Title:
Source: WI Editor (Lucent Technologies)
Agenda Item:
9.1.3

Document for: Information

The TR version attached was presented in RAN1\#31 (R1-030347) as the output of SCM ad hoc. RAN1 decided to forward it to RAN\#19 to be presented for approval but following some email discussions on the reflector and within the SCM ad hoc it was agreed that this TR would be presented to RAN\#19 for information.

Presentation of Specification to TSG or WG

Presentation to: TSG RAN Meeting \#19

Document for presentation: TR 25.996, Version 6.0.0
Presented for: Information

Abstract of document:

This document is part of the RAN WI 'Multiple Input Multiple Output work item" and contains the Spatial Channel Model which were address in the SCM ad hoc as part of the harmonisation meeting between 3GPP and 3GPP2.

Based on the last SCM ad hoc some minor changes are still needed before approving the document.

Outstanding Issues:

SCM ad hoc will finish its work by the end of March and agree a final version.

3GPP TR 25.996 v 6.0.0(2003-05)

Technical Report

3rd Generation Partnership Project; Technical Specification Group Radio Access Network; Spatial Channel Model for Multiple-Input Multiple Output Simulations (Release 6)

[^0]$\frac{\text { 3GPP support office address }}{\text { 650 Route des Lucioles - Sophia Antipolis }}$ Valbonne - FRANCE
Tel.: +33492944200 Fax: +33493654716
Internet
http://www.3gpp.org The copyright and the foregoing restriction extend to reproduction in all media.
CONTENTS
Foreword
1.1 Scope
1.2 References.
1.3 Definitions, symbols, and abbreviations.
2 Spatial Channel Model for Calibration Purposes.
2.1 Purpose
9 2.2 Link Level Channel Model Parameter Summary
10 2.3 Spatial Parameters per Path.
$11 \quad 2.4 \mathrm{BS}$ and MS Array Topologies
12 2.5 Spatial Parameters for the BS
${ }^{13} \quad$ 2.5.1 BS Antenna Pattern
$14 \quad$ 2.5.2 Per Path BS Angle Spread (AS) 1
15 2.5.3 Per Path BS Angle of Arrival. 1
16 2.5.4 Per Path BS Power Azimuth Spectrum. 1
2.6 Spatial Parameters for the MS 1
18 2.6.1 MS Antenna Pattern 1
19 2.6.2 Per Path MS Angle Spread (AS) 1
${ }_{20} \quad$ 2.6.3 Per Path MS Angle of Arrival 1
21 2.6.4 Per Path MS Power Azimuth Spectrum. 1
22 2.6.5 MS Direction of Travel.. 1
${ }_{23} \quad$ 2.6.6 Per Path Doppler Spectrum. 1
24 2.7 Generation of Channel Model. 1
25 2.8 Calibration and Reference Values. 1
3 Spatial Channel Model for simulations. 1
$27 \quad$ 3.1 General definitions, parameters, and assumptions. 1
28 3.2 Environments1
3.3 Generating User Parameters2
30 3.3.1 Generating user parameters for urban macrocell and suburban macrocellenvironments .2
32 3.3.2 Generating user parameters for urban microcell environments 2
3.4 Generating channel coefficients2
3.5 Optional system simulation features.2
3 3.5.1 Polarized arrays 2
4 3.5.2 Far scatterer clusters 2
5 3.5.3 Line of sight.2
3.5.4 Urban canyon.2
7 3.6 Correlation Between Channel Parameters 3
8 3.7 Modeling intercell interference 3
$9 \quad$ 3.8 System Level Calibration.3
10 Annex A: MMSE receiver description 4
11 Annex B: Change history 4

FOREWORD

This Technical Report has been produced by the 3rd Generation Partnership Project (3GPF
The contents of the present document are subject to continuing work within the TSG ans change following formal TSG approval. Should the TSG modify the contents of the pr document, it will be re-released by the TSG with an identifying change of release date a increase in version number as follows:

Version x.y.z
where:
x the first digit:
1 presented to TSG for information;
2 presented to TSG for approval;
3 or greater indicates TSG approved document under change control.
y the second digit is incremented for all chan ges of substance, i.e. technical enhancements, correction updates, etc.
z the third digit is incremented when editorial only changes have been incorporated in the document

1.1 Scope

This document details the current discussion of the combined 3GPP-3GPP2 Spatial Ch Ad-hoc group. A similar document, developed independently in the 3GPP2 Spatial Ch Modeling Ad-hoc group, was used for reference.
The scope of the 3GPP-3GPP2 SCM AHG is to develop and specify parameters and me associated with the spatial channel modeling that are common to the needs of the 3GP 3GPP2 organizations (harmonization). The scope includes development of specifications fr

System level evaluation.

Within this category, a list of four focus areas are identified, however the emphasis of the AHG work is on items a \& b.
a. Physical parameters (e.g. power delay profiles, angle spreads, dependencies be parameters)
b. System evaluation methodology.
c. Antenna arrangements, reference cases and definition of minimum requirements.
d. Some framework (air interface) dependent parameters.

Link level evaluation.

The link level models are defined only for calibration purposes. It is a common view with group that the link level simulation assumptions will not be used for evaluation comparison of proposals.

1.2 References

The following documents contain provisions which, through reference in this text, cons provisions of the present document.
?? References are either specific (identified by date of publication, edition number, vers number, etc.) or non-specific.
?? For a specific reference, subsequent revisions do not apply.
?? For a non-specific reference, the latest version applies. In the case of a reference to 3GPP document (including a GSM document), a non-specific reference implicitly ref the latest version of that document in the same Release as the present document.
[1] L. Greenstein, V. Erceg, Y. S. Yeh, M. V. Clark, "A New Path-Gain/Delay-Spread Propa Model for Digital Cellular Channels," IEEE Transactions on Vehicular Technology, VO] NO.2, May 1997, pp.477-485.
[2] E. Sousa, V. Jovanovic, C. Daigneault, "Delay Spread Measurements for the Digital Ct 14 Channel in Toronto," IEEE Transactions on Vehicular Technology, VOL. 43, NO.4, Nov 15 pp.837-847.
16 [3] L. M. Correia, Wireless Flexible Personalized Communications, COST 259: European (17 operation in Mobile Radio Research, Chichester: John Wiley \& Sons, 2001.

18 1.3 Definitions, symbols, and abbreviations
19 In this document the following are terms that are co mmonly used interchangeably an ${ }_{20}$ equivalent. To promote consistency, the term on the left will be preferred in this doce ${ }_{21}$ unless otherwise stated.
$22 \quad$ MS = Mobile Station = UE = User Equipment $=$ Terminal $=$ Subscriber Unit
${ }_{23} \quad \mathrm{BS}=$ Base Station $=$ Node $-\mathrm{B}=\mathrm{BTS}$
24 AS = Angle Spread = Azimuth Spread = ? ${ }_{A S}$
$25 \quad \mathrm{DS}=$ delay spread $=$? ${ }_{D S}$
${ }_{26} \quad$ LN $=$ lognormal shadow fading $=$? ${ }_{\text {AS }}$
${ }_{28} \quad$ Path Component $=$ Sub-ray
${ }^{29}$ PAS = Power Azimuth Spectrum
$30 \quad$ DoT $=$ Direction of Travel
${ }_{31}$ AoA = Angle of Arrival
32 AoD = Angle of Departure
$33 \quad$ PDP $=$ Power Delay Profile

12 SPATIAL CHANNEL MODEL FOR CALIBRATION PURPOSES

2 This section describes physical parameters for link level modeling for the purpc 3 calibration.

$4 \quad$ 2.1 Purpose

5 Link level simulations alone will not be used for algorithm comparison because they reflec 6 one snapshot of the channel behavior. Furthermore, they do not account for system attri 7 such as scheduling and HARQ. For these reasons, link level simulations do not allo 8 conclusions about the typical behavior of the system. Only system level simulations 9 achieve that. Therefore we require system level simulations for the final algorithm compar

10 Link level simulations will not be used to compare performance of different algorithms. R ${ }_{11}$ they will be used only for calibration, which is the comparison of performance results 12 different implementations of a given algorithm.

