
1/17

TSG-RAN Meeting #23 RP-040098
Phoenix, 10-12 March 2004

Title: CRs on 25.921 R'99 (and linked CRs from later releases)

Source: TSG-RAN WG2

Agenda item: 7.3.3

Spec�

��

� CR�
��

�Rev�
��

�Phase�
��

� Subject�
��

� Cat�
�

Version-Current�
�

Version-New�
�

Doc-2nd-Level�
�

Workitem�

�

25.921�049�-� R99� Spare Extension in Data Frame� F� 3.9.0� 3.10.0� R2-040187� TEI�

25.921�050�-� Rel-4� Spare Extension in Data Frame� A� 4.6.0� 4.7.0� R2-040188� TEI�

25.921�051�-� Rel-5� Spare Extension in Data Frame� A� 5.3.0� 5.4.0� R2-040189� TEI�

25.921�52� 1� R99� Guideline on release independent ASN.1 updates� F� 3.9.0� 3.10.0� R2-040319� TEI�

25.921�53� 2� Rel-4� Guideline on release independent ASN.1 updates� A� 4.6.0� 4.7.0� R2-040344� TEI�

25.921�54� 2� Rel-5� Guideline on release independent ASN.1 updates� A� 5.3.0� 5.4.0� R2-040345� TEI�

25.921�55� -� R99� Guideline on the use of variable length containers for late extensions F� 3.9.0� 3.10.0� R2-040247� TEI�

25.921�56� -� Rel-4� Guideline on the use of variable length containers for late extensions A� 4.6.0� 4.7.0� R2-040248� TEI�

25.921�57� -� Rel-5� Guideline on the use of variable length containers for late extensions A� 5.3.0� 5.4.0� R2-040249� TEI�

25.921�58� -� R99� Guideline for the naming of extensions to the RRC ASN.1� F� 3.9.0� 3.10.0� R2-040300� TEI�

25.921�59� -� Rel-4� Guideline for the naming of extensions to the RRC ASN.1� A� 4.6.0� 4.7.0� R2-040301� TEI�

25.921�60� -� Rel-5� Guideline for the naming of extensions to the RRC ASN.1� A� 5.3.0� 5.4.0� R2-040302� TEI�

3GPP

1

3GPP TSG-RAN2 Meeting #40 Tdoc !R2-040187
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 049 ! rev - ! Current version: 3.9.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network X Core Network

Title: ! Spare Extension in Data Frame

Source: ! RAN WG2

Work item code: ! TEI Date: ! 12/01/2004

Category: ! F Release: ! R99
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier
release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! It is not clear how to use the Spare Extension in Data Frame of Frame Protocol.

Summary of change: ! - Extension mechanism in Data Frame of Frame Protocol is introduced.

Consequences if !
not approved:

In the future, adding new IEs in a backward compatible way is not guaranteed.

Impact Analysis:

Impact assessment towards the previous version of the specification (same
release):

This CR has isolated impact on the previous version of the specification because
the change only affect on Spare Extension functionality. But since the Spare
Extension hasn’t been used in this release yet, the impact is very minor.

Impact assessment towards the previous release of the specification:

Not applicable since this is Rel99 correction.

Clauses affected: ! 9a(new)

 Y N
Other specs ! X Other core specifications !

affected: X Test specifications
 X O&M Specifications

3GPP

2

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the
specification which are not relevant to the change request.

3GPP

3GPP TR 25.921 V3.9.0 (2003-09)3Release 1999

9a Usage of Iub/Iur Frame Protocol
The following clauses contain guidelines for specification of frame protocols.

9a.1 Extensions for future releases in Data Frame
Spare Extension is used to define New IEs in the future. When the first IE is added in the Spare Extension in the Data
Frame, New IE Flags IE shall be added in the first byte of the Spare Extension to indicate the validity of the value of the
IEs in the Spare Extension. The last bit position of the New IE Flags IE is used as the Extension Flag to allow the
extension of the New IE Flags IE in the future. The IEs in the Spare Extension will be added in the order in which the
IEs are introduced regardless of the release.

Spare
Extension

7 6 5 4 3 2 1 0

Field 2

Field 3

Field 3 (cont)

Field 1

Field 4

Byte 1

Byte 2

Byte 3

Remaining part of Spare Extension

New IE Flags
 7(E) 6 5 4 3 2 1 0

(E) = Extension Flag

In the example below, it is assumed that after Example IE in Rel5 IE was introduced, Example IE in Rel99 IE is
introduced.

In this example, New IE Flags (0) indicates the validity of Example IE in Rel5 IE and the New IE Flags (1) indicates the
validity of Example IE in Rel99 IE. The IEs are added in the order of their introduction in the Spare Extension. For the
Rel99 and Rel4 nodes, New IE Flags (0) and Example IE in Rel5 IE will always be seen as Spare Bits while for Rel5
nodes, all the IEs (i.e., New IE Flags (0), New IE Flags(1)), Example IE in Rel5 IE and Example IE in Rel99 IE can be
used.

 7 6 5 4 3 2 1 0

Field 2

Field 3

Field 3 (cont)

Field 1

Field 4

Byte 1

Byte 2

Byte 3

Example IE in Rel5

Example IE in Rel99

New IE Flags
 7(E) 6 5 4 3 2 1 0

Example of Spare Extension Usage

3GPP

1

3GPP TSG-RAN2 Meeting #40 Tdoc !R2-040188
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 050 ! rev - ! Current version: 4.6.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network X Core Network

Title: ! Spare Extension in Data Frame

Source: ! RAN WG2

Work item code: ! TEI Date: ! 12/01/2004

Category: ! A Release: ! Rel-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier
release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! It is not clear how to use the Spare Extension in Data Frame of Frame Protocol.

Summary of change: ! - Extension mechanism in Data Frame of Frame Protocol is introduced.

Consequences if !
not approved:

In the future, adding new IEs in a backward compatible way is not guaranteed.

Impact Analysis:

Impact assessment towards the previous version of the specification (same
release):

This CR has isolated impact on the previous version of the specification because
the change only affect on Spare Extension functionality. But since the Spare
Extension hasn’t been used in this release yet, the impact is very minor.

Impact assessment towards the previous release of the specification:

Not applicable since this is Rel99 correction.

Clauses affected: ! 9a(new)

 Y N
Other specs ! X Other core specifications !

affected: X Test specifications
 X O&M Specifications

3GPP

2

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the
specification which are not relevant to the change request.

3GPP

3GPP TR 25.921 V4.6.0 (2003-09)3Release 4

9a Usage of Iub/Iur Frame Protocol
The following clauses contain guidelines for specification of frame protocols.

9a.1 Extensions for future releases in Data Frame
Spare Extension is used to define New IEs in the future. When the first IE is added in the Spare Extension in the Data
Frame, New IE Flags IE shall be added in the first byte of the Spare Extension to indicate the validity of the value of the
IEs in the Spare Extension. The last bit position of the New IE Flags IE is used as the Extension Flag to allow the
extension of the New IE Flags IE in the future. The IEs in the Spare Extension will be added in the order in which the
IEs are introduced regardless of the release.

New IE Flags
 7(E) 6 5 4 3 2 1 0

Remaining part of Spare Extension

Spare
Extension

7 6 5 4 3 2 1 0

Field 2

Field 3

Field 3 (cont)

Field 1

Field 4

Byte 1

Byte 2

Byte 3

(E) = Extension Flag

In the example below, it is assumed that after Example IE in Rel5 IE was introduced, Example IE in Rel99 IE is
introduced.

In this example, New IE Flags (0) indicates the validity of Example IE in Rel5 IE and the New IE Flags (1) indicates the
validity of Example IE in Rel99 IE. The IEs are added in the order of their introduction in the Spare Extension. For the
Rel99 and Rel4 nodes, New IE Flags (0) and Example IE in Rel5 IE will always be seen as Spare Bits while for Rel5
nodes, all the IEs (i.e., New IE Flags (0), New IE Flags(1)), Example IE in Rel5 IE and Example IE in Rel99 IE can be
used.

 7 6 5 4 3 2 1 0

Field 2

Field 3

Field 3 (cont)

Field 1

Field 4

Byte 1

Byte 2

Byte 3

Example IE in Rel5

Example IE in Rel99

New IE Flags
 7(E) 6 5 4 3 2 1 0

Example of Spare Extension Usage

3GPP

1

3GPP TSG-RAN2 Meeting #40 Tdoc !R2-040189
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 051 ! rev - ! Current version: 5.3.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network X Core Network

Title: ! Spare Extension in Data Frame

Source: ! RAN WG2

Work item code: ! TEI Date: ! 12/01/2004

Category: ! A Release: ! Rel-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier
release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! It is not clear how to use the Spare Extension in Data Frame of Frame Protocol.

Summary of change: ! - Extension mechanism in Data Frame of Frame Protocol is introduced.

Consequences if !
not approved:

In the future, adding new IEs in a backward compatible way is not guaranteed.

Impact Analysis:

Impact assessment towards the previous version of the specification (same
release):

This CR has isolated impact on the previous version of the specification because
the change only affect on Spare Extension functionality. But since the Spare
Extension hasn’t been used in this release yet, the impact is very minor.

Impact assessment towards the previous release of the specification:

Not applicable since this is Rel99 correction.

Clauses affected: ! 9a(new)

 Y N
Other specs ! X Other core specifications !

affected: X Test specifications
 X O&M Specifications

3GPP

2

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification
just in front of the clause containing the first piece of changed text. Delete those parts of the
specification which are not relevant to the change request.

