Title CRs (Rel-5 and Rel-6 Category A) to TS 25.942 for the introduction of Rational

on test parameters for UE adjacent channel selectivity

Source TSG RAN WG4

Agenda Item 7.5.5

RAN4 Tdoc	Spec	CR	R	Cat	Rel	Curr Ver	Title	Work Item
R4-040185	25.942	015		F	Rel-5	5.2.0	Rational on test parameters for UE adjacent channel selectivity	TEI5
R4-040186	25.942	016		Α	Rel-6	6.2.0	Rational on test parameters for UE adjacent channel selectivity	TEI5

R4-040185

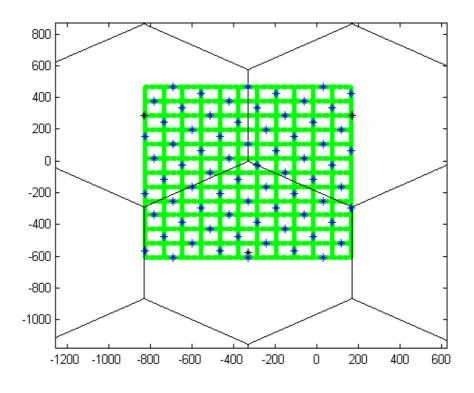
3GPP TSG RAN WG4 (Radio) Meeting #31 **Beijing, China 10 - 14 May 2004**

		CHAN	GE REQI	JEST	Ţ		CR-Form-v7
*	25.942	CR 015	жrev	H	Current version:	5.2.0	¥
For UE I	P on using this for	m and hattam	of this page or l	ook ot ti	ao non-un text over	the H our	mbolo

ж	25.942 CR 015 # rev #	Current version: 5.2.0 [₩]				
For <u>HELP</u> on us	sing this form, see bottom of this page or look at th	e pop-up text over the ℜ symbols.				
Proposed change a	affects: UICC apps器 ME Radio A	ccess Network X Core Network				
Title: ∺	Rational on test parameters for UE adjacent char	nnel selectivity				
Source: #	RAN WG4					
Work item code: ₩	TEI5	Date: 第 26/05/2004				
	F Use one of the following categories: F (correction) A (corresponds to a correction in an earlier release B (addition of feature), C (functional modification of feature) D (editorial modification) Detailed explanations of the above categories can be found in 3GPP TR 21.900.	R97 (Release 1997) R98 (Release 1998) R99 (Release 1999) Rel-4 (Release 4) Rel-5 (Release 5) Rel-6 (Release 6)				
Reason for change: Additional UE ACS test parameters were introduced in 25.101 at RAN4#30 for REL-5. Rationals behind the new Case 2 test parameter on I _{oac} should be included in TR 25.942.						
Summary of chang	e: 第 Simulation scenarios and results are introduced.	ced.				
Consequences if not approved:	₩ No rationals behind the additional case 2 tes	et parameters on I _{oac} in 25.942.				
Clauses affected:	器 New chapter 8.1.5 introduced.					
Other specs affected:	Y N X Other core specifications Test specifications O&M Specifications					
Other comments:	器 Equivalent CRs in other Releases: CR016 c	at. A to 25.942 v6.2.0				

8.1.5 Rational on test parameters for UE adjacent channel selectivity

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a W-CDMA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).


However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters must be chosen where the BER shall not exceed 0.001. The simulation scenarios and results leading to the Case 2 test parameter on I_{oac} in [2] are then presented in this section.

8.1.5.1 Macro / Micro Scenario

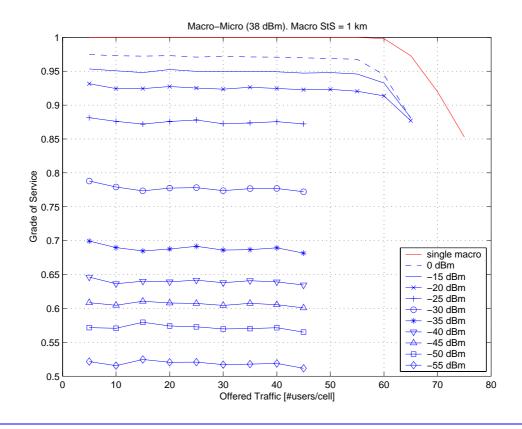
The Macro/Micro cell plan is based on chapter 5.1.3 as also shown in Figure 27a. Only the macro layer was simulated. For the micro BS, a constant total BS output power is assumed. Results logged only from the 3 macro cells overlapping with the micro area. 72 Micro BS are within an area of 1km x 1km.