${ }^{13} \quad$ 2.2 Link Level Channel Model Parameter Summary

14 The table below summarizes the physical parameters to be used for link level modeling.

Model		Case I		Case II		Case III		Case IV
Corresponding 3GPP Designator*		Case B		Case C		Case D		Case A
Corresponding 3GPP2 Designator*		Model A, D, E		Model C		Model B		Model F
PDP		Modified Pedestrian A		Vehicular A		Pedestrian B		Single Path
\# of Paths		1) $4+1(\mathrm{LOS}$ on, $\mathrm{K}=$ 6dB) 2) 4 (LOS off)				6		1
000000000000000	π む	$\begin{array}{ll} \text { 1) } & 0.0 \\ \text { 2) } & -\operatorname{Inf} \end{array}$	0	0,0	0	0.0	0	00
		$\begin{array}{ll} \text { 1) } & -6.51 \\ \text { 2) } & 0.0 \end{array}$	0	-1.0	310	-0.9	200	
		1) -16.21 2) $\quad-9.7$ 1) -25.71 2) -19.2	$\begin{aligned} & 110 \\ & 190 \end{aligned}$	-9.0 -10.0	$\begin{gathered} 710 \\ 1090 \end{gathered}$	-4.9 -8.0	800 1200	
		1) -29.31 2) -22.8	410	-15.0	1730	-7.8	2300	
				-20.0	2510	-23.9	3700	
Speed (km/h)		1) 3 $3,30,120$ 2) 30,120				3, 30, 120		3
B00000000	Topology	Reference 0.5?		Refere	e 0.5 ?	Refer	ce 0.5 ?	N/A
	PAS	1) LOS on: Fixed AoA for LOS component, remaining power has 360 degree uniform PAS 2) LOS off: PAS with a Lapacian distribution, RMS angle spread of 35 degrees per path		RMS angle spread of 35 degrees per path with a Lapacian distribution Or 360 degree uniform PAS.		RMS angle spread of 35 degrees per path with a Lapacian distribution		N/A
	DoT (degrees)							N/A

Model		Case I	Case II	Case III	Case IV
	AoA (degrees)	22.5 (LOS component) 67.5 (all other paths)	67.5 (all paths)	22.5 (odd numbered paths), -67.5 (even numbered paths)	N/A
IOIn0000000000	Topology PAS	0.5 ?-spacing or 4 ?-spacing or 10 ?-spacing Lapacian distribution with RMS angle spread of 2 degrees or 5 degrees, per path depending on AoA/AoD			$\begin{aligned} & \text { N/A } \\ & \text { N/A } \end{aligned}$
	AoD/AoA (degrees)	$50^{?}$ for $2^{?}$ RMS angle spread per path $20^{?}$ for $5{ }^{?}$ RMS angle spread per path			N/A

Table 2-1. Summary of suggested SCM link level parameters for calibration purpose *Designators correspond to channel models previously proposed in 3GPP and 3GPP2 a groups.

2.3 Spatial Parameters per Path

Each resolvable path is characterized by its own spatial channel parameters (angle sF angle of arrival, power azimuth spectrum). All paths are assumed independent. assumptions apply to both the BS and the MS specific spatial parameters. The assumptions are in effect only for the Link Level channel model.

2.4 BS and MS Array Topologies

The spatial channel model should allow any type of antenna configuration to be sel although details of a given configuration must be shared to allow others to reproduce the and verify the results.
Calibrating simulators at the link level requires a common set of assumptions includ specific set of antenna topologies to define a baseline case. At the MS, the reference elf spacing is 0.5 ?. At the BS , three values for reference element spacing are defined: 0.5 ? , 4 10?.
2.5 Spatial Parameters for the BS
2.5.1 BS Antenna Pattern

19 The 3-sector antenna pattern used for each sector, Reverse Link and Forward Link, is p shown in Figure 2-3, and the boresight pointing direction defined by Figure 2-4. boresight is defined to be the direction to which the antenna shows the maximum gain gain specified for the 3 -sector 70° antenna is 14 dBi . By reducing the beamwidth by half t the corresponding gain will be 3 dB higher resulting in 17 dBi . The antenna pattern sho targeted for diversity oriented implementations (i.e. large inter-element spacings) beamforming applications that require small spacings, alternative antenna designs may h be considered leading to a different antenna pattern.

Figure 2-1. Antenna pattern for 3 -sector cells

Figure 2-2. Boresight pointing direction for 3-sector cells

Figure 2-3. Antenna pattern for 6-sector cells

Figure 2-4. Boresight pointing direction for 6-sector cells

2.5.2 Per Path BS Angle Spread (AS)

The base station per path angle spread is defined as the root mean square (RMS) of angle which an arriving path's power is received by the base station array. The individual powers are defined in the temporal channel model described in Table 2-1. Two values angle spread (each associated with a corresponding mean angle of arrival, AoA) are consic

- AS: 2 degrees at AoA 50 degrees
- AS: 5 degrees at AoA 20 degrees

It should be noted that attention should be paid when comparing the link level perforr between the two angle spread values since the BS antenna gain for the two corresponding will be different. The BS antenna gain is applied to the path powers specified in Table 2-1

2.5.3 Per Path BS Angle of Arrival

The Angle of Arrival (AoA) or Angle of Departure (AoD) is defined to be the mean angle which an arriving or departing path's power is received or transmitted by the BS arra, respect to the boresite. The two values considered are:

- AoA: 50 degrees (associated with the RMS Angle Spread of 2 degrees)
- AoA: 20 degrees (associated with the RMS Angle Spread of 5 degrees)

2.5.4 Per Path BS Power Azimuth Spectrum

The Power Azimuth Spectrum (PAS) of a path arriving at the base station is assumed to Laplacian distribution. For an incoming AOA ? and RMS angle-spread?, the BS per pat value at an angle ? is given by:
$P(?, ?, \bar{?}) ? N_{o} \exp \stackrel{? ?}{?} \stackrel{\sqrt{2} \mid ? ~ ? ~ ? ~ ? ~ ? ~}{?}$? $\stackrel{?}{?} G(?)$
where both angles ? and ? are given with respect to the boresight of the antenna element assumed that all antenna elements' orientations are aligned. Also, P is the average rec power and G is the numeric base station antenna gain described in Section 2.5.1 by

$$
G(?) ? 10^{0.1 A(?)}
$$

Finally, N_{o} is the normalization constant:

$$
N_{o}^{? 1} ? \overbrace{? ? ? ?}^{? ? \bar{?}} \exp \frac{? ? \sqrt{2}|? ? \bar{?}| ?}{?} ?
$$

In the above equation, ? represents path components (sub-rays) of the path power arriv an incoming AoA ? . The distribution of these path components is TBD.

2.6 Spatial Parameters for the MS

2.6.1 MS Antenna Pattern

For each and every antenna element at the MS, the antenna pattern will be assumed directional with an antenna gain of -1 dBi .
2.6.2 Per Path MS Angle Spread (AS)

The MS per path AS is defined as the root mean square (RMS) of angles of an incident 1 power at the MS array. Two values of the path's angle spread are considered:

- AS: 104 degrees (results from a uniform over 360 degree PAS),
- AS: 35 degrees for a Laplacian PAS with a certain path specific Angle of Arrival (Ao

2.6.3 Per Path MS Angle of Arrival

The per path Angle of Arrival (AOA) is defined as the mean of angles of an incident path's at the UE/Mobile Station array with respect to the broadside as shown Figure 2-5.

Figure 2-5. Angle of arrival orientation at the MS.
Three different per path AoA values at the MS are suggested for the cases of a non-ul PAS, see Table 2-1 for details:

- AoA: - 67.5 degrees (associated with an RMS Angle Spread of 35 degrees)
- AoA: +67.5 degrees (associated with an RMS Angle Spread of 35 degrees)
- AoA: +22.5 degrees (associated with an RMS Angle Spread of 35 degrees or with an LOS component)

2.6.4 Per Path MS Power Azimuth Spectrum

4 The Laplacian distribution and the Uniform distribution are used to model the per path 5 Azimuth Spectrum (PAS) at the MS.

The Power Azimuth Spectrum (PAS) of a path arriving at the MS is modeled as ei Laplacian distribution or a uniform over 360 degree distribution. Since an omni direction: antenna gain is assumed, the received per path PAS will remain either Laplacian or un For an incoming AOA ? and RMS angle-spread ?, the MS per path Laplacian PAS value angle ? is given by:
$P(?, ?, \bar{?}) ? N_{o} \exp \stackrel{? \sqrt{2} \mid ? ? \text { ? ? ? }}{?}$?
where both angles ? and ? are given with respect to the boresight of the antenna element assumed that all antenna elements' orientations are aligned. Also, P is the average rec power and N_{o} is the normalization constant:

$$
N_{o}^{? 1} ? ?_{? ? ? ?}^{? ? \mathrm{~T}} \exp ? \frac{? ? \sqrt{2}|? ? ?| ?}{?} ?
$$

In the above equation, ? represents path components (sub-rays) of the path power arriv an incoming AoA ? . The distribution of these path components is TBD.
2.6.5 MS Direction of Travel

The mobile station direction of travel is defined with respect to the broadside of the n antenna array as shown in Figure 2-5.
2.6.6 Per Path Doppler Spectrum

The per path Doppler Spectrum is defined as a function of the direction of travel and th path PAS and AoA at the MS. This should correspond to the per path fading behavior for the correlation-based or ray-based method.

2.7 Generation of Channel Model

The proponent can determine the model implementation. Examples of implementations ir correlation or ray-based techniques.
Outline of methodology, including doppler spectrum filter is required for correlation meth,

2.8 Calibration and Reference Values

For the purpose of link level simulations, reference values of the average correlation are below in Table 2-2. The reference values are provided for the calibration of the simu software and to assist in the resolution of possible errors in the simulation me
implemented. Specifically, the average complex correlation and magnitude of the con correlation is reported between BS antennas and between MS antennas. The spatial para values used are those defined already throughout Section 2.

	Antenna Spacing	AS (degrees)	AOA (degrees)	Correlation (magnitude)	Complex Correlation
BS	0.5 ?	5	20	0.9688	$0.4743+0.84$
	0.5 ?	2	50	0.9975	-0.7367+0.67
	4?	5	20	0.3224	$-0.2144+0.24$
	$\begin{gathered} 4 ? \\ 10 ? \end{gathered}$	$\begin{aligned} & 2 \\ & 5 \\ & \hline \end{aligned}$	$\begin{array}{r} 50 \\ 20 \\ \hline \end{array}$	$\begin{aligned} & 0.8624 \\ & 0.0704 \end{aligned}$	$\begin{aligned} & 0.8025+0.31 \\ & -0.0617+\mathrm{i} 0.0 \\ & \hline \end{aligned}$
	10?	2	50	0.5018	-0.2762-i0.41
MS	$? / 2$	104	0	0.3042	-0.3042
	$? / 2$	35	-67.5	0.7744	-0.6948-i0.3
	$? / 2$	35	22.5	0.4399	$0.0861+0.43$
	?/2	35	67.5	0.7744	$-0.6948+\mathrm{i} 0.3$

Table 2-2. Reference correlation values.