3GPP

3GPP TR 25.921 V5.3.0 (2003-12)3Release 5

9a Usage of Iub/Iur Frame Protocol
The following clauses contain guidelines for specification of frame protocols.

9a.1 Extensions for future releases in Data Frame
Spare Extension is used to define New IEs in the future. When the first IE is added in the Spare Extension in the Data
Frame, New IE Flags IE shall be added in the first byte of the Spare Extension to indicate the validity of the value of the
IEs in the Spare Extension. The last bit position of the New IE Flags IE is used as the Extension Flag to allow the
extension of the New IE Flags IE in the future. The IEs in the Spare Extension will be added in the order in which the
IEs are introduced regardless of the release.

New IE Flags
 7(E) 6 5 4 3 2 1 0

Remaining part of Spare Extension

Spare
Extension

7 6 5 4 3 2 1 0

Field 2

Field 3

Field 3 (cont)

Field 1

Field 4

Byte 1

Byte 2

Byte 3

(E) = Extension Flag

In the example below, it is assumed that after Example IE in Rel5 IE was introduced, Example IE in Rel99 IE is
introduced.

In this example, New IE Flags (0) indicates the validity of Example IE in Rel5 IE and the New IE Flags (1) indicates the
validity of Example IE in Rel99 IE. The IEs are added in the order of their introduction in the Spare Extension. For the
Rel99 and Rel4 nodes, New IE Flags (0) and Example IE in Rel5 IE will always be seen as Spare Bits while for Rel5
nodes, all the IEs (i.e., New IE Flags (0), New IE Flags(1)), Example IE in Rel5 IE and Example IE in Rel99 IE can be
used.

 7 6 5 4 3 2 1 0

Field 2

Field 3

Field 3 (cont)

Field 1

Field 4

Byte 1

Byte 2

Byte 3

Example IE in Rel5

Example IE in Rel99

New IE Flags
 7(E) 6 5 4 3 2 1 0

Example of Spare Extension Usage

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040319
Sophia Antipolis, France, 6th – 10th September 2003

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 52 ! rev 1 ! Current version: 3.9.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline on release independent ASN.1 updates

Source: ! RAN WG2

Work item code: ! TEI Date: ! 14/01/2004

Category: ! F Release: ! R99
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Guidelines for introducing release independent features within the ASN.1 are

currently not provided. The existing practice is to introduce such features in the
latest available version of the specification. This may result in decoding problems
when extensions for earlier non frozen releases are agreed. As a result of this, it
may not be possible to use the release independent feauture until the ASN.1 of
the (late) release in which they were introduced is frozen. A guideline is needed
to avoid this problem from now on

Summary of change: ! This CR introduces a recommendation to be used when introducing release

independent features within the ASN.1. The recommendation is to introduce
modifications in the latest release for which the ASN.1 has been frozen.
If this approach is unsuitable for other reasons (eg. due to alignment with other
specifications/ groups) then the recommendation is to create provisions in latest
release for which the ASN.1 has been frozen (by introducing dummy parameters
that are encoding compatible with the additional release independent
information). In this case, the actual definitions are introduced in the later
available release of RRC

Consequences if !
not approved:

It may not be possible to use release independent features until the ASN.1 of the
(late) release in which they were introduced is frozen

Clauses affected: ! 10.4.3.6 (New)

 Y N
Other specs ! X Other core specifications !

CR page 2

affected: X Test specifications
 X O&M Specifications

Other comments: ! Note that CR 55 introduces subclause 10.4.3.5

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.3.6 Use of non critical extensions for release independent features

The objective of release independent features is that they do not require the UE to implement a specific release of the
specification. Some release independent features may require the introduction of a non critical extension in one or more
messages. In this case the recommendation is to introduce the extensions in the latest release of the specification for
which the ASN.1 is frozen. This applies both to the tabular and the ASN.1.

In case, for some reasons eg. alignment with other specifications/ groups, the release independent feature is introduced
in release X, which is later than the release recommended according to the above, the following recommendations
apply:

1. Within the tabular notation, the non critical extension is introduced in release X.

2. Within the ASN.1, the information element is introduced as a non critical extension in release Y, which is the
latest release of the specification for which the ASN.1 is frozen.

3. Within the ASN.1 of releases z, with Y≤ z < X, the non critical extension is provisioned for by introducing a
dummy information element that is encoding compatible with the actual information element introduced in
release X

The reason for the provisioning of the extension in the ASN.1 of specifications earlier than release X is that for releases
z, with Y≤ z < X, it is still possible to modify the ASN.1. As a result, if no provisions would be created in such releases,
it would not be possible to use the release independent feature until release X is frozen.

An alternative approach would be to include the non critical extension within the variable length extension container
(VLEC). However, considering the overhead associated with the introduction of such a container this approach is not
recommended.

Note For release Y it is allowed to introduce non- critical extensions to release Y. Furthermore, backwards
incompatible changes are allowed for later releases. If the release independent feature is introduced in
release X, which is later than Y, it will be affected by such changes.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040344
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 53 ! rev 2 ! Current version: 4.6.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline on release independent ASN.1 updates

Source: ! RAN WG2

Work item code: ! TEI Date: ! 14/01/2004

Category: ! A Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Guidelines for introducing release independent features within the ASN.1 are

currently not provided. The existing practice is to introduce such features in the
latest available version of the specification. This may result in decoding problems
when extensions for earlier non frozen releases are agreed. As a result of this, it
may not be possible to use the release independent feauture until the ASN.1 of
the (late) release in which they were introduced is frozen. A guideline is needed
to avoid this problem from now on

Summary of change: ! This CR introduces a recommendation to be used when introducing release

independent features within the ASN.1. The recommendation is to introduce
modifications in the latest release for which the ASN.1 has been frozen.
If this approach is unsuitable for other reasons (eg. due to alignment with other
specifications/ groups) then the recommendation is to create provisions in latest
release for which the ASN.1 has been frozen (by introducing dummy parameters
that are encoding compatible with the additional release independent
information). In this case, the actual definitions are introduced in the later
available release of RRC

Consequences if !
not approved:

It may not be possible to use release independent features until the ASN.1 of the
(late) release in which they were introduced is frozen

Clauses affected: ! 10.4.3.6 (New)

 Y N
Other specs ! X Other core specifications !

CR page 2

affected: X Test specifications
 X O&M Specifications

Other comments: ! Note that CR 56 introduces subclause 10.4.3.5

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.3.6 Use of non critical extensions for release independent features

The objective of release independent features is that they do not require the UE to implement a specific release of the
specification. Some release independent features may require the introduction of a non critical extension in one or more
messages. In this case the recommendation is to introduce the extensions in the latest release of the specification for
which the ASN.1 is frozen. This applies both to the tabular and the ASN.1.

In case, for some reasons eg. alignment with other specifications/ groups, the release independent feature is introduced
in release X, which is later than the release recommended according to the above, the following recommendations
apply:

1. Within the tabular notation, the non critical extension is introduced in release X.

2. Within the ASN.1, the information element is introduced as a non critical extension in release Y, which is the
latest release of the specification for which the ASN.1 is frozen.

3. Within the ASN.1 of releases z, with Y≤ z < X, the non critical extension is provisioned for by introducing a
dummy information element that is encoding compatible with the actual information element introduced in
release X

The reason for the provisioning of the extension in the ASN.1 of specifications earlier than release X is that for releases
z, with Y≤ z < X, it is still possible to modify the ASN.1. As a result, if no provisions would be created in such releases,
it would not be possible to use the release independent feature until release X is frozen.

An alternative approach would be to include the non critical extension within the variable length extension container
(VLEC). However, considering the overhead associated with the introduction of such a container this approach is not
recommended.

Note For release Y it is allowed to introduce non- critical extensions to release Y. Furthermore, backwards
incompatible changes are allowed for later releases. If the release independent feature is introduced in
release X, which is later than Y, it will be affected by such changes.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040345
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 54 ! rev 2 ! Current version: 5.3.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline on release independent ASN.1 updates

Source: ! RAN WG2

Work item code: ! TEI Date: ! 14/01/2004

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Guidelines for introducing release independent features within the ASN.1 are

currently not provided. The existing practice is to introduce such features in the
latest available version of the specification. This may result in decoding problems
when extensions for earlier non frozen releases are agreed. As a result of this, it
may not be possible to use the release independent feauture until the ASN.1 of
the (late) release in which they were introduced is frozen. A guideline is needed
to avoid this problem from now on

Summary of change: ! This CR introduces a recommendation to be used when introducing release

independent features within the ASN.1. The recommendation is to introduce
modifications in the latest release for which the ASN.1 has been frozen.
If this approach is unsuitable for other reasons (eg. due to alignment with other
specifications/ groups) then the recommendation is to create provisions in latest
release for which the ASN.1 has been frozen (by introducing dummy parameters
that are encoding compatible with the additional release independent
information). In this case, the actual definitions are introduced in the later
available release of RRC

Consequences if !
not approved:

It may not be possible to use release independent features until the ASN.1 of the
(late) release in which they were introduced is frozen

Clauses affected: ! 10.4.3.6 (New)

 Y N
Other specs ! X Other core specifications !

CR page 2

affected: X Test specifications
 X O&M Specifications

Other comments: ! Note that CR 57 introduces subclause 10.4.3.5

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.3.6 Use of non critical extensions for release independent features

The objective of release independent features is that they do not require the UE to implement a specific release of the
specification. Some release independent features may require the introduction of a non critical extension in one or more
messages. In this case the recommendation is to introduce the extensions in the latest release of the specification for
which the ASN.1 is frozen. This applies both to the tabular and the ASN.1.