Macro antenna pattern	<u>Omnidirectional</u>
Macro antenna gain	11 dBi
Micro antenna gain	11 dBi
Number of macro BS	19
Wrap around	ves
Cell radius	577 m
Path loss (towards macro BS)	$15.3+37.6\log(d)$ [d] = m
MCL, macro	<u>70 dB</u>
MCL, micro	<u>53 dB</u>
Std of the logn fading	10 dB
Correlation between sites	0.5
Decorrelation distance	<u>0 m</u>
Downlink orthogonality	0.2
UE noise figure	9 dB
ACIR until switched off	33 dB (excluding scenarios with mask)
	-
Max BS power	<u>20 W</u>
Common Channel power	<u>2 W</u>
Max power per link	<u>1 W</u>
Max #links in active set	<u>2</u>
SoHO window	3 dB
CIR target	-18.98 dB (12.2 kbps, Eb/N0 = 6 dB)
Dropping threshold	-19.48 dB (Quality-based dropping)

Figure 27a

Simulation strategy: Snap-Shots.

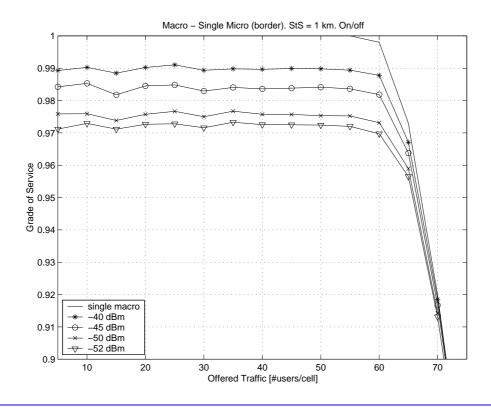
Users are randomly placed over the system. If users in are in outage, they are removed one-by-one. If the BS is overloaded by means of power, remove a user, which has experienced the BS in question as "best server during call setup" (remove one user at a time). After each action, find a balanced situation and continue to remove more users if needed.


<u>Grade-of-service</u> is obtained in the end when no users are in outage, and all BS are below 20 W (GoS = #users left in the system / #users in the beginning).

8.1.5.2 OnOff Characteristic

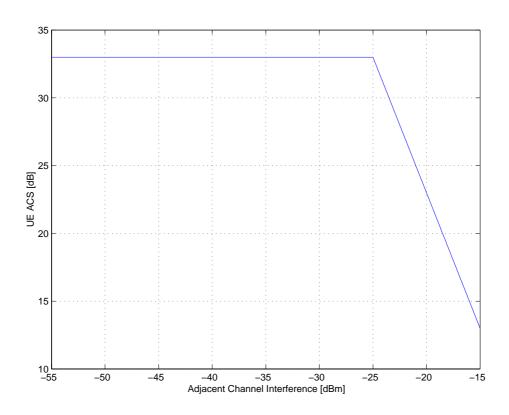
All simulation results under this chapter are based on the assumption that if the experienced ACI is higher than the investigated value, the call will be dropped due to unknown characteristics of UE when received ACI exceeds a particular one under investigation.

8.1.5.2.1 Macro-Micro (38dBm) with UE ACS OnOff Characteristic


Figure 27b

8.1.5.2.2 Macro- Single Micro (38dBm) with UE ACS OnOff Characteristic

The macro-Micro cell plan in chapter 5.1.3 is the worst case and highly pessimistic, therefore macro-micro scenario was also simulated with only one micro in the macro cell grid. Results collected from all three macro cells.


Figure 27c

8.1.5.3 UE ACS Mask Characteristic

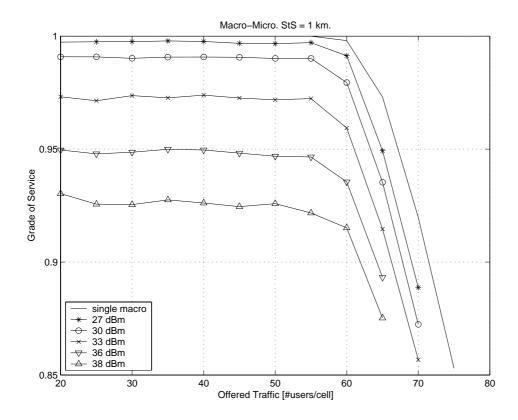

All simulation results under this chapter are based on the assumption that if the experienced ACI is higher than the investigated value, the ACS performance will degrade graceful up to a certain level (here up to -15dBm).

Figure 27d

8.1.5.3.1 Macro-Micro with UE ACS Mask Characteristic

Figure 27e

<u>Figure 27e assumes a mask behaviour as shown in Figure 27d and is done for completeness with different Micro TX</u> output power levels as indicated in the box in Figure 27e.

