter

Parameters:

p_IMSI : HEXSTRING

Description

The input parameter p_Imsi is a BCD string (subset of HEXSTRING), the result is of type RoutingParameter.

The tso returns the RoutingParameter, which consists of DecimalToBinary [(IMSI div 10) mod 1000]. The bits of the result are numbered from b0 to b9, with bit b0 being the least significant.

	o_SIB_PER_Encoding
	Type of the result: BITSTRING

Parameters:

p_SIB : SIB

Description

It returns the unaligned PER encoding (BIT STRING) of the input system information block p_SIB (without "Encoder added (1-7) bits padding"). The bits corresponding to the encoding of the CHOICE of the SIB type shall be removed.

Example:

 for the following SIBType1 value:

 SysInfoType1 ::=

 { cn-CommonGSM-MAP-NAS-SysInfo '32F4100001'H,

 cn-DomainSysInfoList

 { { cn-DomainIdentity ps-domain,

 cn-Type gsm-MAP : '0000'H,

 cn-DRX-CycleLengthCoeff 7},

 {cn-DomainIdentity cs-domain,

 cn-Type gsm-MAP : '0001'H,

 cn-DRX-CycleLengthCoeff 7}},

 ue-ConnTimersAndConstants

 { t-304 ms100,

 n-304 7,

 t-308 ms40,

 t-309 8,

 t-313 15,

 n-313 s200,

 t-314 s20,

 t-315 s1800,

 n-315 s1000},

 ue-IdleTimersAndConstants

 { t-300 ms400,

 n-300 7,

 t-312 10,

 n-312 s200},

 nonCriticalExtensions { }

 }

The operation returns BITSTRING:

"1000011001011110100000100000000000000000001011000100000000000000000100001000000000000000101000011001100000111110000011100111111111111111111100101111010011"

	o_SIB_Segmentation
	Type of the result: SegmentsOfSysInfoBlock

Parameters:

p_SIBBitString : BITSTRING

Description

The function of the o_SIB_Segmentation is as following:

1.
If the p_SIBBitString is less than or equal to 226 bits, the bit string is fit into a complete segment. If the segment is less than 226 bits but more than 214 bits, the segment shall be padded to 226 bits long with padding bits set to '0'B.

2.
If the input operand p_SIBBitString is longer than 226 bits it is segmented from left to right into segments, each segment except the last one is 222 bits. The last segment may be 222 bits or shorter. If the length of last segment is greater than 214 bits pad it to 222 bits with padding bits set to '0'B.

3.
The number of segments is assigned to recount field of the result.

4.
The first segment is assigned to seg1 field of the result, the second segment is assigned to the seg2 field of the result, the third segment is assigned to the seg3 field of the result, and so on till the last segment.

	o_SIB_SegmentationFirstSpecial
	Type of the result: SegmentsOfSysInfoBlock

Parameters:

p_SIB_BitString : BITSTRING

p_FirstSegLength : INTEGER

Description

The function of the o_SIB_Segmentation_FirstShort is as following:

1.
If the p_SIB_BitString is less than or equal to p_FirstSegLength bits, the bit string is fit into one segment.

2.
If the input operand p_SIB_BitString is longer than p_FirstSegLength bits it is segmented from left to right into segments, each segment except the first one and the last one is 222 bits . The first one is p_FirstSegLength long. The last segment may be 222 bits or shorter. If the length of last segment is greater than 214 bits pad it to 222 bits with padding bits set to '0'B.

3.
The number of segments is assigned to segCount field of the result.

4.
The first segment is assigned to seg1 field of the result, the second segment

is assigned to the seg2 field of the result, the third segment is assigned to the

seg3 field of the result, and so on till the last segment.

5.
The value of parameter p_FirstSegLength shall be less than 197.

	o_CheckPDUsAcknowledged
	Type of the result: BOOLEAN

Parameters:

p_NackList: NackList

Contains a list of integers (possibly empty), each of which corresponds to a PDU SN. Negative acknowledgement is expected for each of these PDUs.

p_FSN: INTEGER

Contains an integer representing the first SN expected to be acknowledged.

p_LSN: INTEGER

Contains an integer representing the last SN expected to be acknowledged.

p_SUFI_List: SuperFields

This parameter contains the received SUFI list to be checked.