3 SPATIAL CHANNEL MODEL FOR SIMULATIONS

The spatial channel model for use in the system-level simulations is described in this sect As opposed to link simulations which simply consider a single BS transmitting to a singl the system simulations typically consist of multiple cells, BSs, and MSs. Performance m such as throughput and delay are collected over D drops, where a "drop" is defined simulation run for a given number of cells, BSs, and MSs, over a specified number of fr During a drop, the channel undergoes fast fading according to the motion of the MSs. Ch state information is fed back from the MSs to the BSs, and the BSs use schedule determine which user(s) to transmit to. Typically, over a series of D drops, the cell layou locations of the BSs are fixed, but the locations of the MSs are randomly varied a beginning of each drop. To simplify the simulation, only a subset of BSs will actual simulated while the remaining BSs are assumed to transmit with full power. (Gues remain about how to model interfering BS powers.)
The goal of this section is to define the methodology and parameters for generating the s and temporal channel coefficients between a given base and mobile for use in system simulations. For an S element BS array and a U element MS array, the channel coefficier one of N multipath components (note that these components are not necessarily resolvable, meaning that the time difference between successive paths may be less than : period) are given by an S-by- U matrix of complex amplitudes. We denote the channel r for the nth multipath component $(n=1, \ldots, N)$ as $\mathbf{H}_{n}(t)$. It is a function of time t becau:
complex amplitudes are undergoing fast fading governed by the movement of the MS overall procedure for generating the channel matrices consists of three basic steps:

1. Specify an environment, either suburban macro, urban macro, or urban micro (St 3.2).
2. Obtain the parameters to be used in simulations, associated with that environment (S 3.3).
3. Generate the channel coefficients based on the parameters (Section 3.4).

Sections 3.2, 3.3, and 3.4 give the details for the general procedure. Figure 3-1 below pr a roadmap for generating the channel coefficients. (This diagram should be greatly expa and should show which section numbers each of the items is discussed.) Section 3.5 con options for modifying the general procedure. Section 3.6 describes the procedure for gene correlated log normal user parameters used in Section 3.3. Section 3.7 describes the m for accounting for intercell interference. Section 3.8 presents calibration results.

Figure 3-1. Channel model overview for simulations

3.1 General definitions, parameters, and assumptions

The received signal at the MS consists of N time-delayed multipath replicas of the transr signal. These N paths are defined by powers and delays and are chosen randomly accord the channel generation procedure. Each path consists of M subpaths.

Figure 3-2 shows the angular parameters used in the model. The following definitions art used:
$?_{\text {BS }} \quad$ BS antenna array orientation, defined as the difference between the broadside (BS array and the absolute North (N) reference direction.
$?_{B S} \quad$ LOS AoD direction between the BS and MS, with respect to the broadside of th array.
$?_{n, A o D} \quad$ AoD for the nth $(n=1 \ldots N)$ path with respect to the LOS AoD $?_{0}$.

```
\(?_{n, m, A o D}\) Offset for the \(m\) th \((m=1 \ldots M)\) subpath of the \(n\)th path with respect to \(?_{n, A o D}\).
\(?_{n, m, A o D}\) Absolute AoD for the mth \((m=1 \ldots M)\) subpath of the \(n\)th path at the BS with re to the BS broadside.
?
    MS antenna array orientation, defined as the difference between the broadside
        MS array and the absolute North reference direction.
    \(?_{M S} \quad\) Angle between the BS -MS LOS and the MS broadside.
\(?_{n, A o A} \quad\) AoA for the \(n\)th \((n=1 \ldots N)\) path with respect to the LOS AoA \(?_{0, M S}\).
\(?_{n, m, A o A}\) Offset for the \(m\) th \((m=1 \ldots M)\) subpath of the \(n\)th path with respect to \(?_{n, A o A}\).
\(?_{n, m, A o A}\)
    Absolute AoA for the \(m\) th \((m=1 \ldots M)\) subpath of the \(n\)th path at the BS with r \(\epsilon\)
        to the BS broadside.
\(\mathbf{v} \quad \mathrm{MS}\) velocity vector.
\(?_{v} \quad\) Angle of the velocity vector with respect to the MS broadside: \(?_{v}=\arg (\mathbf{v})\).
\(?_{n, m, A o D}\)
\(?_{n, m, A o D}\)
\({ }^{?}{ }_{M S}\)
\(?_{M S}\)
? \(n, A o A\) Angl between the BS -MS LOS and the MS broadside.
? \({ }_{n, m, A o A}\)
\(?_{n, m, A o A}\) to the BS broadside.
\(\mathbf{v} \quad\) MS velocity vector.
\(?_{v} \quad\) Angle of the velocity vector with respect to the MS broadside: \(?_{v}=\arg (\mathbf{v})\).
```

The angles shown in Figure 1 that are measured in a clockwise direction are assumed to negative in value.

Figure 3-2. BS and MS angle parameters

For system level simulation purposes, the fast fading per-path will be evolved in time, alt] bulk parameters including angle spread, delay spread, log normal shadowing, and MS lo will remain fixed during the evaluation of the given MS.

The following are general assumptions made for all simulations, independent of environm

1. Uplink-Downlink Reciprocity: The AoD/AoA values are identical between the uplink downlink.
2. Random path phases between UL, DL are uncorrelated.
3. Mobile-to-mobile shadowing is uncorrelated.
4. The spatial channel model should allow any type of antenna configuration to be sel although details of a given configuration must be shared to allow others to reprodu
model and verify the results. It is intended that the spatial channel model be capa operating on any given antenna array configuration. In order to compare algorit reference antenna configurations based on uniform linear array configurations with (and 10 wavelength inter-element spacing will be used.

3.2 Environments

6 We consider the following three environments.

1. Suburban macrocell (approximately 3 Km distance BS to BS)
2. Urban macrocell (approximately 3 Km distance BS to BS)

9

Channel Scenario	Suburban Macro	Urban Macro	Urban Micro
Number of paths (M)	6	6	6
Number of sub-paths (M) per path	20	20	20
Mean composite AS at BS	$\mathrm{E}($? As$)=5^{0}$	$\mathrm{E}($? As$)=8^{0}, 15^{0}$	NLOS: $\mathrm{E}($? AS$)=1$!
rDS (?delays/? DS)	1.4	1.7	N/A
ras (?AoD/? PAS)	1.2	1.3	N/A
Composite AS at BS as a lognormal RV when simulating with 6 paths $?_{A S} ? 10^{\wedge} ?^{\prime} ?_{A S} x ? ?_{A S} ?, x \sim ?(0,1)$ Per path AS at BS (Fixed)	$\begin{aligned} & ?_{A S}=0.69 \\ & ?_{A S}=0.13 \end{aligned}$ $2 \mathrm{deg}$	$\begin{aligned} & 80 ?_{A S}=0.810 \\ & ?_{A}=0.3295 \\ & 15^{0} ?_{A S}=1.18 \\ & ?_{A S}=0.210 \\ & 2 \mathrm{deg} \\ & \hline \end{aligned}$	N/A 5 deg (LOS and
BS Per path AoD Distribution st dev	$\begin{aligned} & \mathrm{N}\left(0, ?_{A o D}^{2}\right) \text {, where } \\ & ?_{A o D}=\mathrm{r}_{A S^{*} ?_{A S}} \end{aligned}$	$\begin{aligned} & \mathrm{N}\left(0, ?^{2}{ }_{A o D}\right) \text {, where } \\ & ?_{A o D}=\mathrm{r}_{A S^{*} ?_{A S}} \end{aligned}$	U(-40deg, 40de§
Mean of RMS composite AS at MS	$\mathrm{E}\left(\right.$? AS, comp,UE) $=72^{\circ}$	$\mathrm{E}\left(\right.$? AS, comp, UE) $=72^{\circ}$	$\mathrm{E}($? AS , comp, UE $)=7$ \%
Per path AS at MS (fixed)	35°	35°	35°
MS Per path AoA Distribution	$\mathrm{N}\left(0, ?_{\text {AoA }}^{2}(\mathrm{Pr})\right)$	$\mathrm{N}\left(0, ?_{\text {AoA }}^{2}(\mathrm{Pr})\right)$	$\mathrm{N}\left(0, ?_{\text {AoA }}^{2}(\mathrm{Pr})\right)$
Mean total RMS Delay Spread	$\mathrm{E}\left({ }_{\text {dS }}\right)=0.17$? s	$\mathrm{E}\left({ }_{\text {dS }}\right)=0.65$? s	N/A

Distribution for path delays	$\begin{aligned} & ?_{D S}=-6.80 \\ & ? D S=0.288 \end{aligned}$	$\begin{aligned} & ?_{D S}=-6.18 \\ & ?_{D S}=0.18 \end{aligned}$	$\begin{aligned} & \mathrm{U}(0,1.2 ? \mathrm{~s}) \\ & \mathrm{N} / \mathrm{A} \end{aligned}$
Narrowband composite delay spread as a lognormal RV when simulating with 6 paths			
$?_{D S} ? 10^{\wedge}$? $?_{\text {DS }} x$? $?_{\text {DS }}$?,$x \sim ?(0,1)$			
Lognormal shadowing standard deviation	8dB	8dB	NLOS: 10dB LOS: 4 dB
Pathloss model (dB), d is in meters	NLOS and LOS: $28.6+35 \log 10(d)$	NLOS and LOS: $28.6+35 \log 10(d)$	$\begin{aligned} & \text { NLOS: } 36+381 \\ & \text { LOS: } 30.6+26 * \end{aligned}$

The following are assumptions made for the suburban macrocell and urban ma environments.