In case, for some reasons eg. alignment with other specifications/ groups, the release independent feature is introduced
in release X, which is later than the release recommended according to the above, the following recommendations
apply:

1. Within the tabular notation, the non critical extension is introduced in release X.

2. Within the ASN.1, the information element is introduced as a non critical extension in release Y, which is the
latest release of the specification for which the ASN.1 is frozen.

3. Within the ASN.1 of releases z, with Y≤ z < X, the non critical extension is provisioned for by introducing a
dummy information element that is encoding compatible with the actual information element introduced in
release X

The reason for the provisioning of the extension in the ASN.1 of specifications earlier than release X is that for releases
z, with Y≤ z < X, it is still possible to modify the ASN.1. As a result, if no provisions would be created in such releases,
it would not be possible to use the release independent feature until release X is frozen.

An alternative approach would be to include the non critical extension within the variable length extension container
(VLEC). However, considering the overhead associated with the introduction of such a container this approach is not
recommended.

Note For release Y it is allowed to introduce non- critical extensions to release Y. Furthermore, backwards
incompatible changes are allowed for later releases. If the release independent feature is introduced in
release X, which is later than Y, it will be affected by such changes.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040247
Sophia Antipolis, France, 6th – 10th September 2003

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 55 ! rev - ! Current version: 3.9.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline on the use of variable length containers for late extensions

Source: ! RAN WG2

Work item code: ! TEI Date: ! 14/01/2004

Category: ! F Release: ! R99
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Guidelines for the use of extension containers are currently not provided

Summary of change: ! This CR introduces a recommendation to be used when performing late

corrections introducing non critical extensions in the RRC messages

Consequences if !
not approved:

Extension containers may be used in a sub- optimal manner, resulting in
additional signalling overhead

Clauses affected: ! 10.4.3.5

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.3.3 Non-critical Extensions

For non-critical extensions (i.e. the receiver shall just ignore the extensions, and use the rest of the message as if the
extensions were not present), the approach is to use the nonCriticalExtensions information element, which is encoded at
the end of the message, allowing backward compatibility.

Before that Backward Compatibility is started for the following Release N+1, the non-critical extension information
elements of the current Release N are added at the end of the message. At the point when Backward Compatibility is
started for the following Release N+1, an optional BIT STRING container should be added before the information
elements of the new release. In the case that further non-critical extension information elements need to be added to
Release N they shall be placed within the BIT STRING container.

For example: As long as Backward Compatibility is not being enforced for Release 4, Release '99 extensions are added
"normally" at the end of a message within a nonCriticalExtensions sequence. Once Backward Compatibility is started
for Release 4, then new Release '99 specific extensions are introduced within an extension container. An extension
container is a "normal" bit string field that encapsulates an extension structure. As a result:

- New extensions can be added both in Release '99 and Release 4 in a backward compatible way; and

- Release 4 systems are able to skip over unknown Release '99 extensions.

The extension container can be viewed as a specific type of non-critical extension and it is included in the same way. If
the extension container is added to Release N before that Backward Compatibility has started for Release N+1, further
non-critical extensions to Release N should not be included in the container, but should be placed after it, using the
usual mechanism. In this way the extension container is not used until necessary, and therefore the corresponding length
field overhead is not incurred unnecessarily. Additional guidelines concerning the use of extension containers are
provided in 10.4.3.5.

The structure of the message of the example above is shown in Example 3 for Release '99 and 4 messages.

Examples for special non-critical extensions and MessageA-v440ext-IEs are given in the following subclauses.

-- This shows the message structure in Release '99 (including one non-critical extension)
-- before backward compatibility is started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

-- This shows the Release '99 message structure once backward compatibility
-- has been started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backward compatibility was started for Release 4.
}

-- This shows the structure of the Release 4 message
-- (including one Release 4 non-critical extension).
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 messageA-v440ext MessageA-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backward compatibility was started for Release 4.
}

MessageA-v440ext-IEs ::= SEQUENCE {
 -- Here are information elements added to Release 4 as extensions to the information
 -- contained in MessageA-r3-IEs and MessageA-v380ext-IEs.
}

Example 3

10.4.3.5 Additional guidelines on the use of variable length extension containers

"Variable length extension containers" (i.e. non critical extension containers that have their abstract syntax defined
using the ASN.1 type "BIT STRING") have been defined to support the introduction of extensions to a release after the
subsequent release is frozen (and UEs based on that subsequent release may appear).

Extension containers should be introduced in each message unless the size of the message is critical and the likelihood
of late corrections is low. For downlink messages for which different versions have been defined, an extensions
container should be introduced for each message version (branch).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

In case a variable length extension container (VLEC) includes an extension, the PER encoder will include an additional
length determinant. In case a separate container is introduced for each release, this would result in a significant
signalling overhead. In order to avoid this signalling overhead, the extensions container should not be dedicated to late
corrections of one specific release. If the extensions container is required to support the introduction of late corrections
in an order of release, one or more release specific extensions container(s) may be nested within the original extension
container.

The above guidelines are illustrated by means of an example. Suppose a message includes a single VLEC and one late
R99 correction has been defined using this extension container, When the need for a late REL-5 correction arises, this
correction may be added to the extensions container in two different ways:

1. Just by adding the extension after the late R99 correction

2. By introducing a REL-5 extensions container, that is nested within the existing extensions container

In case the first option is used, the addition of another late R99 correction (after the REL-5 correction) would require
the R99 receiver to comprehend the transfer syntax of the REL-5 extension. This would require the introduction of the
late REL-5 correction (or a type with an equivalent encoding) in the R99 transfer syntax. The second option avoids this
problem, although this comes at the cost of additional signalling overhead.

Which option to use should be decided when introducing an extension for a release later than R99. This can be decided
on a case by case basis eg. depending on whether for the concerned message further late R99 corrections need to be
accommodated.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040248
Sophia Antipolis, France, 6th – 10th September 2003

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 56 ! rev - ! Current version: 4.6.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline on the use of variable length containers for late extensions

Source: ! RAN WG2

Work item code: ! TEI Date: ! 14/01/2004

Category: ! A Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Guidelines for the use of extension containers are currently not provided

Summary of change: ! This CR introduces a recommendation to be used when performing late

corrections introducing non critical extensions in the RRC messages

Consequences if !
not approved:

Extension containers may be used in a sub- optimal manner, resulting in
additional signalling overhead

Clauses affected: ! 10.4.3.3, 10.4.3.5 (new)

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.3.3 Non-critical Extensions

For non-critical extensions (i.e. the receiver shall just ignore the extensions, and use the rest of the message as if the
extensions were not present), the approach is to use the nonCriticalExtensions information element, which is encoded at
the end of the message, allowing backward compatibility.

Before that Backward Compatibility is started for the following Release N+1, the non-critical extension information
elements of the current Release N are added at the end of the message. At the point when Backward Compatibility is
started for the following Release N+1, an optional BIT STRING container should be added before the information
elements of the new release. In the case that further non-critical extension information elements need to be added to
Release N they shall be placed within the BIT STRING container.

For example: As long as Backward Compatibility is not being enforced for Release 4, Release '99 extensions are added
"normally" at the end of a message within a nonCriticalExtensions sequence. Once Backward Compatibility is started
for Release 4, then new Release '99 specific extensions are introduced within an extension container. An extension
container is a "normal" bit string field that encapsulates an extension structure. As a result:

- New extensions can be added both in Release '99 and Release 4 in a backward compatible way; and

- Release 4 systems are able to skip over unknown Release '99 extensions.

The extension container can be viewed as a specific type of non-critical extension and it is included in the same way. If
the extension container is added to Release N before that Backward Compatibility has started for release N+1, further
non-critical extensions to Release N should not be included in the container, but should be placed after it using the usual
mechanism. In this way the extension container is not used until necessary, and therefore the corresponding length field
overhead is not incurred unnecessarily. Additional guidelines concerning the use of extension containers are provided in
10.4.3.5.

The structure of the message of the example above is shown in Example 3 for Release '99 and 4 messages.

Examples for special non-critical extensions and MessageA-v440ext-IEs are given in the following subclauses.

-- This shows the message structure in Release '99 (including one non-critical extension)
-- before backward compatibility is started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

-- This shows the Release '99 message structure once backward compatibility
-- has been started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backward compatibility was started for Release 4.
}

-- This shows the structure of the Release 4 message
-- (including one Release 4 non-critical extension).
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 messageA-v440ext MessageA-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backward compatibility was started for Release 4.
}

MessageA-v440ext-IEs ::= SEQUENCE {
 -- Here are information elements added to Release 4 as extensions to the information
 -- contained in MessageA-r3-IEs and MessageA-v380ext-IEs.
}

Example 3

10.4.3.5 Additional guidelines on the use of variable length extension containers

"Variable length extension containers" (i.e. non critical extension containers that have their abstract syntax defined
using the ASN.1 type "BIT STRING") have been defined to support the introduction of extensions to a release after the
subsequent release is frozen (and UEs based on that subsequent release may appear).

Extension containers should be introduced in each message unless the size of the message is critical and the likelihood
of late corrections is low. For downlink messages for which different versions have been defined, an extensions
container should be introduced for each message version (branch).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

In case a variable length extension container (VLEC) includes an extension, the PER encoder will include an additional
length determinant. In case a separate container is introduced for each release, this would result in a significant
signalling overhead. In order to avoid this signalling overhead, the extensions container should not be dedicated to late
corrections of one specific release. If the extensions container is required to support the introduction of late corrections
in an order of release, one or more release specific extensions container(s) may be nested within the original extension
container.