3GPP TSG RAN WG4 (Radio) Meeting #31

R4-040186

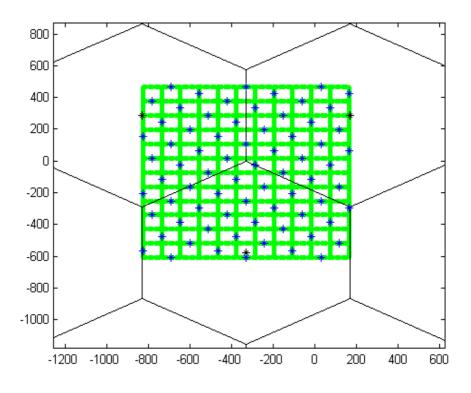
Beijing, China 10 - 14 May 2004

											CR-Form-v7
			C	HANG	EREC	UES	ST				CR-FOIIII-V/
*	2	<mark>25.942</mark>	CR	016	жrev		₩ (Current vers	ion:	6.2.0	*
For <u>HELP</u> or	usir	ng this fo	rm, see	bottom of t	this page o	r look a	t the	pop-up text	over	the ℋ syn	nbols.
Proposed chang	e aff	ects:	UICC ap	ops#	ME	Radio	o Acc	cess Networ	k X	Core Ne	twork
Title:	#	Rational	on test p	oarameters	for UE ad	acent c	hann	el selectivity	/		
0	00		4								
Source:	#	RAN WG	4								
Work item code:	ж -	TEI5						Date: ₩	26/0	05/2004	
Category:	D	se <u>one</u> of F (cor A (cor B (ad C (fur D (ed	rection) respond dition of the ctional notional module planation	nodification of adification) as of the abo	ction in an ea			R96 R97 R98 R99 Rel-4 Rel-5	(GSM (Rele (Rele (Rele (Rele (Rele (Rele	-	eases:
							_				
Reason for chan	ge:	REL	-5. Ratio					duced in 25 parameter o			
Summary of cha	່	lation s	<mark>cenarios ar</mark>	nd results a	re intro	duce	d.				
Consequences in not approved:	f	₩ No ra	ationals	behind the	additional	case 2	test p	parameters (on I _{oa}	_c in 25.942	2.
Clauses affected	l:	米 New Y N	chapte	r 8.1.5 intro	oduced.						
Other specs affected:		策 X X X	Test s	core specif pecificatior Specificatio	าร	黑					
Other comments		₩									

Equivalent CRs in other Releases: CR015 cat. F to 25.942 v5.2.0

8.1.5 Rational on test parameters for UE adjacent channel selectivity

Adjacent Channel Selectivity (ACS) is a measure of a receiver's ability to receive a W-CDMA signal at its assigned channel frequency in the presence of an adjacent channel signal at a given frequency offset from the centre frequency of the assigned channel. ACS is the ratio of the receive filter attenuation on the assigned channel frequency to the receive filter attenuation on the adjacent channel(s).


However it is not possible to directly measure the ACS, instead the lower and upper range of test parameters must be chosen where the BER shall not exceed 0.001. The simulation scenarios and results leading to the Case 2 test parameter on I_{oac} in [2] are then presented in this section.

8.1.5.1 Macro / Micro Scenario

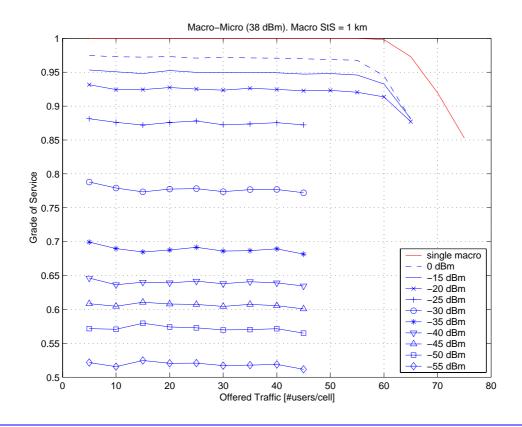
The Macro/Micro cell plan is based on chapter 5.1.3 as also shown in Figure 27a. Only the macro layer was simulated. For the micro BS, a constant total BS output power is assumed. Results logged only from the 3 macro cells overlapping with the micro area. 72 Micro BS are within an area of 1km x 1km.