1. The macrocell pathloss from 3GPP2 evaluation methodology will be used, based

Table 3-1. Environment parameters
modified Hata urban propagation model at 1.9 GHz carrier frequency (COST Assuming the BS antenna height is 32 m , and the MS antenna height is 1.5 m , the pa is $28.6+35 \log 10(d) \mathrm{dB}$, where d is distanœ between the BS and MS in meters distance d is at least 35 m .
2. Antenna patterns at the BS are the same as those used in the link simulations giv Section 2.5.1.
3. Site-to-site LN correlation is ? ? 0.5. This parameter is used in Section 3.6.2.

The following are assumptions made for the microcell environment.

1. Antenna patterns at the BS are the same as those used in the link simulations giv Section 2.5.1.
2. Site-to-site correlation follows the macrocell model (? ? 0.5).

For the microcell NLOS environment, a Walfish-Ikegami model is used with the follc parameters: BS antenna height 12.5 m , building to building distance 50 m , street width MS antenna height 1.5 m , orientation 30 deg for all paths, frequency 2 GHz . The resi pathloss equation is $36+38^{*} \log 10(d)$, where d is in meters. A bulk log normal shadı applying to all paths has a standard deviation of 10 dB .

For the microcell LOS environment, a Walfish-Ikegami street canyon model is usec pathloss is $30.6+26^{*} \log 10(d)$, where d is in meters. A bulk log normal shadowing apply all paths has a standard deviation of 4 dB .

3.3 Generating User Parameters

For a given scenario and set of parameters given by a column of Table 3-1, realizations o user's parameters such as the path delays, powers, and subpath angles of departure arrival can be derived using the procedure described here in Section 3.3. In particular, S 3.3.1 gives the steps for the urban macrocell and suburban macrocell environments Section 3.3.2 gives the steps for the urban microcell environments.
3.3.1 Generating user parameters for urban macrocell and suburban macrocell environr

Step 1: Choose either an urban macrocell or suburban macrocell environment.
Step 2: Determine various distance and orientation parameters. The placement of the Ms respect to each BS is to be determined according to the cell layout. From this placemen distance between the MS and the BS (d) and the LOS directions with respect to the BS ar $\left(?_{B S}\right.$ and $?_{M S}$, respectively) can be determined. The MS antenna array orientations (? ${ }_{M s}$ i.i.d., drawn from a uniform 0 to 360 degree distribution. The MS velocity vector \mathbf{v} magnitude $\|\mathbf{v}\|$ drawn according to a velocity distribution (to be determined) and directic drawn from a uniform 0 to 360 degree distribution.

Step 3: Determine the $D S, A S$, and $L N$. These variables, given respectively by ${ }_{D S},{ }^{\text {? }}{ }_{A}$ $?_{L N}$, are generated as described in Section 3.6 below. Note that $10^{\wedge}\left(?_{D S}\right)$ is in units of s ϵ so that the narrowband composite delay spread ? ${ }_{D S}$ is in units of seconds. Note also th have dropped the BS indicies used in Section 3.6.1 to simplify notation.
Step 4: Determine random delays for each of the N multipath components. For mac environments, $N=6$ as given in Table 3.1. Generate random variables $?_{1}^{\prime}, \ldots, ?_{N}^{\prime}$ according

$$
?_{n} ? ? r_{D S}{ }^{\prime}{ }_{D S} \log z_{n} \quad n=1, \ldots, N
$$

where $z_{n}(n=1, \ldots, N)$ are i.i.d. random variables with uniform distributionU(0,1), m_{DS} is giv Table $3-1$, and $?_{D S}$ is derived in Step 2 above. These variables are ordered sc ${ }^{?}{ }_{(N)}{ }^{?} ?_{(5)}^{\prime} ? \ldots{ }^{\prime} ?_{(1)}^{\prime}$ and the minimum of these is subtracted from all so that the first de always zero. The delays are quantized in time to the nearest $1 / 16$ th chip interval. Then delays are given by:

$$
?_{n} ? \frac{T_{c}}{16} \text { ? floor } \stackrel{? ?}{?} \stackrel{?^{\prime}(n) ? ?^{\prime}}{T_{c} / 16} \text { ? } 0.5 \stackrel{?}{?}{ }_{?}^{?} \quad n ? 1, \ldots, N
$$

where floor(x) is the integer part of x , and T_{c} is the chip interval ($T_{c}=1 / 3.84 \times 10^{6} \mathrm{sec}$ for and $T_{c}=1 / 1.2288 \times 10^{6} \mathrm{sec}$ for 3GPP2). Then the 6 delays are given by:

$$
?_{n} ? ?_{(n)}^{\prime} ? ?_{(1)}^{\prime}, \quad n ? 1, \ldots, N
$$

Note that these delays are ordered so that $?_{N} ? ?_{5} ? \ldots ? ?_{1} ? 0$. (See notes 1 and 2 at th of Section 3.3.1.) Quantization to $1 / 16$ chip is the default value. For special pı implementations, possibly higher quantization values may be used if needed.

Step 5: Determine random average powers for each of the N multipath components. L unnormalized powers be given by

$$
P_{n} ? ? e^{\frac{\left(1 ? ?_{D S}\right) ?\left(?_{n} ?_{n} ? ?(1)\right)}{r_{D S} ?_{D S}}} ? 10^{? ?_{n}}, n=1, \ldots, 6
$$

where $?_{n}(n=1, \ldots, 6)$ are i.i.d. Gaussian random variables with variance $?_{R N D}^{2}=3 \mathrm{~dB}$, whi a shadowing randomization effect on the per-path powers. Note that the powers are deters using the unquantized channel delays. Average powers are normalized so that total aver; power for all six paths is equal to one:

$$
P_{n} ? \frac{P_{n}^{\prime}}{?^{6}{ }_{n ? 1} P_{n}^{\prime}}
$$

(See note 3 at the end of Section 3.3.1.)

Step 6: Determine AoDs for each of the N multipath components. First generate i.i.d. zero Gaussian random variables:

$$
?_{n}^{\prime} \sim ?\left(0, ?_{A o D}^{2}\right), \quad n=1, \ldots, N
$$

where $?_{A O D}=r_{A S}{ }^{*} ?_{A S}$. The value $r_{A S}$ is given in Table 3-1 and depends on whether the urk suburban macrocell environment is chosen. The angle spread ? $A S$ is generated in Step 3. variables are given in degrees. They are ordered in increasing absolute value sc $\left|?_{(1)}^{\prime}\right| ?\left|?_{(2)}^{\prime}\right| ? \ldots ?\left|{ }_{(N)}^{\prime}\right|$. The AoDs $?_{n, A o D}, n=1, \ldots, N$ are assigned to the ordered variables \mathbf{s}_{1} $?_{n, A o D} ? ?_{(n)}^{\prime}, n=1, \ldots, N$. (See note 4 at the end of Section 3.3.1.)
Step 7: Associate the multipath delays with AoDs. The nth delay ${ }_{n}$ generated in Step associated with the nth AoD ? ${ }_{n, A o D}$ generated in Step 6.

Step 8: Determine the powers, phases, and offset AoDs of the $M=20$ sub-paths for each oj paths at the BS. All 20 sub-path associated with the nth path have identical powers (where P_{n} is from Step 5) and i.i.d phases ${ }^{n}{ }_{n, m}$ drawn from a uniform 0 to 360 d distribution. The relative offset of the m th subpath $(m=1, \ldots, M) \quad{ }_{n, m, A o D}$ is a fixed value in Table 3-2. For example, for the urban and suburban macrocell cases, the offsets for th and second sub-paths are respectively $?_{n, 1, A o D}=0.0894$ and $?_{n, 2, A o D}=-0.0894$ degrees. offsets are chosen to result in the desired per path angle spread (2 degrees for the mac environments, and 5 degrees for the microcell environment).
Step 9: Determine the AoAs for each of the multipath components. The AoAs are i.i.d Gat random variables

$$
?_{n, A o A} \sim ?\left(0, ?{ }_{n A O A}^{2}\right), \quad n=1, \ldots, N,
$$

where? ? $\left.{ }_{n A o A}=104.12\right\}_{1-\exp !-0.2175}^{\text {? }} 10 \log _{10}\left(P_{n}\right) \mid ? ?$ and P_{n} is the relative power of th path from Step 5.
Step 10: Determine the offset AoAs at the UE of the $M=20$ sub-paths for each of the N pa the MS. As in Step 8 for the AoD offsets, the relative offset of the m th subpath ($m=1$,
$?_{n, m, A o A}$ is a fixed value given in Table 3-2. These offsets are chosen to result in the desir path angle spread of 35 degrees.
Step 11: Associate the BS and MS paths and sub-paths. The nth BS path (defined by its $?_{n}$, power P_{n}, and AoD $?_{n, A o D}$) is associated with the nth MS path (defined by its AoA ? For the nth path pair, randomly pair each of the M BS sub-paths (defined by its offset ? , and phase ${ }^{n, m}$) with a MS sub-path (defined by its offset ${ }_{n m, A o A}$). To simplify the not we renumber the M MS sub-path offsets with their newly associated BS sub-path. In words, if the first ($m=1$) BS sub-path is randomly paired with the $10^{\text {th }}(m=10)$ MS sub we re-associate ? ${ }_{n, 1, A o A}$ (after pairing) with $?_{n, 10, A o A}$ (before pairing).