The above guidelines are illustrated by means of an example. Suppose a message includes a single VLEC and one late
R99 correction has been defined using this extension container, When the need for a late REL-5 correction arises, this
correction may be added to the extensions container in two different ways:

1. Just by adding the extension after the late R99 correction

2. By introducing a REL-5 extensions container, that is nested within the existing extensions container

In case the first option is used, the addition of another late R99 correction (after the REL-5 correction) would require
the R99 receiver to comprehend the transfer syntax of the REL-5 extension. This would require the introduction of the
late REL-5 correction (or a type with an equivalent encoding) in the R99 transfer syntax. The second option avoids this
problem, although this comes at the cost of additional signalling overhead.

Which option to use should be decided when introducing an extension for a release later than R99. This can be decided
on a case by case basis eg. depending on whether for the concerned message further late R99 corrections need to be
accommodated.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040249
Sophia Antipolis, France, 6th – 10th September 2003

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 57 ! rev - ! Current version: 5.3.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline on the use of variable length containers for late extensions

Source: ! RAN WG2

Work item code: ! TEI Date: ! 14/01/2004

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Guidelines for the use of extension containers are currently not provided

Summary of change: ! This CR introduces a recommendation to be used when performing late

corrections introducing non critical extensions in the RRC messages

Consequences if !
not approved:

Extension containers may be used in a sub- optimal manner, resulting in
additional signalling overhead

Clauses affected: ! 10.4.3.3, 10.4.3.5 (new)

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: !

How to create CRs using this form:
Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be

CR page 2

downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.3.3 Non-critical Extensions

For non-critical extensions (i.e. the receiver shall just ignore the extensions, and use the rest of the message as if the
extensions were not present), the approach is to use the nonCriticalExtensions information element, which is encoded at
the end of the message, allowing backward compatibility.

Before that Backward Compatibility is started for the following Release N+1, the non-critical extension information
elements of the current Release N are added at the end of the message. At the point when Backward Compatibility is
started for the following Release N+1, an optional BIT STRING container should be added before the information
elements of the new release. In the case that further non-critical extension information elements need to be added to
Release N they shall be placed within the BIT STRING container.

For example: As long as Backward Compatibility is not being enforced for Release 4, Release '99 extensions are added
"normally" at the end of a message within a nonCriticalExtensions sequence. Once Backward Compatibility is started
for Release 4, then new Release '99 specific extensions are introduced within an extension container. An extension
container is a "normal" bit string field that encapsulates an extension structure. As a result:

- New extensions can be added both in Release '99 and Release 4 in a backward compatible way; and

- Release 4 systems are able to skip over unknown Release '99 extensions.

The extension container can be viewed as a specific type of non-critical extension and it is included in the same way. If
the extension container is added to Release N before that Backward Compatibility has started for Release N+1, further
non-critical extensions to Release N should not be included in the container, but should be placed after it using the usual
mechanism. In this way the extension container is not used until necessary, and therefore the corresponding length field
overhead is not incurred unnecessarily. Additional guidelines concerning the use of extension containers are provided in
10.4.3.5.

The structure of the message of the example above is shown in Example 3 for Release '99 and 4 messages.

Examples for special non-critical extensions and MessageA-v440ext-IEs are given in the following subclauses.

-- This shows the message structure in Release '99 (including one non-critical extension)
-- before backwards compatibility is started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

-- This shows the Release '99 message structure once backward campatibility
-- has been started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backwards compatibility was started for Release 4.
}

-- This shows the structure of the Release 4 message
-- (including one Release 4 non-critical extension).
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 messageA-v440ext MessageA-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backwards compatibility was started for Release 4.
}

MessageA-v440ext-IEs ::= SEQUENCE {
 -- Here are information elements added to Release 4 as extensions to the information
 -- contained in MessageA-r3-IEs and MessageA-v380ext-IEs.
}

Example 3

10.4.3.5 Additional guidelines on the use of variable length extension containers

"Variable length extension containers" (i.e. non critical extension containers that have their abstract syntax defined
using the ASN.1 type "BIT STRING") have been defined to support the introduction of extensions to a release after the
subsequent release is frozen (and UEs based on that subsequent release may appear).

Extension containers should be introduced in each message unless the size of the message is critical and the likelihood
of late corrections is low. For downlink messages for which different versions have been defined, an extensions
container should be introduced for each message version (branch).

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

In case a variable length extension container (VLEC) includes an extension, the PER encoder will include an additional
length determinant. In case a separate container is introduced for each release, this would result in a significant
signalling overhead. In order to avoid this signalling overhead, the extensions container should not be dedicated to late
corrections of one specific release. If the extensions container is required to support the introduction of late corrections
in an order of release, one or more release specific extensions container(s) may be nested within the original extension
container.

The above guidelines are illustrated by means of an example. Suppose a message includes a single VLEC and one late
R99 correction has been defined using this extension container, When the need for a late REL-5 correction arises, this
correction may be added to the extensions container in two different ways:

1. Just by adding the extension after the late R99 correction

2. By introducing a REL-5 extensions container, that is nested within the existing extensions container

In case the first option is used, the addition of another late R99 correction (after the REL-5 correction) would require
the R99 receiver to comprehend the transfer syntax of the REL-5 extension. This would require the introduction of the
late REL-5 correction (or a type with an equivalent encoding) in the R99 transfer syntax. The second option avoids this
problem, although this comes at the cost of additional signalling overhead.

Which option to use should be decided when introducing an extension for a release later than R99. This can be decided
on a case by case basis eg. depending on whether for the concerned message further late R99 corrections need to be
accommodated.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040300
Sophia Antipolis, France, 6th – 10th September 2003

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 58 ! rev - ! Current version: 3.9.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline for the naming of extensions to the RRC ASN.1

Source: ! RAN WG2

Work item code: ! TEI Date: ! 15/01/2004

Category: ! F Release: ! R99
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Currently the REL-4 and REL-5 extensions are not named in a consistent

manner. This is because the guidelines for the naming of extensions to the RRC
ASN.1 are currently neither clear nor complete

Summary of change: ! The is CR introduces a recommendation to be used when performing late

corrections introducing non critical extensions in the RRC messages

Consequences if !
not approved:

There will be no way to achieve consistent naming of extensions to the RRC
ASN.1

Clauses affected: ! 10.4.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: ! The new convention means that some IEs introduced in a later release/ version

need not apply a specific suffix. This means that it will be somewhat more difficult
to track in which release/ version the IE was introduced. This requires some
additional care when applying the backwards compatibility rules. However, since
it has already been common practice to not always use an extension showing the
release/ version suffix, this is not considered to be a problem

How to create CRs using this form:

CR page 2

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4 Extensions for future releases in RRC

10.4.1 Basic principles

All non-critical extensions are shown even if empty as it costs no bits.

10.4.2 Naming convention

The abstract type defining a message provides mechanisms to allow for extending the message in future releases:

- For critical extensions, this is done by defining the message as a CHOICE of two alternatives, one being the
intended message structure, and the other being an empty SEQUENCE named "criticalExtensions".

- For non-critical extensions, this is done by defining an OPTIONAL element named "nonCriticalExtensions" of
type "SEQUENCE {}" at the end of the message definition.

When extensions are introduced, this is done by replacing one of the empty SEQUENCEs by a new structure, that
includes a new type containing the message extensions, and the same extension mechanism recursively for further
extensions.

For critical extensions the new elements introduced to specify the extensions should be grouped together in an element
with a name showing the release in which the extension was made, and this should be the same as for the new message
root. For this naming, "r3" is used for Release '99, "r4" for Release 4, "r5" for Release 5 and so on.

For non-critical extensions the new elements introduced to specify the extensions should be grouped together in an
element with a name showing the version of the specification where this extension will first be included, e.g. if the
version of the specification being corrected is v3.7.0, then the suffix added to the name will be -v380ext (i.e. the next
version).

If non-critical extensions for two different roots happen to be identical in contents, their types are still named
differently, possibly with the second being declared as synonymous to the first.

An example is given below to illustrate these principles, on the message named "Test-msg".

-- In Release '99, the Test-msg is defined as following:
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}
-- A later correction to Release '99 adds a non-critical extension in v3.8.0
-- of the specification
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}
-- The Test-msg gets the following structure, if only a non-critical
-- extensions is introduced for Release 4 in v4.4.0 of the specification.
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 -- Container for additional Release '99 extensions
 test-msg-r3-add-ext BIT STRING
 (CONTAINING Test-msg-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 test-msg-v440ext Test-msg-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}

-- In Release 5, the Test msg gets the following structure when a critical
-- extension is added
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 test-msg-r3-add-ext BIT STRING
 (CONTAINING Test-msg-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 test-msg-v440ext Test-msg-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 r5 SEQUENCE {
 test-msg-r5 Test-msg-r5-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
}

Critical extensions in Release N in message "Test-msg" should be included in the type "Test-msg-rN-IEs" (N=3
is used for Release '99).

If an abstract type is introduced in Release N when new elements are included in an extension, it should have a suffix "-
rN". For Release '99 types, no such suffix is used. In case the type that is introduced in Release N includes one or more
new (nested) types, the additional suffix need not be used for these nested types. In case the type that is introduced in
Release N includes one or more revisions of exixting types, the suffix is needed to distinguish them from the earlier
revisions. In case a revision of an abstract type that is introduced in Release N includes an IE for which the abstract type
already existed in earlier releases, while that IE was not present in the previous revision(s) of the revised abstract type,
the IE name should have a suffix "-rN".