Description:

This TSO is used to check that the given SUFI list contains any combination of SUFIs that fulfils the following requirements:

1.
Negatively acknowledges all PDUs whose sequence numbers are in p_NackList. Note that the list may be empty.

2.
Positively acknowledges all other PDUs with sequence numbers greater than or equal to p_FSN, and less than or equal to p_LSN.

Output:

This TSO returns a BOOLEAN value of TRUE if the SUFI list meets all of the requirements based on the given parameters.

Otherwise the TSO returns FALSE.

<Begin of changed clauses>
8.14
Guidelines of MBMS implementations

8.14.1
MCCH scheduling implementation

The rules for the transmission of MCCH messages are specified in 34.108, clause 11.1.2. The current clause provides the implementation guidelines.

[image: image4.wmf]

n

n+

2

n+

3

n+

4

n+

7

n+

8

n+

9

n+

10

n+

12

n+

13

n+

1

n+

14

Messages

to be

transmitted on MCCH

Padding

Repetition period

Access information period

Access information period

TTI

dedicated

to AI

n+2

n+

4

n+

5

n+

6

n+

7

n+

8

n+

9

n+

10

n+

11

n+

1

2

n+

1

3

n+

1

n+

1

4

TTI

 =20 ms

RLC

 PDU sequence

number

SFN

n

n+

5

n+6

n+11

n+3

ACCESS INFORMATION messages

 (A

I), non

-

critical message

Segment

ation, concatenation

or padding of messages into

RLC PDU’s

-

Sent out of sequence

-

T

r

ansmitted starting at the first frame of the

second access information period of the

modification period

Critical MCCH information

messages

Figure 2: Segmentation and concatenation of MCCH messages into RLC PDU’s

If required in the test, all ACCESS INFORMATION messages of a modification period are sent via RLC_UM_ACCESSinfo_REQ. Each ACCESS INFORMATION message corresponds to an access information period in an ordered way. The ACCESS INFORMATION is transmitted on the 1st TTI of the second access information period of the modification period.
All critical MCCH messages of a modification period are sent via RLC_UM_CriticalMCCHMsg_REQ. The sequence of the critical MCCH messages is segmented and concatenated without padding by a UM RLC entity configured specifically for MCCH. RLC_UM_ACCESSinfo_REQ precedes RLC_UM_CriticalMCCHMsg_REQ, or RLC_UM_CriticalMCCHMsg_REQ can be used alone. The scenarios of RLC_UM_ACCESSinfo_REQ used alone or RLC_UM_CriticalMCCHMsg_REQ preceding RLC_UM_ACCESSinfo_REQ are not applied.
The first RLC SN are always allocated consecutively to ACCESS INFORMATION messages, i.e. from n + 0 onwards as necessary. Then an RLC SN block is consecutively allocated to the critical MCCH messages, saying the last used SN = (n +m)MOD 128 in the current modification period. Renew n to (n + m + 1)MOD 128 for the next modification period.

[image: image6.wmf]

Repetition

period

Modification

 period

Modification

 period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

AccessInfo

period

MCCH

Repetition

period

Repetition

period

Repetition

period

Repetition

period

ACCESS Info

RLC

 SN: 0

Critical MCCH Info

RLC SN: 5 to 58

ACCESS Info

RLC

 SN: 1 & 2

ACCESS Info

RLC

 SN:

3

 &

 4

No ACCESS

INFORMATION in these

AccessInfo periods

Critical MCCH Info

RLC SN: 60 to 1

00

ACCESS Info

RLC

 SN: 59

-

Different colour represents different me

ssage contents

-

Contents of Critical MCCH info messages keep unchanged in Modification period

-

Contents of ACCESS INFORMATION can change in Repetition/Modification period

-

If an ACCESS INFORMATION is to be sent in an Access Information period, the messa

ge is sent in the first TTI of the Access Information period

-

While sending the whole set of MCCH messages there shall be no idle/empty TTI between messages

AccessInfo

period

Figure 3: RLC SN allocation in MCCH scheduling

ACCESS INFORMATION messages within a modification period have different RLC SN. The SN = n + 0 is allocated to the 1st ACCESS INFORMATION message.The critical MCCH messages to be transmitted in the different repetition periods within a modification period have the same RLC SN. RLC SN are incremented across the boundary of two consecutive modification periods without RLC reestablishment. The different RLC SN are allocated to the two consecutive modification periods.

In order to ensure UE can read the first ACCESS INFORMATION message, the message is sent by the TTCN in the second access information period.