Step 12: Determine the antenna gains of the $B S$ and $M S$ sub-paths as a function of respective sub-path AoDs and AoAs. For the nth path, the AoD of the mth sub-path respect to the BS antenna array broadside) is

$$
?_{n, m, A o D} ? ?_{B S} ? ?_{n, A o D} ? ?_{n, m, A o D}
$$

Similarly, the AoA of the m th sub-path for the nth path (with respect to the MS antenna broadside) is

$$
?_{n, m, A o A} ? ?_{M S} ? ?_{n, A o A} ? ?_{n, m, A o A}
$$

The antenna gains are dependent on these sub-path AoDs and AoAs. For the BS and MS, are given respectively as $G_{B S}\left(?_{n, m, A o D}\right)$ and $G_{M S}\left(?_{n, m, A o A}\right)$.

Notes:

Note 1: In the development of the Spatial Channel Model, care was taken to includ statistical relationships between Angles and Powers, as well as Delays and Powers. Thi done using the proportionality factors $1 D S=$? delays/?DS and $r_{A S}=$?AOD/?PAS that were bas measurements.)

Note 2: While there is some evidence that delay spread may depend on distance betwe transmitter and receiver, the effect is considered to be minor (compared to other depende DS-AS, DS-LN.). Various inputs based on multiple data sets indicate that the trend of D be either slightly positive or negative, and may sometimes be relatively flat with distanc these reasons and also for simplicity, a distance dependence on DS is not modeled.
Note 3: The equations presented here for the power of the nth path are based on an $]$ delay envelope which is the average behavior of the power-delay profile. Defining the pow reproduce the average behavior limits the dynamic range of the result and does not repr the expected randomness from trial to trial. The randomizing noise $?_{n}$ is used to val powers with respect to the average envelope to reproduce the variations experienced i actual channel. This parameter is also necessary to produce a dynamic range compara measurements.

Note 4: The quantity $r_{A S}$ describes the distribution of powers in angle and $r_{A S}=?_{A o D} / ?_{A S}$ i spread of angles to the power weighted angle spread. Higher values of r_{AS} correspond to power being concentrated in a small AoD or a small number of paths that are closely spa angle.

3.3.2 Generating user parameters for urban microcell environments

Urban microcell environments differ from the macrocell environments in that the indir multipaths are independently shadowed. Also, only $N=3$ (instead of 6) paths are mo because of the reduced delay spread in microcells. We list the entire procedure but describe the details of the steps that differ from the corresponding step of the mas procedure.
Step 1: Choose the urban microcell environment.
$8 \quad$ Step 2: Determine various distance and orientation parameters.
9 Step 3: Determine the DS, AS, and LN.
${ }^{36} \quad$ where? ? ${ }_{n A o A}=104.12!1-\exp ^{?} ?-0.265 \mid \log _{10}\left(P_{n}\right) ? ? ?$ and P_{n} is the relative power of the n tl
${ }_{37}$ from Step 5.
Step 4: Determine the random delays for each of the N multipath components. For the mic environment, $N=6$. The delays $?_{n}, n=1, \ldots, N$ are i.i.d. random variables drawn fi uniform distribution from 0 to 1.2 ?s.

Step 5: Determine random average powers for each of the N multipath components. Th consists of $N=6$ distinct paths that are uniformly distributed between 0 and 1.2 ?s. The p for each path are exponentially decaying in time with the addition of a lognormal randon which is independent of the path delay:

$$
P_{n} ? 10^{?\left(?_{n} ? z_{n}\right)}
$$

where $?_{n}$ is given in units of microseconds, and $z_{n}(n=1, \ldots, N)$ are i.i.d. zero mean Gat random variables with variance of $(3 \mathrm{~dB})^{\wedge} 2$. The lognormal variation of each path produc variation seen in the path powers, and a separate log normal shadowing value is appl common to all paths.
Step 6: Determine AoDs for each of the N multipath components. The AoDs (with respect LOS direction) are i.i.d. random variables drawn from a uniform distribution over -40 t degrees:

$$
?_{n, A o D} \sim U(? 40, ? 40), \quad n=1, \ldots, N
$$

Associate the AoD of the nth path ${ }_{n A o D}$ with the power of the nth path P_{n}. Note unlik macrocell environment, the AoDs do not need to be sorted before being assigned to a power.
Step 7: Associate the multipath delays with AoDs.
Step 8: Determine the powers, phases, and offset AoDs of the $M=20$ sub-paths for each oj paths at the BS. The offsets are given in Table 3-2, and the resulting per path AS is 5 dt instead of 2 degrees for the macrocell case.
Step 9: Determine the AoAs for each of the multipath components. The AoAs are i.i.d Gaı random variables

$$
?_{n, A o A} \sim ?\left(0, ?{ }_{n A o A}^{2}\right), \quad n=1, \ldots, N,
$$

Step 10: Determine the offset AoAs of the $M=20$ sub-paths for each of the N paths at the Λ

1 Step 11: Associate the BS and MS paths and sub-paths.
Step 12: Determine the antenna gains of the BS and MS sub-paths as a function of respective sub-path AoDs and AoAs.
$\left.\begin{array}{|c|c|c|c}\hline \begin{array}{c}\text { Sub-path \# } \\ (m)\end{array} & \begin{array}{c}\text { Offset for a 2 deg } \\ \text { AS at BS (Macrocell) } \\ ?_{n, m, A o D} \text { (degrees) }\end{array} & \begin{array}{c}\text { Offset for a 5 deg } \\ \text { AS at BS (Microcell) } \\ ?_{n, m, A o D} \text { (degrees) }\end{array} & \begin{array}{c}\text { Offset for a 35 deg } \\ \text { AS at MS }\end{array} \\ ?_{n, m, A o A} \text { (degrees) }\end{array}\right]$

Table 3-2. Sub-path AoD and AoA offsets
6 The values in Table 3-2 are selected to produce a biased standard deviation equal to 2, :
${ }_{7} 35$ degrees, which is equivalent to the per-path power weighted azimuth spread for equal
8 sub-paths.
9 3.4 Generating channel coefficients
10 Given the user parameters generated in Section 3.3, we use them to generate the ch ${ }_{11}$ coefficients. For an S element BS array and a U element MS array, the channel coefficier 12 one of N multipath components are given by an S-by- U matrix of complex amplitude ${ }_{13}$ denote the channel matrix for the nth multipath component $(n=1, \ldots, N)$ as $\mathbf{H}_{n}(t)$. The 1
14 component ($s=1, \ldots, S ; u=1, \ldots, U$ of $\mathbf{H}_{n}(t)$ is given by

16 where
$17 \quad P_{n} \quad$ is the power of the nth path (Step 5).
$18 M$ is the number of subpaths per path.
$19 ?_{n, m, A o D} \quad$ is the the AoD for the m th subpath of the nth path (Step 12).

[^1]- Step 16: Decompose each of the co-polarized and cross-polarized sub-rays into vertic: horizontal components based on the co-polarized and cross-polarized orientations.
- Step 17: The power P2 of each ray in the cross-polarized orientation is set relative 1 power P1 of each ray in the co-polarized orientation according to an XPD ratio, defin $\mathrm{XPD}=\mathrm{P} 1 / \mathrm{P} 2$.
- For urban macrocells: P2 = P1 - A - B*N $(0,1)$, where $A=0.34^{*}$ (mean relative path powe dB , and $\mathrm{B}=5.5 \mathrm{~dB}$ is the standard deviation of the XPD variation.
- For urban microcells: $P 2=P 1-A-B^{*} N(0,1)$, where $A=8 d B$, and $B=8 d B$ is the sta deviation of the XPD variation.
- Step 18: At the receive antennas, decompose each of the vertical and horizontal compo into components that are co -polarized with the receive antennas and sum the componeı

The fading behavior between the cross pol elements will be a function of the per-ray sf and the Doppler. The fading between orthogonal polarizations has been observed independent and therefore the sub-rays phases are chosen randomly. The propag characteristics of V-to-V paths are assumed to be equivalent to the propagation charactes of H -to-H paths.
The polarization model can be illustrated by a matrix describing the propagation of and n between horizontal and vertical amplitude of each sub-path. The resulting channel reali is:

$$
\begin{aligned}
& \exp ? j k d_{s} \sin \left(?_{n, m, A o D}\right) ? ? \exp ? j k d_{u} \sin \left(?_{n, m, A o A}\right) ? ? \exp ? j k \| \mathbf{v} \mid \cos \left(?_{n, m, A o A} ? ?_{v}\right) t ?
\end{aligned}
$$

where:
$G_{B S}^{(\nu)}\left(?_{n, m, A o D}\right)$ is the BS antenna array gain for the vertically polarized component.
$G_{B S}^{(h)}\left(?_{n, m, A o D}\right)$ is the BS antenna array gain for the horizontally polarized component.
$G_{M S}^{(v)}\left({ }_{n, m, A o D}\right)$ is the MS antenna array gain for the vertically polarized component.
$G_{M S}^{(h)}\left(?_{n, m, A o D}\right)$ is the MS antenna array gain for the horizontally polarized component.
$r_{n} \quad$ is the average power ratio of waves of the nth path leaving the BS in the v direction and arriving at the MS in the horizontal direction (v-h) to those $\mathrm{l} f$ in the vertical direction and arriving in the vertical direction ($\mathrm{v}-\mathrm{v}$). By sym. the power ratio of the opposite process (h-v over vv) is the same.
$? \quad \begin{aligned} & (h, h) \\ & n, m\end{aligned} \quad$ phase offset of the m th subpath of the nth path between the x component । the horizontal h or vertical v) of the BS element and the y component (eith horizontal h or vertical v) of the MS element.
The other variables are described in Section 3.4.