If an abstract type is introduced in a release to extend an already existing type "TypeX", it should get the same name
with a non-critical extension type suffix ("-vXYZext", e.g. "TypeX-v380ext") although in this case the final "–
IEs" suffix is not added. In case the type that is introduced in Release N to extend an already existing type includes one
or more new (nested) types that are extensions of an already existing type, the additional suffix should not be used for
these nested types. In case the type that is introduced in Release N to extend an already existing type includes one or
more new (nested) types, the abovely specified rules for new abstract types apply.

The above naming conventions are further illustrated in the example below:

Test-msg-v380ext-IEs ::= SEQUENCE {
 existingIE-A-v380ext ExistingIE-A-v380ext OPTIONAL,
 newIE-B NewIE-B
}

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

Test-msg-v440ext-IEs::= SEQUENCE {
 newIE-C-r4 NewIE-C OPTIONAL,
 existingIE-D-v440ext ExistingIE-D-v440ext
}

Test-msg-r5-IEs::= SEQUENCE {
 existingIE-E ExistingIE-E
 newUseOfexistingIE-E-rF ExistingIE-F OPTIONAL,
 newIE-G-r5 NewIE-G
 revisionOfExistingIE-H-r5 ExistingIE-H-r5
}

The abovely described naming convention means that some IEs introduced in a later release/ version need not apply a
specific suffix. This means that it will not allways be clear from the name of an IE whether or not backwards
incompatible changes to it are allowed. Using the above naming rules, when changes are done in Release N, only
changes in types with a suffix "-rN" or "-vXYZext" are allowed, in order to avoid conflicts with previous releases.
An exception is Tthe Message type itselfis a special case, which can be changed by replacing the empty SEQUENCEs
with extensions as shown above, and elements having spare values defined, where the spare value can be replaced with
a newly introduced value.

An exception to the above structure can be needed, if there are some elements to be used in a message, which need to be
comprehended even in case of critical extensions (e.g. for error handling procedures). In this case, the elements can be
placed before one of the criticalExtensions CHOICEs, as shown in the example below:

Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {
 importantElements ImportantElements,
 rest-of-message CHOICE {
 r4 SEQUENCE {
 test-msg-r4 Test-msg-r4-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
 }
}

In the above example, the elements in "importantElements" can be comprehended from a UE implementing this
structure, even if a future version of the message including critical extensions is transmitted (i.e. the criticalExtension
branch of the second CHOICE is used).

NOTE 1: The structure presented in this clause and the proposed naming rules are one possibility. Further
possibilities are FFS.

NOTE 2: When non-critical extensions are introduced in a message that does not have yet a criticalExtension
branch, they are introduced in the "Test-msg-v380ext-IEs" type as described above. It is possible, that
after this change, another change introduces a critical extension for the same message, thus defining a
critical extension branch. In this case, the whole message is redefined in the type "Test-msg-rN-IEs", and
care is to be taken to include in this new type also all non-critical extensions that were introduced
previously, in a way that best fits the new structure of the message.

- To be prepared for such cases, it could be beneficial to define in advance the "Test-msg-rN-IEs" whenever a non-
critical extension is introduced, which would be an unused type mirroring the actual structure of the message, as
long as no critical extensions are introduced, and would be used as the basis of the message if a critical extension
is introduced. It is FFS if this concept is feasible, and if it should be introduced in the future.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 6

CR page 6

10.4.3 Recommendations for extensions for further releases in RRC

10.4.3.1 General

When in RRC an information element group is to be extended, the extension cannot be done directly in that IE, but only
in the top level of the message, in the extension IEs of the message structure shown in Example 1. For implementing the
extension, it has therefore to be investigated, in which messages the element to be extended is included.

Depending on criticality of the extension, this will be done by using the criticalExtension CHOICE branch, or the
nonCriticalExtension information element.

The following subclauses provide some recommendations on how to use these elements.

MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- All messageA related information elements are included here.
}

Example 1

10.4.3.2 Critical Extensions

When the extension is a critical one (i.e. the receiver has to reject the whole message, and handle according to the error
procedures of the protocol), the criticalExtension branch of the top-level CHOICE in the message is used. In this case
the message information elements can be updated similar to the tabular, providing a message structure for the new
release's information elements, similar to the updated structure in the tabular description.

Example 2 shows the structure of MessageA presented above, how it would become after a critical extension in
Release 4.

In this example, in the criticalExtensions branch a new information element is defined (MessageA-r4-IEs) which will
contain all messageA specific elements for Release 4, including the extensions in the place they fit naturally according
to the semantics.

Note that in the new structure additional nonCriticalExtensions and criticalExtensions information elements are defined
to allow for further extensions in future releases.

MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 r4 SEQUENCE {
 messageA-r4 MessageA-r4-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the above example. It includes all information
 -- elements used in Release '99 for messageA.
}

MessageA-r4-IEs ::= SEQUENCE {
 -- Here, the updated information elements used for MessageA in Release 4 are included.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 7

CR page 7

}

Example 2

10.4.3.3 Non-critical Extensions

For non-critical extensions (i.e. the receiver shall just ignore the extensions, and use the rest of the message as if the
extensions were not present), the approach is to use the nonCriticalExtensions information element, which is encoded at
the end of the message, allowing backward compatibility.

Before that Backward Compatibility is started for the following Release N+1, the non-critical extension information
elements of the current Release N are added at the end of the message. At the point when Backward Compatibility is
started for the following Release N+1, an optional BIT STRING container should be added before the information
elements of the new release. In the case that further non-critical extension information elements need to be added to
Release N they shall be placed within the BIT STRING container.

For example: As long as Backward Compatibility is not being enforced for Release 4, Release '99 extensions are added
"normally" at the end of a message within a nonCriticalExtensions sequence. Once Backward Compatibility is started
for Release 4, then new Release '99 specific extensions are introduced within an extension container. An extension
container is a "normal" bit string field that encapsulates an extension structure. As a result:

- New extensions can be added both in Release '99 and Release 4 in a backward compatible way; and

- Release 4 systems are able to skip over unknown Release '99 extensions.

The extension container can be viewed as a specific type of non-critical extension and it is included in the same way. If
the extension container is added to Release N before that Backward Compatibility has started for Release N+1, further
non-critical extensions to Release N should not be included in the container, but should be placed after it, using the
usual mechanism. In this way the extension container is not used until necessary, and therefore the corresponding length
field overhead is not incurred unnecessarily.

The structure of the message of the example above is shown in Example 3 for Release '99 and 4 messages.

Examples for special non-critical extensions and MessageA-v440ext-IEs are given in the following subclauses.

-- This shows the message structure in Release '99 (including one non-critical extension)
-- before backward compatibility is started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

-- This shows the Release '99 message structure once backward compatibility
-- has been started for Release 4.
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 8

CR page 8

 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backward compatibility was started for Release 4.
}

-- This shows the structure of the Release 4 message
-- (including one Release 4 non-critical extension).
MessageA ::= CHOICE {
 r3 SEQUENCE {
 messageA-r3 MessageA-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 messageA-v380ext MessageA-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 messageA-r3-add-ext BIT STRING
 (CONTAINING MessageA-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 messageA-v440ext MessageA-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 criticalExtensions SEQUENCE {}
}

MessageA-r3-IEs ::= SEQUENCE {
 -- This is not changed compared to the same IE in Release '99. It includes all information
 -- elements used in Release '99 for MessageA.
}

MessageA-v380ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs.
}

MessageA-r3-add-ext-IEs :: = SEQUENCE {
 -- Here are information elements added to Release '99 as extensions to the information
 -- contained in MessageA-r3-IEs after backward compatibility was started for Release 4.
}

MessageA-v440ext-IEs ::= SEQUENCE {
 -- Here are information elements added to Release 4 as extensions to the information
 -- contained in MessageA-r3-IEs and MessageA-v380ext-IEs.
}

Example 3

10.4.3.4 Examples of non-critical extensions

10.4.3.4.1 Addition of a separate IE

If the extension is the addition of an information element (not inside a CHOICE, SEQUENCE OF, SET OF etc.), this
new element can be directly included in MessageA-v440ext-IEs.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 9

CR page 9

Example4 shows how the MessageA is extended to include a new element, "element3".

MessageA-r3-IEs ::= SEQUENCE {
 element1 Element1,
 element2 Element2
}

MessageA-v440ext-IEs ::= SEQUENCE {
 element3 Element3-r4
}

Example 4

10.4.3.4.2 Addition of an IE to a structured group

If the extension is the addition of an information element inside a CHOICE, SEQUENCE OF, etc. (meaning that the
information element can be absent or present more than once, depending on some condition), the structure of the
original message should be duplicated in MessageA-v440ext-IEs using only the elements relevant to the extension
(usually the CHOICEs, SEQUENCE OFs, etc.), and a comment should be included to indicate that the two structures
should be used consistently (e.g. when a CHOICE is duplicated, the same branch should be followed in both places,
when a SEQUENCE OF is duplicated, the number of occurrences should be the same etc.).

This is illustrated in Example5, where a new element, "element1a-3", has to be included inside the "choice1b" branch of
the "choice1" CHOICE. Here "choice1" is included again in MessageA-v440ext-IEs, and "element1a-3" is included
there in the appropriate branch.