Macro antenna pattern	<u>Omnidirectional</u>
Macro antenna gain	<u>11 dBi</u>
Micro antenna gain	11 dBi
Number of macro BS	19
Wrap around	ves
Cell radius	577 m
Path loss (towards macro BS)	$15.3+37.6\log(d)$ [d] = m
MCL, macro	70 dB
MCL, micro	53 dB
Std of the logn fading	10 dB
Correlation between sites	0.5
Decorrelation distance	0 m
Downlink orthogonality	0.2
UE noise figure	9 dB
ACIR until switched off	33 dB (excluding scenarios with mask)
THE STATE OF THE S	Se de Constanting section (Se Maria Maria)
Max BS power	20 W
Common Channel power	2 W
Max power per link	1 W
Max #links in active set	2
SoHO window	3 dB
CIR target	-18.98 dB (12.2 kbps, Eb/N0 = 6 dB)
Dropping threshold	-19.48 dB (Quality-based dropping)
210pping unusitoid	17.10 db (Quanty busber dropping)

Figure 27a

Simulation strategy: Snap-Shots.

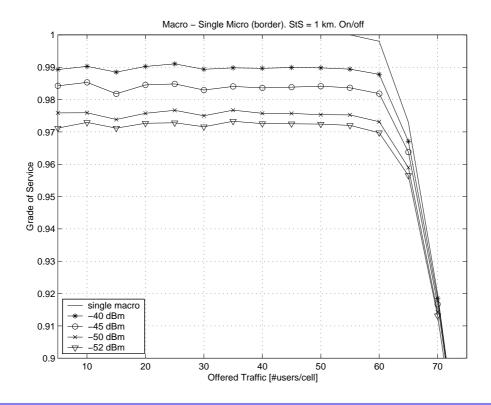
Users are randomly placed over the system. If users in are in outage, they are removed one-by-one. If the BS is overloaded by means of power, remove a user, which has experienced the BS in question as "best server during call set-up" (remove one user at a time). After each action, find a balanced situation and continue to remove more users if needed.


<u>Grade-of-service</u> is obtained in the end when no users are in outage, and all BS are below 20 W (GoS = #users left in the system / #users in the beginning).

8.1.5.2 OnOff Characteristic

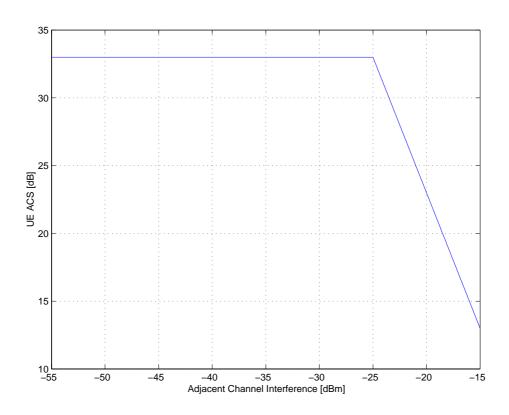
All simulation results under this chapter are based on the assumption that if the experienced ACI is higher than the investigated value, the call will be dropped due to unknown characteristics of UE when received ACI exceeds a particular one under investigation.

8.1.5.2.1 Macro-Micro (38dBm) with UE ACS OnOff Characteristic


Figure 27b

8.1.5.2.2 Macro- Single Micro (38dBm) with UE ACS OnOff Characteristic

The macro-Micro cell plan in chapter 5.1.3 is the worst case and highly pessimistic, therefore macro-micro scenario was also simulated with only one micro in the macro cell grid. Results collected from all three macro cells.


Figure 27c

8.1.5.3 UE ACS Mask Characteristic

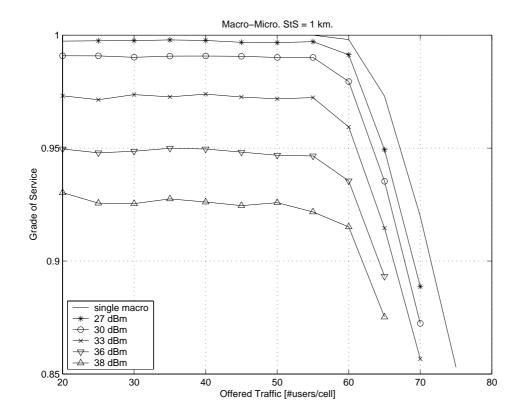

All simulation results under this chapter are based on the assumption that if the experienced ACI is higher than the investigated value, the ACS performance will degrade graceful up to a certain level (here up to -15dBm).

Figure 27d

8.1.5.3.1 Macro-Micro with UE ACS Mask Characteristic

<u>Figure 27e assumes a mask behaviour as shown in Figure 27d and is done for completeness with different Micro TX</u> output power levels as indicated in the box in Figure 27e.