The 2×2 matrix represents the scattering phases and amplitudes of a plane wave leavir UE with a given angle and polarization and arriving Node B with another direction polarization. r_{n} is the average power ratio of waves leaving the UE in the vertical directio arriving at Node B in the horizontal direction (v-h) to those arriving at Node B in the $v \epsilon$ direction ($\mathrm{v}-\mathrm{v}$). By symmetry the power ratio of the opposite process (h-v over $\mathrm{v}-\mathrm{v}$) is cho: be the same. Note that: $r_{n}=1 / \mathrm{XPD}$; for the macrocell model, the XPD is dependent on the index; for the microcell model, the XPD is independent of path index.
Expression (2) assumes a random pairing of the of the sub-paths from the MS and Bs random orientation of the MS (UE) array affects the value of the angle $?_{n, m, A o A}$ of eack path.
If for example, vertically polarized antennas are used only at both NodeB and UE the antenna responses become $\begin{aligned} & ? 1 \text { ? } \\ & ? 0 \text { ? } \\ & ? 0\end{aligned}$ and expression (2) becomes identical to (1). For an ideal antenna at the NodeB tilted with respect to the z-axis at ? degrees the above vector bec

The elevation spectrum is not modeled.
3.5.2 Far scatterer clusters

The Far scatterer cluster model is switch selectable. It represents the bad-urban case additional clusters are seen in the environment. This model is limited to use with the macro-cell where the first cluster will be the primary cluster and the second will be tl scattering cluster (FSC). When the model is active, it will have the following characteristic:

1. There is a reduction in the number of paths in the primary cluster from $\mathrm{N}=6$ to $\mathrm{N}=4$ the far scattering cluster then having $N=2$. Thus the total number of paths will st: same, now $\mathrm{N}=4+2$. This is a modification to the SCM channel generation proced section 3.3.
2. FSCs will lie only outside a 500 m radius from the BS/NodeB.
3. The FSCs will only be modeled for the serving cell, with 3 independent FSCs in th uniformly applied to the area of the cell outside the minimum radius.
4. The model statistics of the two clusters are identical (cluster DS, AS, PDF independently drawn. The FSC also has independent shadowing per path with a site correlation of 50%.
5. The FCS is attenuated by $1 \mathrm{~dB} /$ microsec delay with respect to the $1^{\text {st }}$ cluster with a maximum. The excess delay will be defined as the difference in propagation time be the BS -MS LOS distance, and the BS-FSC-MS distance.
6. The FSC is modeled within the serving cell only and dropped following a ur distribution.

The following method will be used to set the path powers: Draw the $\mathrm{N}=4$ path powers frc channel generation procedure in section 3.3, then draw a separate set of $N=2$ path power the same procedure. The two groups are kept separate and un-normalized. Now the based attenuation is applied to the group of $\mathrm{N}=2$ paths, and the $\mathrm{N}=6$ total paths are norm to unity power after accounting for the bulk log normal shadowing per cluster including s site correlation

3.5.3 Line of sight

The Line-of-sight (LOS) model an option that is switch selectable. It can be selected f micro cases. LOS modeling will not be defined for the suburban or urban cases. It use following description when this function is selected.

For the NLOS case, the Rice factor is set to 0 , thus the fading is determined by the combi: of sub-rays as described in section 3.3 of the model.

For the LOS case, the Rice factor K is based on a simplified version of [Foster 1994] : K $0.03^{*} \mathrm{~d}(\mathrm{~dB})$ where d is the distance between MS and BS in meters.

The pro bability for LOS or NLOS depends on various environmental factors, including c street canyons, and distance. For simplicity, the probability of LOS is defined to be un zero distance, and decreases linearly until a cutoff point at $\mathrm{d}=300 \mathrm{~m}$, where the LOS prob: is zero.

$$
P(\text { LOS }) ? \stackrel{?}{?} \stackrel{?}{?}(300 ? d) / 300,0 ? d ? 300 m ~
$$

The K-factor, propagation slope, and shadow fading standard deviation will all be chosen on the results of selecting the path to be LOS or NLOS.

The K-factor will be formed by adding a dire ct component (sine wave) at the average Aol AoA of the path such that the ratio of the power assigned to the direct component to the assigned to the 6 paths is equal to the K -factor measured in dB . After the power of the component is added, the total power in the channel is normalized to unity power. The K is defined as the ratio of power in the LOS component to the total power in the diffused component. The LOS path will coincide in time with the first (earliest) diffused path. pairing sub-rays between transmitter and receiver, the direct components are representing the LOS path.

The urban canyon model is switch selectable. When switched on, the model modifies the of the paths arriving at the subscriber unit. It is for use in both the urban macro and micro scenarios.

Urban-canyons exist in dense urban areas served by macro-cells, and for at-rooftop 1 cells. When this model is used, the spatial channel for all subscribers in the sim universe will be defined by the statistical model given below. Thus for the SCM ch: generation steps given in Section 3.3, Step 9 is replaced with steps 9a-d given below, describe the AoAs of the paths arriving at the subscriber in the urban canyon scenario.

The following procedure is used to determine the subscriber mean AoAs of the six paths. model does not use a building grid, but assigns angles based on statistical data presen the figures below. The procedures is defined in terms of the subscriber terminal:
9a. Select a random street orientation from: $\mathrm{U}\left(0,360^{\circ}\right)$ which also equals the direction of for the UE.

9b. Select a random orientation for the subscriber antenna array from $U(0,360)$
9c. Given ???????? the predefined fraction of UEs to experience the urban canyon effect, Se uniform random draw for the parameter?.

9d. If ? ? $=$? ? select the UE AoAs for all arriving paths to be equal, with 50% probability of from the direction of the street orientation obtained in step 9a, and 50% the orientation plus an offset of 180?. If ??> ? ? select the directions of arrival for all paths the standard SCM UE AoA model given in Section 3.3, Step 9.

Figure 3-3. Simulated results of urban canyon algorithm
In Figure 3-3, the urban canyon procedure is simulated to show the effects of the model composite UE angle spread. The parameter ???????, which describes the percentage of m that will experience the urban canyon effects. The figure illustrates the result of selectir AoAs, where each of the paths has a fixed 35° angle spread.

The parameter ???????, is set to a relatively high percentage of occurrence to emphasiz urban canyon effects, while the remaining occurrences assume some mixed arrivals to 1 various other conditions such as cross streets or where signals arrive from between bui or from unknown paths at various angles.

3.6 Correlation Between Channel Parameters

In [1], Greenstein presents a model for correlating delay spread (DS) with log normal st fading (LN). Since both are shown to be log-normal distributed, the correlation between t and LN are correlated by the coefficient ?. The best value for suburban and urban dat shown to be $?=-0.75$, presented in [1] from data measured by [2].
The result of the correlation between log normal shadowing and delay spread is signi: because it indicates that for a strong signal (positive LN), the DS is reduced, and for a signal condition (negative LN), the DS is increased.

Cost 259[3] presents the azimuth spread (AS) as also being log-normal distributed likewise being correlated to the DS and LN. Since the correlation of these parameters is high, a spatial channel model needs to be specified that can reproduce this correl behavior along with the expected probability and range of each parameter. For a macl environment, the following values are given in [3]:
$?_{? ?}=$ Correlation between DS \& AS $=+0.5$
$? ? ?$ Correlation between $\mathrm{LN} \& \mathrm{AS}=-0.75$
$? ?=$ Correlation between LN \& DS $=-0.75$

Suppose we wish to generate the values for DS, AS, and LN for the nth base station ($n=1$ with respect to a given mobile user. These values are given as $?_{D S, n},{ }^{\prime}{ }_{A S, n}$, and respectively. These valuesare a function of the respective correlated Gaussian random var $?_{n}, ?_{n}$, and $?_{n}$. These correlated Gasussian random variables are in turn resper generated from independent Gaussian random variables $w_{n 1}, w_{n 2}$, and $w_{n 3}$. Note hor that because of correlated shadow fading from base to base, the variables w_{13} through are correlated and are given by:

$$
w_{n 3} ? ?_{c} \sqrt{\frac{?}{c_{33}^{2}}} ? ?_{n} \sqrt{1 ? \frac{?}{c_{33}^{2}}}, \quad n ? 1 \ldots N
$$

where $?_{c}, ?_{1}, ?_{2}, \ldots, ?_{N}$ are i.i.d. Gaussian random variables with zero mean and unit varial is the site-to-site correlation (assumed to be $?=0.5$), and c_{33} is defined as the lower component of the matrix square root of the correlation matrix:

$$
\begin{aligned}
& \boldsymbol{3}_{3} c_{31} \quad c_{32} \quad c_{33} \text { ? ???? ??? ??? }
\end{aligned}
$$

Given $w_{n 3}$, generate i.i.d. Gaussian random variables $w_{n 1}$ and $w_{n 2}$ with zero mean anc variance. The variables $?_{n}, ?_{n}$, and $?_{n}$ are given by:

$$
\begin{aligned}
& \begin{array}{llll}
? ? n \\
? ? & ? \\
?
\end{array} \\
& \text { ?? }{ }_{n} ? \quad \boldsymbol{c}_{31} \quad c_{32} \quad c_{33} \text { ? ? } w_{n 3} \text { ? }
\end{aligned}
$$

The distribution of DS for the nth BS is given by:
$? \quad \quad ?_{D S, n} ? 10^{\wedge}!?_{D S} ?_{n} ? ?_{D S} ?$
where $?_{n}$ is generated above, $?_{D S} ? E ?{ }^{?} \log _{10}\left(?_{D S}\right) ?$ is the logarithmic mean of the distribut DS, and $?_{D S} ? \sqrt{E ?_{?}^{?} \log _{10}\left(?{ }_{D S, n}^{2}\right) ? ? ?{ }_{D S}^{2}}=$ is the logarithmic standard deviation of the distril of DS.