MessageA-r3-IEs ::= SEQUENCE {
-- For the "choice1b" branch of "choice1", an additional information element is
-- defined in MessageA-v440ext-IEs ("element1a-3").
 choice1 CHOICE {
 choice1a SEQUENCE {
 element1a-1 Element1a-1
 },
 choice1b SEQUENCE {
 element1a-2 Element1a-2
 }
 }
}

MessageA-v440ext-IEs ::= SEQUENCE {
-- In the following CHOICE the same branch shall be used as in choice1 in MessageA-r3-IEs.
 choice1 CHOICE {
 choice1a NULL,
 choice1b SEQUENCE {
 element1a-3 Element1a-3-r4
 }
 }
}

Example 5

10.4.3.4.3 Addition of a new CHOICE group

If the extension consists of moving some existing information elements inside a newly created CHOICE, the new
branches of the created CHOICE should be included in MessageA-v440ext-IEs, and the CHOICE marked OPTIONAL,
where absence means that the old elements are used. If the CHOICE is present, the old elements should be set to some
default values, in order for older equipment to be understood, and new equipment should ignore the information therein.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 10

CR page 10

This is illustrated in Example 6, where "element1" is to be moved inside the branch "choice1a" of a new CHOICE
("choice1").

MessageA-r3-IEs ::= SEQUENCE {
-- The contents of "element1" shall be ignored, if in "MessageA-v440ext-IEs" the branch
-- "choice1b" of the CHOICE "choice1" is used.
 element1 Element1,
 element2 Element2
}

MessageA-v440ext-IEs ::= SEQUENCE {
 choice1 CHOICE {
 choice1a SEQUENCE {},
 choice1b SEQUENCE {
 element3 Element3-r4
 }
 }
}

Example 6

10.4.3.4.4 Extension of value range

If the value range of an element is to be extended, an element including the new values should be defined in MessageA-
v440ext-IEs. If one of the new values is to be used, the already existing element from Release '99 should be set to some
defined value (or be absent if it was OPTIONAL), in order for older equipment to work properly, and the new value
should be signalled in the new information element.

In Example 7, "element1" is extended to have a range (0..15).

MessageA-r3-IEs ::= SEQUENCE {
-- "element1" shall be ignored if "element1" in MessageA-v440ext-IEs is present, and the
-- value of that element used instead.
 element1 INTEGER (0..7)
 element2 Element2
}

MessageA-v440ext-IEs ::= SEQUENCE {
 element1 INTEGER (0..15) OPTIONAL
}

Example 7

10.4.3.4.5 Replacement of a spare value with a new element

If a new value is to be included in an IE of type ENUMERATED, for which spare values were defined in the previous
version, those spare values can be replaced with the new values.

If more new values are needed, than spare values included in the previous version, one spare value can be replaced by a
special extension value (called e-new in example 8). If that value is used, a new element in the nonCriticalExtension
part (element1-new) will define the new values, as shown in Example 8.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 11

CR page 11

-- In the previous version, MessageA-r3-IEs was defined:
MessageA-r3-IEs ::= SEQUENCE {
 element1 ENUMERATED { e1, e2, spare1, spare2 }
}

-- Now three new values are needed for element1: e3, e4 and e5. MessageA-r3-IEs is redefined:
MessageA-r3-IEs ::= SEQUENCE {
-- If the following has the value e-new, the actual value of element1 is defined in
-- element1-new included in MessageA-r4-ext-IEs
 element1 ENUMERATED { e1, e2, e3, e-new }
}

MessageA-r4-ext-IEs ::= SEQUENCE {
-- the following shall be present, if element1 in MessageA-r3-IEs has the value e-new.
 element1-new ENUMERATED { e4, e5, spare1, spare2 } OPTIONAL
}

Example 8

If a spare value is included in a CHOICE, and that has to be replaced with a new information element and an
appropriate type in the new version, the name of the element replaces the spare name in the CHOICE, but the type
cannot be replaced, because that would lead to incompatibilities. Instead, the new type is included in the
nonCriticalExtension part of the message, as shown in Example 9.

-- In the previous version, MessageA-r3-IEs was defined:
MessageA-r3-IEs ::= SEQUENCE {
 element1 CHOICE {
 e1 E1,
 e2 E2,
 spare NULL
 }
}

-- Now a new option is needed for the element1 CHOICE: e3 with type E3.
-- MessageA-r3-IEs is redefined:
MessageA-r3-IEs ::= SEQUENCE {
-- If element1 has the value e3, the value of e3 is specified in the element e3
-- included in MessageA-r4-ext-IEs.
 element1 CHOICE {
 e1 E1,
 e2 E2,
 e3 NULL
 }
}

MessageA-r4-ext-IEs ::= SEQUENCE {
-- the following shall be present, if element1 in MessageA-r3-IEs has the value e3.
 e3 E3 OPTIONAL
}

Example 9

10.4.3.4.6 Introducing new System Information Block Types

In general new message types are introduced by replacing a spare value as described in subclause 10.4.3.4.5. That
subclause also shows that in case there are insufficient spare values available, the last spare value can be replaced by a
special extension value. If that value is used, an additional message type extension IE is included to distinguish between
the additional message types, as shown in Example 10.

DL-CCCH-Message ::= SEQUENCE {
 integrityCheckInfo IntegrityCheckInfo OPTIONAL,
 message DL-CCCH-MessageType
}

DL-CCCH-MessageType ::= CHOICE {
 cellUpdateConfirm CellUpdateConfirm-CCCH,
 rrcConnectionReject RRCConnectionReject,
 rrcConnectionRelease RRCConnectionRelease-CCCH,
 rrcConnectionSetup RRCConnectionSetup,
 uraUpdateConfirm URAUpdateConfirm-CCCH,
 ext1 Ext1Message-CCCH,

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 12

CR page 12

 ext2 Ext2Message-CCCH,
 extension DL-CCCH-MessageTypeExt
}

DL-CCCH-MessageTypeExt ::= CHOICE {
 Ext3 Ext3Message-CCCH,
 spare3 NULL,
 spare2 NULL,
 spare1 NULL
}

Example 10

For system information block types, the "SIB type" information element is also included in each of the segments. If in
this case there are insufficient spare values, the last value can again be used to indicate "extension". If that value is used,
an additional SIB type extension IE is included to distinguish between the additional SIB types. This additional IE is not
included in the segments; it is only included in the scheduling information included in the MIB and/or the SBs.

NOTE: One could include this additional IE in the segments e.g. by changing the SIB-type into a choice as shown
in example 11. This option should not be used since it involves additional overhead (more scarce BCH
bits are needed to indicate the SIB type) and complicates the scheduling (more different SIB data sizes are
to be considered).

FirstSegment ::= SEQUENCE {
 -- Other information elements
 sib-Type SIB-Type,
 seg-Count SegCount,
 sib-Data-fixed SIB-Data-fixed
}

SIB-Type ::= CHOICE {
 MasterInformationBlock NULL,
 systemInformationBlockType1 NULL,
 systemInformationBlockType2 NULL,
 systemInformationBlockType3 NULL,
 systemInformationBlockType4 NULL,
 systemInformationBlockType5 NULL,
 systemInformationBlockType6 NULL,
 systemInformationBlockType7 NULL,
 systemInformationBlockType8 NULL,
 systemInformationBlockType9 NULL,
 systemInformationBlockType10 NULL,
 systemInformationBlockType11 NULL,
 systemInformationBlockType12 NULL,
 systemInformationBlockType13 NULL,
 systemInformationBlockType13-1 NULL,
 systemInformationBlockType13-2 NULL,
 systemInformationBlockType13-3 NULL,
 systemInformationBlockType13-4 NULL,
 systemInformationBlockType14 NULL,
 systemInformationBlockType15 NULL,
 systemInformationBlockType15-1 NULL,
 systemInformationBlockType15-2 NULL,
 systemInformationBlockType15-3 NULL,
 systemInformationBlockType16 NULL,
 systemInformationBlockType17 NULL,
 systemInformationBlockType15-4 NULL,
 systemInformationBlockType18 NULL,
 schedulingBlock1 NULL,
 schedulingBlock2 NULL,
 systemInformationBlockType15-5 NULL,
 ext1 NULL,
 extension SIB-TypeExt
}

SIB-TypeExt ::= CHOICE {
 ext2 NULL,
 spare7 NULL,
 spare6 NULL,
 spare5 NULL,
 spare4 NULL,
 spare3 NULL,
 spare2 NULL,
 spare1 NULL

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 13

CR page 13

}

Example 11 – Not recommended

The addition of new SIB types to the scheduling information is illustrated by example 12. The example shows the
extension of the choice. The example also shows that the information applicable for the extended choice values is
appended at the end of the SIB (in this case the MIB), as a non critical extension.

NOTE: In this example only the number of SIB types is increased; the number of SIBs that can be scheduled (as
reflected in the size of the list in the scheduling information) is not extended.