8.14.2
MSCH scheduling and service data on MTCH

Multiple ordered SCHEDULING INFORMATION messages are sent by using RLC_UM_MSCH_Msg_REQ. Each SCHEDULING INFORMATION corresponds to a scheduling period, a ‘noSend’ MSCH_Message indicates that no MBMS services are scheduled in that scheduling period for all MTCH. The first SCHEDULING INFORMATION message is sent on the scheduledSFN and succesively the remaining messages are sent in every scheduling period.

The MBMS service data are fed by RLC_UM_TestDataReq. However the real MBMS service transmissions for multiple scheduling periods on each MTCH are controlled by CRLC_UM_MTCH_Scheduling_REQ. Within each scheduling period the information on the discontinuous service transmissions are conveyed through a list of pairs of (start, duration). The IE noServiceData as NULL being provided for a scheduling period indicates no service trasnmission on that MTCH.

The simulation of the continuous MBMS services is provided if an empty CRLC_UM_MTCH_Scheduling_REQ is sent without scheduling configuration parameter and scheduling information.

RLC_UM_MSCH_Msg_REQ precedes CRLC_UM_MTCH_Scheduling_REQ and RLC_UM_TestDataReq.

[image: image7.emf]

- SCHEDULING INFORMATION starts at the frame which SFN fulfil the formula:

(SFN-(SCTO div 10 ms)) mod MSCH_REP = MSCH_OFF

Where SCTO: Soft Combination Timing offset = 0, 10, 20, 40ms

 MSCH_REP: MSCH scheduling period = 32, 64, 128, 256, 512, 1024 frames

 MSCH_OFF: MSCH scheduling offset = 0 .. (MSCH_REP-1) frames

- SCHEDULING INFORMATION contains a pair of “start” and “duration” to indicate the start of the data

transmission on MTCH relative to the SFN the SCHEDULING INFORMATION is sent.

SFN mod MSCH_REP = 0

(SFN – (SCTO div 10ms)) mod

MSCH_REP = MSCH_OFF

Shifted by

MSCH_OFF

Shifted by

SCTO

MSCH

start11

SCHEDULING INFORMATION

- for MTCH1 including {{start11

duration11} {start12 duration 12}}

- for MTCH2 including {{start21

duration21}}

SCHEDULING INFORMATION

for MTCH2 including {{start22

duration 22}}

Scheduling period Scheduling period Scheduling period

MTCH1

MTCH2

Scheduling period

SCHEDULING INFORMATION

for MTCH1 including {{start13

duration13}}

start13

duration13

duration11

start12

duration12

start21 duration21 duration22 start22

noSend of SS_MSCH_Message

noServiceData as NULL of

SS_ServiceSchedulingInfo

noServiceData as NULL of

SS_ServiceSchedulingInfo

noServiceData as NULL of

SS_ServiceSchedulingInfo

noServiceData as NULL of

SS_ServiceSchedulingInfo

Figure 4: MSCH scheduling and MTCH data transfer

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1230447284.doc

NI sent by CPHY_MBMS_NI_REQ

DCCH

DTCH

DCCH

DTCH

MTCH

MTCH

MSCH

MCCH

FACH

FACH

S-CCPCH

S-CCPCH

FACH

MICH

 Cell x

 MAC_c/sh/m

MTCH

MTCH

MSCH

MCCH

FACH

FACH

S-CCPCH

S-CCPCH

FACH

UM RLC

MICH

 Cell A

UM RLC

Configured by CPHY_RL_Setup

(MICH branch)

Configured by CMAC_Config_REQ and CMAC_MBMS_ConfigInfo_REQ

Configured by CRLC_Config_REQ (include dl_UM_RLC_LI_size in SS_DL_RLC_Mode)

 MAC_c/sh/m

RB’s

PDCP

PDCP

Configured by the same way as non-MBMS case

MTCHs which have the same logical channel identity but in different cells are connected to the same UM RLC by the SS

UM RLC

UM RLC

UM RLC

UM RLC

Configured by CRLC_Config_REQ (include dl_UM_RLC_LI_size in SS_DL_RLC_Mode)

Data transmitted with RLC_UM_ACCESSinfo_REQ

Data transmitted with RLC_UM_MSCH_Msg_REQ

Data transmitted with RLC_UM_CriticalMCCHMsg_REQ

Data transmitted with RLC_UM_TestDataReq