Similarly the distribution of AS is given by:
$? \quad \quad ?_{A S, n} ? 10^{\wedge}!?_{A S}{ }^{n}{ }_{n} ? ?_{A S} ?$
where $?_{\mathrm{n}}$ is generated above, $?_{A S} ? E^{?}!\log _{10}\left(?_{A S}\right)$? is the logarithmic mean of the distribut AS, and $?_{A S} ? \sqrt{E{ }_{?} \log _{10}\left(?{ }_{A S, n}^{2}\right) ? ? ?{ }_{\text {AS }}^{2}}$ is the logarithmic standard deviation of the distribu 1 AS. Finally, the distribution for the LN is given by:

$$
? \quad \quad ?_{L N, n} ? 10^{\wedge} ?_{?} ?_{S F} ?_{n} / 10 ?
$$

where ?n is given above, and? s is the LN standard deviation given in dB. The value of obtained from analysis of the standard deviation from the regression line of the patt versus distance. As shown in Table $3-1$, these values are 8 dB and 10 dB for the macr microcell cases, respectively. Note that the linear scale value for LN is simply $?_{S F} ?_{n}$.

3.7 Modeling intercell interference

Sophisticated MIMO receivers, such as those based on minimum mean-squared error s processing, account for the spatial characteristics of the signals from the desired sector a as from the interfering sectors. The spatial characteristics of these signals can be mo according to the channel matrix generated according to Sections 3.3, 3.4, and 3.5. Howe may be prohibitively complex to explicitly model the spatial characteristics of all inter sectors, especially those whose received powers are relatively weak. It has been shown th modeling the signals of relatively weak interferers as spatially white (and thereby ignoring spatial characteristics), the resulting performance difference is negligible. The followin steps outlinee the procedure for modeling intercell interference.
?? Determine the pathloss and shadowing of all sectors. (Note that "pathloss" imp includes antenna patterns as well.)
?? Rank the sectors in order of received power (based on pathloss and shadowing).
?? Assign the strongest sector as the serving sector.
?? Model the next strongest B sectors as spatially correlated Gaussian noise processes ' covariances are determined by their channel matrices. These channel matrice generated from Sections 3.3, 3.4, and 3.5 and account for the pathloss, shadowing fast fading variations.
?? Model the remaining sectors as spatially white Gaussian noise processes whose vari are based on a flat Rayleigh fading process. Hence the variances are varying ove duration of a simulation drop.

Using the notation in Appendix A, suppose there are J transmit antennas, M receive ant N is the receiver tap length, and K is the impulse response length. In modeling the B str interfering sectors, let Ge the $M N$ by $(N+K-1) J$ MIMO channel impulse response matrix
by vector noise and covariance $\mathbf{G} \mathbf{G}^{H}$, where superscript H denotes the Hermitian transpose.
To model the remaining "weak" sectors, we assume that the mean power of the flat Ra; fading process is equal to the effects of pathloss and shadowing from each sector. There the received power from the b th sector due to pathloss and shadowing is P_{b}, then the Ra fading process for the m th receive antenna ($m=1, \ldots, M$) as a function of time is given by where the mean of $r_{b, m}(t)$ over time is P_{b}. The fading processes for each sector and r antenna are independent, and the doppler rate is determined by the speed of the mobil assume that the fading is equivalent for each mobile receive antenna. The total received power per receive antenna due to all "weak" sectors at the m th antenna is

$$
\underset{b ? F}{?} r_{b, m}(t)
$$

where F is the set of indices for the "weak" sectors.
For 3 -sector systems, we model the $B=8$ strongest sectors. For 6 -sector systems, we moc 12 strongest sectors. The values for B are based on simulation results for the typical cell 1 with a single hexagonal cell surrounded by two rings of cells (a total of 19 cells) and with placed in the center cell. For other layouts, different values of B or an entirely dift technique may be required to properly account for the intercell interference.

3.8 System Level Calibration

The following examples are given for calibration purposes. A resolvable path at the recei assumed to be the energy from one (or more) paths falling within one chip interval. The rate in UMTS is 3.84 Mcps . The PDF of the number of resulting resolvable paths is record ϵ The following table is for interim calibration purposes. "Ideal" signifies the value taker measurements, "Input" signifies the value used in generating a random variable, "O1 signifies the resulting measured statistic.

Parameter	Suburban 5 ?$\text { ? RND }=3 \mathrm{~dB}$		Urban 8 ?$? \mathrm{RND}=3 \mathrm{~dB}$		Urban 15?$?_{\mathrm{RND}}=3 \mathrm{~dB}$		Urban
r_{DS}	Input	Output	Input	Output		Output	
	1.4	1.29	1.7	1.54	1.7	1.54	
? DS	Input	Ideal	Input	Ideal	Input	Ideal	
? DS	$\begin{aligned} & -6.80 \\ & \text { Input } \end{aligned}$	$\begin{aligned} & -6.92 \\ & \text { Ideal } \end{aligned}$	$\begin{aligned} & -6.18 \\ & \text { Input } \end{aligned}$	$\begin{aligned} & -6.26 \\ & \text { Ideal } \end{aligned}$	$\begin{aligned} & -6.195 \\ & \text { Input } \end{aligned}$	$\begin{aligned} & -6.26 \\ & \text { Ideal } \end{aligned}$	
	0.288	0.363	0.18	0.25	0.18	0.25	
$\mathrm{ras}_{\text {A }}$	Input	Output	Input	Output	Input	Output	
	1.2	1.22	1.3	1.37	1.3	1.37	
? As	Input	Ideal	Input	Ideal	Input	Ideal	
?AS	$\begin{gathered} 0.69 \\ \text { Input } \\ \hline \end{gathered}$	$\begin{gathered} 0.66 \\ \text { Ideal } \end{gathered}$	$\begin{aligned} & 0.810 \\ & \text { Input } \\ & \hline \end{aligned}$	$\begin{aligned} & 0.75 \\ & \text { Ideal } \end{aligned}$	$\begin{gathered} 1.18 \\ \text { Input } \\ \hline \end{gathered}$	$\begin{aligned} & 1.0938 \\ & \text { Ideal } \end{aligned}$	
	0.13	0.18	0.34	0.37	0.21	0.2669	
$\mathrm{E}[$? DS$]$	Ideal	Output	Ideal	Output	Ideal	Output	
	0.17? s	0.172? s	0.65? s	0.63? s	0.65 ? s	0.63? s	
E[? AS Node B]	Ideal	Output	Ideal	Output	Ideal	Output	Ideal
E [? As UE]	$5 ?$ Ideal	$\begin{gathered} 5.01 ? \\ \text { Output } \\ \hline \end{gathered}$	$8 \text { ? }$ Ideal	$\begin{gathered} 7.97 ? \\ \text { Output } \end{gathered}$	$\begin{gathered} 15 ? \\ \text { Ideal } \end{gathered}$	$\begin{gathered} 14.9 ? \\ \text { Output } \end{gathered}$	$\begin{gathered} 19^{\circ} \\ \text { Ideal } \end{gathered}$
	$72 ?$	72.59?	72 ?	71.49?	72?	71.35?	72?

Table 3-3. SCM parameter summary with simulated outputs
3 The following figures: Figure 3-4, Figure 3-5, Figure 3-6, Figure 3-7, Figure 3-8, repi 4 calibration cases for the current SCM model. These curves correspond to the paran presented in Table 3-3, and include the 3dB randomizing factor for the generation of powers.

Figure 3-4. Probability of urban and suburban time resolvable paths

Figure 3-5. RMS delay spread, simulated versus ideal

Figure 3-6. BS composite angle spread, simulated versus ideal

Figure 3-7. Dynamic range (dB) for each channel model

Figure 3-8. CDF of all path powers

1 Channel Scenario: Urban Microcellular

3 A number of parameters are shown in the following plots which are the result of simula 4 Figure 3-9 illustrates the dynamic range of each channel realization, plotted 5 complementary cdf. The difference between the 1 x and 3 x channel bandwidths are shc 6 the resolvable dynamic range curves. (Powers are combined within a chip time as a simp. 7 to estimate the resolvable powers.) The 1% highest value is approximately the same fo 8 bandwidths. The dynamic range D is calculated from $\mathrm{D}=10^{*} \log 10(\max \mathrm{pwr} / \mathrm{min} \mathrm{pv}$ 9 each channel realization.