MasterInformationBlock ::= SEQUENCE {
 mib-ValueTag MIB-ValueTag,
 -- TABULAR: The PLMN identity and ANSI-41 core network information
 -- are included in PLMN-Type.
 plmn-Type PLMN-Type,
 sibSb-ReferenceList SIBSb-ReferenceList,
 vxy0NonCriticalExtensions SEQUENCE {
 masterInformationBlock-vxy0ext MasterInformationBlock-vxy0ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
}

SIBSb-ReferenceList ::= SEQUENCE (SIZE (1..maxSIB)) OF
 SchedulingInformationSIBSb

SchedulingInformationSIBSb ::= SEQUENCE {
 sibSb-Type SIBSb-TypeAndTag,
 scheduling SchedulingInformation
}

SIBSb-TypeAndTag ::= CHOICE {
 sysInfoType1 PLMN-ValueTag,
 sysInfoType2 CellValueTag,
 sysInfoType3 CellValueTag,
 sysInfoType4 CellValueTag,
 sysInfoType5 CellValueTag,
 sysInfoType6 CellValueTag,
 sysInfoType7 NULL,
 sysInfoType8 CellValueTag,
 sysInfoType9 NULL,
 sysInfoType10 NULL,
 sysInfoType11 CellValueTag,
 sysInfoType12 CellValueTag,
 sysInfoType13 CellValueTag,
 sysInfoType13-1 CellValueTag,
 sysInfoType13-2 CellValueTag,
 sysInfoType13-3 CellValueTag,
 sysInfoType13-4 CellValueTag,
 sysInfoType14 NULL,
 sysInfoType15 CellValueTag,
 sysInfoType16 PredefinedConfigIdentityAndValueTag,
 sysInfoType17 NULL,
 sysInfoTypeSB1 CellValueTag,
 sysInfoTypeSB2 CellValueTag,
 sysInfoType15-1 CellValueTag,
 sysInfoType15-2 SIBOccurrenceIdentityAndValueTag,
 sysInfoType15-3 SIBOccurrenceIdentityAndValueTag,
 sysInfoType15-4 CellValueTag,
 sysInfoType18 CellValueTag,
 sysInfoType15-5 CellValueTag,
 ext1 NULL,
 ext2 NULL,
 extension NULL
}

SIBSb-TypeAndTagExt ::= CHOICE {
 ext3 NULL,
 spare7 NULL,
 spare6 NULL,
 spare5 NULL,
 spare4 NULL,
 spare3 NULL,
 spare2 NULL,
 spare1 NULL

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 14

CR page 14

}

MasterInformationBlock-vxy0ext-IEs ::= SEQUENCE {
 extSIBTypeInfoSchedulingInfo-List ExtSIBTypeInfoSchedulingInfo-List OPTIONAL
}

-- For each extended SIB type the value tag information is added at the end
ExtSIBTypeInfoSchedulingInfo-List::= SEQUENCE (SIZE (1..maxSIB)) OF
 ExtSIBTypeInfoSchedulingInfo

ExtSIBTypeInfoSchedulingInfo-List::= SEQUENCE {
 schedulingInfoListIndex INTEGER (1..maxSIB),
 valueTagInfo ValueTagInfo
}

ValueTagInfo ::= CHOICE {
 None NULL.
 sysInfoType2 CellValueTag,
 sysInfoType1 PLMN-ValueTag,
 sysInfoType15-3 SIBOccurrenceIdentityAndValueTag
}

Example 12 – Recommended method

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040301
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 59 ! rev - ! Current version: 4.6.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline for the naming of extensions to the RRC ASN.1

Source: ! RAN WG2

Work item code: ! TEI Date: ! 15/01/2004

Category: ! A Release: ! REL-4
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Currently the REL-4 and REL-5 extensions are not named in a consistent

manner. This is because the guidelines for the naming of extensions to the RRC
ASN.1 are currently neither clear nor complete

Summary of change: ! The is CR introduces a recommendation to be used when performing late

corrections introducing non critical extensions in the RRC messages

Consequences if !
not approved:

There will be no way to achieve consistent naming of extensions to the RRC
ASN.1

Clauses affected: ! 10.4.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: ! The new convention means that some IEs introduced in a later release/ version

need not apply a specific suffix. This means that it will be somewhat more difficult
to track in which release/ version the IE was introduced. This requires some
additional care when applying the backwards compatibility rules. However, since
it has already been common practice to not always use an extension showing the
release/ version suffix, this is not considered to be a problem

How to create CRs using this form:

CR page 2

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.2 Naming convention

The abstract type defining a message provides mechanisms to allow for extending the message in future releases:

- For critical extensions, this is done by defining the message as a CHOICE of two alternatives, one being the
intended message structure, and the other being an empty SEQUENCE named "criticalExtensions".

- For non-critical extensions, this is done by defining an OPTIONAL element named "nonCriticalExtensions" of
type "SEQUENCE {}" at the end of the message definition.

When extensions are introduced, this is done by replacing one of the empty SEQUENCEs by a new structure, that
includes a new type containing the message extensions, and the same extension mechanism recursively for further
extensions.

For critical extensions the new elements introduced to specify the extensions should be grouped together in an element
with a name showing the release in which the extension was made, and this should be the same as for the new message
root. For this naming, "r3" is used for Release '99, "r4" for Release 4, "r5" for Release 5 and so on.

For non-critical extensions the new elements introduced to specify the extensions should be grouped together in an
element with a name showing the version of the specification where this extension will first be included, e.g. if the
version of the specification being corrected is v3.7.0, then the suffix added to the name will be -v380ext (i.e. the next
version).

If non-critical extensions for two different roots happen to be identical in contents, their types are still named
differently, possibly with the second being declared as synonymous to the first.

An example is given below to illustrate these principles, on the message named "Test-msg".

-- In Release '99, the Test-msg is defined as following:
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}
-- A later correction to Release '99 adds a non-critical extension in v3.8.0
-- of the specification
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}
-- The Test-msg gets the following structure, if only a non-critical
-- extensions is introduced for Release 4 in v4.4.0 of the specification.
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 test-msg-r3-add-ext BIT STRING
 (CONTAINING Test-msg-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 test-msg-v440ext Test-msg-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}

-- In Release 5, the Test msg gets the following structure when a critical
-- extension is added
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 test-msg-r3-add-ext BIT STRING
 (CONTAINING Test-msg-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 test-msg-v440ext Test-msg-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 r5 SEQUENCE {
 test-msg-r5 Test-msg-r5-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
}

Critical extensions in Release N in message "Test-msg" should be included in the type "Test-msg-rN-IEs" (N=3
is used for Release '99).

If an abstract type is introduced in Release N when new elements are included in an extension, it should have a suffix "-
rN". For Release '99 types, no such suffix is used. In case the type that is introduced in Release N includes one or more
new (nested) types, the additional suffix need not be used for these nested types. In case the type that is introduced in
Release N includes one or more revisions of exixting types, the suffix is needed to distinguish them from the earlier
revisions. In case a revision of an abstract type that is introduced in Release N includes an IE for which the abstract type
already existed in earlier releases, while that IE was not present in the previous revision(s) of the revised abstract type,
the IE name should have a suffix "-rN".

If an abstract type is introduced in a release to extend an already existing type "TypeX", it should get the same name
with a non-critical extension type suffix ("-vXYZext", e.g. "TypeX-v380ext") although in this case the final "–
IEs" suffix is not added. In case the type that is introduced in Release N to extend an already existing type includes one
or more new (nested) types that are extensions of an already existing type, the additional suffix should not be used for
these nested types. In case the type that is introduced in Release N to extend an already existing type includes one or
more new (nested) types, the abovely specified rules for new abstract types apply.

The above naming conventions are further illustrated in the example below:

Test-msg-v380ext-IEs ::= SEQUENCE {
 existingIE-A-v380ext ExistingIE-A-v380ext OPTIONAL,
 newIE-B NewIE-B
}

Test-msg-v440ext-IEs::= SEQUENCE {
 newIE-C-r4 NewIE-C OPTIONAL,
 existingIE-D-v440ext ExistingIE-D-v440ext
}

Test-msg-r5-IEs::= SEQUENCE {
 existingIE-E ExistingIE-E
 newUseOfexistingIE-E-rF ExistingIE-F OPTIONAL,
 newIE-G-r5 NewIE-G
 revisionOfExistingIE-H-r5 ExistingIE-H-r5

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

}

The abovely described naming convention means that some IEs introduced in a later release/ version need not apply a
specific suffix. This means that it will not allways be clear from the name of an IE whether or not backwards
incompatible changes to it are allowed. Using the above naming rules, when changes are done in Release N, only
changes in types with a suffix "-rN" or "-vXYZext" are allowed, in order to avoid conflicts with previous releases.
An exception is tThe Message type itselfis a special case, which can be changed by replacing the empty SEQUENCEs
with extensions as shown above, and elements having spare values defined, where the spare value can be replaced with
a newly introduced value.

An exception to the above structure can be needed, if there are some elements to be used in a message, which need to be
comprehended even in case of critical extensions (e.g. for error handling procedures). In this case, the elements can be
placed before one of the criticalExtensions CHOICEs, as shown in the example below:

Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {
 importantElements ImportantElements,
 rest-of-message CHOICE {
 r4 SEQUENCE {
 test-msg-r4 Test-msg-r4-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
 }
}

In the above example, the elements in "importantElements" can be comprehended from a UE implementing this
structure, even if a future version of the message including critical extensions is transmitted (i.e. the criticalExtension
branch of the second CHOICE is used).

NOTE 1: The structure presented in this clause and the proposed naming rules are one possibility. Further
possibilities are FFS.

NOTE 2: When non-critical extensions are introduced in a message that does not have yet a criticalExtension
branch, they are introduced in the "Test-msg-v380ext-IEs" type as described above. It is possible, that
after this change, another change introduces a critical extension for the same message, thus defining a
critical extension branch. In this case, the whole message is redefined in the type "Test-msg-rN-IEs", and
care is to be taken to include in this new type also all non-critical extensions that were introduced
previously, in a way that best fits the new structure of the message.

- To be prepared for such cases, it could be beneficial to define in advance the "Test-msg-rN-IEs" whenever a non-
critical extension is introduced, which would be an unused type mirroring the actual structure of the message, as
long as no critical extensions are introduced, and would be used as the basis of the message if a critical extension
is introduced. It is FFS if this concept is feasible, and if it should be introduced in the future.

CR page 1

3GPP TSG RAN WG2#40 Tdoc !R2-040302
Sophia Antipolis, France, 12th – 16th January 2004

CR-Form-v7

CHANGE REQUEST

! 25.921 CR 60 ! rev - ! Current version: 5.3.0
!

For HELP on using this form, see bottom of this page or look at the pop-up text over the ! symbols.

Proposed change affects: UICC apps! ME Radio Access Network Core Network

Title: ! Guideline for the naming of extensions to the RRC ASN.1

Source: ! RAN WG2

Work item code: ! TEI Date: ! 15/01/2004

Category: ! A Release: ! REL-5
 Use one of the following categories:

F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.

Use one of the following releases:
2 (GSM Phase 2)
R96 (Release 1996)
R97 (Release 1997)
R98 (Release 1998)
R99 (Release 1999)
Rel-4 (Release 4)
Rel-5 (Release 5)
Rel-6 (Release 6)

Reason for change: ! Currently the REL-4 and REL-5 extensions are not named in a consistent

manner. This is because the guidelines for the naming of extensions to the RRC
ASN.1 are currently neither clear nor complete

Summary of change: ! The is CR introduces a recommendation to be used when performing late

corrections introducing non critical extensions in the RRC messages

Consequences if !
not approved:

There will be no way to achieve consistent naming of extensions to the RRC
ASN.1

Clauses affected: ! 10.4.2

 Y N
Other specs ! X Other core specifications !
affected: X Test specifications
 X O&M Specifications

Other comments: ! The new convention means that some IEs introduced in a later release/ version

need not apply a specific suffix. This means that it will be somewhat more difficult
to track in which release/ version the IE was introduced. This requires some
additional care when applying the backwards compatibility rules. However, since
it has already been common practice to not always use an extension showing the
release/ version suffix, this is not considered to be a problem

How to create CRs using this form:

CR page 2

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm.
Below is a brief summary:

1) Fill out the above form. The symbols above marked ! contain pop-up help information about the field that they are
closest to.

2) Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word
"revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be
downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name
with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3) With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of
the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to
the change request.

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 3

CR page 3

10.4.2 Naming convention

The abstract type defining a message provides mechanisms to allow for extending the message in future releases:

- For critical extensions, this is done by defining the message as a CHOICE of two alternatives, one being the
intended message structure, and the other being an empty SEQUENCE named "criticalExtensions".

- For non-critical extensions, this is done by defining an OPTIONAL element named "nonCriticalExtensions" of
type "SEQUENCE {}" at the end of the message definition.

When extensions are introduced, this is done by replacing one of the empty SEQUENCEs by a new structure, that
includes a new type containing the message extensions, and the same extension mechanism recursively for further
extensions.

For critical extensions the new elements introduced to specify the extensions should be grouped together in an element
with a name showing the release in which the extension was made, and this should be the same as for the new message
root. For this naming, "r3" is used for Release '99, "r4" for Release 4, "r5" for Release 5 and so on.

For non-critical extensions the new elements introduced to specify the extensions should be grouped together in an
element with a name showing the version of the specification where this extension will first be included, e.g. if the
version of the specification being corrected is v3.7.0, then the suffix added to the name will be -v380ext (i.e. the next
version).

If non-critical extensions for two different roots happen to be identical in contents, their types are still named
differently, possibly with the second being declared as synonymous to the first.

An example is given below to illustrate these principles, on the message named "Test-msg".

-- In Release '99, the Test-msg is defined as following:
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}
-- A later correction to Release '99 adds a non-critical extension in v3.8.0
-- of the specification
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}
-- The Test-msg gets the following structure, if only a non-critical
-- extensions is introduced for Release 4 in v4.4.0 of the specification.
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 test-msg-r3-add-ext BIT STRING
 (CONTAINING Test-msg-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 test-msg-v440ext Test-msg-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 4

CR page 4

 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {}
 }
}

-- In Release 5, the Test msg gets the following structure when a critical
-- extension is added
Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 laterNonCriticalExtensions SEQUENCE {
 -- Container for additional Release '99 extensions
 test-msg-r3-add-ext BIT STRING
 (CONTAINING Test-msg-r3-add-ext-IEs) OPTIONAL,
 v440nonCriticalExtensions SEQUENCE {
 test-msg-v440ext Test-msg-v440ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 } OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions CHOICE {
 r5 SEQUENCE {
 test-msg-r5 Test-msg-r5-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
}

Critical extensions in Release N in message "Test-msg" should be included in the type "Test-msg-rN-IEs" (N=3
is used for Release '99).

If an abstract type is introduced in Release N when new elements are included in an extension, it should have a suffix "-
rN". For Release '99 types, no such suffix is used. In case the type that is introduced in Release N includes one or more
new (nested) types, the additional suffix need not be used for these nested types. In case the type that is introduced in
Release N includes one or more revisions of exixting types, the suffix is needed to distinguish them from the earlier
revisions. In case a revision of an abstract type that is introduced in Release N includes an IE for which the abstract type
already existed in earlier releases, while that IE was not present in the previous revision(s) of the revised abstract type,
the IE name should have a suffix "-rN".

If an abstract type is introduced in a release to extend an already existing type "TypeX", it should get the same name
with a non-critical extension type suffix ("-vXYZext", e.g. "TypeX-v380ext") although in this case the final "–
IEs" suffix is not added. In case the type that is introduced in Release N to extend an already existing type includes one
or more new (nested) types that are extensions of an already existing type, the additional suffix should not be used for
these nested types. In case the type that is introduced in Release N to extend an already existing type includes one or
more new (nested) types, the abovely specified rules for new abstract types apply.

The above naming conventions are further illustrated in the example below:

Test-msg-v380ext-IEs ::= SEQUENCE {
 existingIE-A-v380ext ExistingIE-A-v380ext OPTIONAL,
 newIE-B NewIE-B
}

Test-msg-v440ext-IEs::= SEQUENCE {
 newIE-C-r4 NewIE-C OPTIONAL,
 existingIE-D-v440ext ExistingIE-D-v440ext
}

Test-msg-r5-IEs::= SEQUENCE {
 existingIE-E ExistingIE-E
 newUseOfexistingIE-E-rF ExistingIE-F OPTIONAL,
 newIE-G-r5 NewIE-G
 revisionOfExistingIE-H-r5 ExistingIE-H-r5

3GPP TS aa.bbb vX.Y.Z (YYYY-MM) CR page 5

CR page 5

}

The abovely described naming convention means that some IEs introduced in a later release/ version need not apply a
specific suffix. This means that it will not allways be clear from the name of an IE whether or not backwards
incompatible changes to it are allowed. Using the above naming rules, when changes are done in Release N, only
changes in types with a suffix "-rN" or "-vXYZext" are allowed, in order to avoid conflicts with previous releases.
An exception is tThe Message type itselfis a special case, which can be changed by replacing the empty SEQUENCEs
with extensions as shown above, and elements having spare values defined, where the spare value can be replaced with
a newly introduced value.

An exception to the above structure can be needed, if there are some elements to be used in a message, which need to be
comprehended even in case of critical extensions (e.g. for error handling procedures). In this case, the elements can be
placed before one of the criticalExtensions CHOICEs, as shown in the example below:

Test-msg ::= CHOICE {
 r3 SEQUENCE {
 test-msg-r3 Test-msg-r3-IEs,
 v380nonCriticalExtensions SEQUENCE {
 test-msg-v380ext Test-msg-v380ext-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 } OPTIONAL
 },
 later-than-r3 SEQUENCE {
 rrc-TransactionIdentifier RRC-TransactionIdentifier,
 criticalExtensions SEQUENCE {
 importantElements ImportantElements,
 rest-of-message CHOICE {
 r4 SEQUENCE {
 test-msg-r4 Test-msg-r4-IEs,
 nonCriticalExtensions SEQUENCE {} OPTIONAL
 },
 criticalExtensions SEQUENCE {}
 }
 }
 }
}

In the above example, the elements in "importantElements" can be comprehended from a UE implementing this
structure, even if a future version of the message including critical extensions is transmitted (i.e. the criticalExtension
branch of the second CHOICE is used).

NOTE 1: The structure presented in this clause and the proposed naming rules are one possibility. Further
possibilities are FFS.

NOTE 2: When non-critical extensions are introduced in a message that does not have yet a criticalExtension
branch, they are introduced in the "Test-msg-v380ext-IEs" type as described above. It is possible, that
after this change, another change introduces a critical extension for the same message, thus defining a
critical extension branch. In this case, the whole message is redefined in the type "Test-msg-rN-IEs", and
care is to be taken to include in this new type also all non-critical extensions that were introduced
previously, in a way that best fits the new structure of the message.

- To be prepared for such cases, it could be beneficial to define in advance the "Test-msg-rN-IEs" whenever a non-
critical extension is introduced, which would be an unused type mirroring the actual structure of the message, as
long as no critical extensions are introduced, and would be used as the basis of the message if a critical extension
is introduced. It is FFS if this concept is feasible, and if it should be introduced in the future.

	RP-040098.doc
	25921CR049.doc
	25921CR050.doc
	25921CR051.doc
	25921CR052R1.doc
	25921CR053R2.doc
	25921CR054R2.doc
	25921CR055.doc
	25921CR056.doc
	25921CR057.doc
	25921CR058.doc
	25921CR059.doc
	25921CR060.doc