Figure 3-9. Dynamic range of path powers per channel realization, (NLOS)

Figure 3-10. Composite BS angle spread
3 The composite angle spread at the base is described in Figure 3-10 for the various K-f 4 that are seen in the micro-cell model, along with the LOS/NLOS mix expected when th radius is 500 m . For the NLOS case, the average composite Base AS $=19$?. When experif LOS paths with increased K-factors, the angle spreads are observed to decreased accord 7 The simulated average composite Base AS for the NLOS model is: 19.2°, and the simı average composite Base AS for the mixed propagation model is: 17.6°.

Figure 3-11. Composite MS angle spread
The composite UE angle spread is described in Figure 3-11 for the various K-factors th present in the micro-cell model. Increased K-factor from a LOS path, causes the compos to be decreased since more power is present in a single direct component. The mixed c shown which has a slight decrease in the statistics due to the 15% of the loc experiencing the LOS condition. The simulated composite UE AS for the NLOS mod 71.8°, and the simulated composite UE AS for the mixed propagation model is: 65.8°.

The delay spread is illustrated in Figure 3-12, which is also affected by the presence of a path. The mix is produced by the combination of LOS and NLOS paths. The simv average delay spread for the NLOS condition is: 251 nS , and the simulated average spread for the mixed case is: 231 nS

Figure 3-12. Micro -cell delay spread
Figure 3-13 illustrates the propagation path loss model of the Urban Micro-cell wh characterized by the mixed mode between LOS and NLOS.

Figure 3-13, Microcell path loss versus distance

ANNEX A: MMSE RECEIVER DESCRIPTION

The following text is a preliminary description of the MMSE receiver. The receiver d described here are example receiver structures. They do not imply their use for min performance requirements. Their use in calibration or system level simulations i mandatory. instant in time.
Step 1: Given the space-time propagation model and transmitter state, form a channel (exp) here as one or more convolution matrices) relating all transmitting sources and r antennas from every sector in the system.

At the UE, the received samples are represented as a column vector,

$$
\begin{aligned}
\mathbf{r} ? & {\left[\mathbf{r}_{1}^{T}, \mathbf{r}_{2}^{T}, \square, \mathbf{r}_{M}^{T}\right]^{T} } \\
& ?\left[r_{1}(1), r_{1}(2), \square, r_{1}(N), r_{2}(1), r_{2}(2), \square, r_{2}(N), \square, r_{M}(1), r_{M}(2), \square, r_{M}(N)\right]^{T},
\end{aligned}
$$

where M is the number of receive antennas at the UE, and N is the number of rec symbols per antenna ${ }^{1}$. This received time-space vector is related to the transi symbols as follows:
where $\mathbf{G}_{i}^{(j)}, 1=i, j=M$ are Toeplitz convolution matrices defining the channel betweer th receive antenna and the j-th transmitted data stream, $\mathbf{x}^{(j)}$ is the j-th transmittec stream, J is the total number of data streams in the system, and \mathbf{n} is the vector of samples. The $j=1$ data stream is the primary data stream intended for the user. Tl data stream can be a transmission from an interfering base station, another sector desired base station, or another data stream intended for the desired user (whi considered interference to the primary data stream). If the composite channel respor limited to K samples, then each of the convolution matrices has N rows by $(N+K-1)$ colt
and $\mathbf{g}_{i}^{(j)}$ is the vector of discrete channel samples of length K.
Note that in the above formulation, the vector \mathbf{x} has $M(N+K-1)$ rows, and thus, it is 1 than the received vector, \mathbf{r}. Also, the vector \mathbf{x} will be interleaved with zero value fractionally-spaced approach with more than one received sample per symbol is used.
Step 2: Using the above channel, produce an estimate of the channel.

$$
\hat{\mathbf{g}}_{i}^{(j)} ? \mathbf{g}_{i}^{(j)} ? \mathbf{?} \mathbf{g}_{i}^{(j)}
$$

where $\mathbf{?} \mathbf{g}_{i}^{(j)}$ is a vector representing the channel estimation error for the i-th r antenna and the j-th transmitted data stream. The estimation error is due to nois interference in the pilot channel and can also be due to the channel estimator's inabi track a fast fading channel.
Step 3: Using the estimated channel, compute the SINR per data stream at the output MMSE filters.

$$
\operatorname{SINR}_{j} ? \frac{\left|\mathbf{f}_{j}^{H} \hat{\mathbf{O}}_{j}^{? 1} \hat{\mathbf{f}}_{j}\right|^{2}}{\hat{\mathbf{f}}_{j}^{H} \hat{\mathbf{O}}_{j}^{21} \mathbf{O}_{j} \hat{\mathbf{O}}_{j}^{? 1} \hat{\mathbf{f}}_{j}}
$$

where
${ }^{1}$ Actually, this is the number of received samples per antenna, if more than one sample per syn collected.

$$
\mathbf{O}_{j} ? \mathbf{G}^{(j)} E \mathbf{x}^{(j)} \mathbf{x}^{(j) H} ? \mathbf{G}^{(j) H} ? \mathbf{f}^{(j)} E x^{(j)}(d) x^{(j)}(d)^{?} ? \mathbf{f}^{(j) H} ? \stackrel{\substack{m ?!\\ m ? j}}{?} \mathbf{G}^{(m)} E ? \mathbf{x}^{(m)} \mathbf{x}^{(m) H} ? \mathbf{G}^{(m) H} ? E \boldsymbol{n} \mathbf{n}^{l}
$$

$2 \quad \hat{\mathbf{O}}_{j}$ is an estimate of $\mathbf{O}_{j}, d ? \max ?(N ? K) / 2 ? ? K, K ?, \mathbf{f}_{j}$ is the d-th column of $\mathbf{G}^{(j)}, x^{0}$ ${ }_{3}$ the d-th element (desired symbol) of the $\mathbf{x}^{(j)}$ data stream vector, and SINR_{j} represents the for the j-th transmitted data stream in the system. In this example, the primary data s 5 sent to a user will be $j=1$. In a MIMO system where multiple data streams are sent to a
6 user, the second stream could be $j=2$, etc.

7

8 ANNEX B: CHANGE HISTORY

		Change history	Old		
Date TSG\# TSG Doc.	CR	Rev	Subject/Comment		

[^0]: The present document has been developed within the $3^{\text {rd }}$ Generation Partnership Project (3GPP ${ }^{\mathrm{TM}}$) and may be further elaborated for the purposes of 3GPP

 The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.
 This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
 Specificat ions and reports for implementation of the 3GPP ${ }^{\text {TM }}$ system should be obtained via the 3GPP Organizational Partners' Publications Offices.

[^1]: $?_{n, m, A o A} \quad$ is the the AoA for the m th subpath of the nth path (Step 12).
 $G_{B S}\left(?_{n, m, A o D}\right)$ is the BS antenna array gain (Step 12).
 $G_{M S}\left(?_{n, m, A o A}\right)$ is the MS antenna array gain (Step 12).
 $j \quad$ is the square root of -1 .
 $k \quad$ is the wave number 2 ? / ? where ? is the carrier wavelength in meters.
 $d_{s} \quad$ is the distance in meters from BS antenna element s from the reference 1
 antenna. For the reference antenna $s=1, d_{1}=0$.
 $d_{u} \quad$ is the distance in meters from MS antenna element u from the reference
 antenna. For the reference antenna $u=1, d_{1}=0$.
 $?_{n, m} \quad$ is the phase of the m th subpath of the nth path (Step 8).
 $\|\mathbf{v}\| \quad$ is the magnitude of the MS velocity vector (Step 2).
 $?_{v} \quad$ is the angle of the MS velocity vector (Step 2).
 3.5 Optional system simulation features
 3.5.1 Polarized arrays

 Practical antennas on handheld devices require spacings much less than ?/2. Pol: antennas are likely to be the primary way to implement multiple antennas. A cross-pol model is therefore included here.

 A method of describing polarized antennas is presented, which is compatible with the 1 s procedure given in section 3.3 . The following steps extend the original 12 to account f_{1} additional polarized components. Each element of the S element BS array and U eleme] array consists of cross-polarized elements.

 - Step 13: Generate additional cross-polarized subpaths. For each of the 6 paths of S generate an addition M subpaths at the MS and M subpaths at the BS to represer portion of each signal that leaks into the cross-polarized antenna orientation d scattering.
 - Step 14:. Set subpath AoDs and AoAs. Set the AoD and AoA of each subpath in Stı equal to that of the corresponding subpath of the co-polarized antenna orient (Orthogonal sub-rays arrive/depart at common angles.)
 phase offset of the m th subpath of the nth path between the x component (e.g. eith horizontal h or vertical v) of the BS element and the y component (e.g. either the horizo or vertical v) of the MS element. Set $?_{n, m}^{(x, x)}$ to be ? ${ }_{n, m}$ generated in Step 8 of Sectior Generate $?_{n, m}^{(x, y)}, ?_{n, m}^{(y, x)}$, and $?_{\substack{(y, y)}}^{\substack{(y, m}}$ as i.i.d random variables drawn from a uniform 0 t degree distribution. (x and y can alternatively represent the co-polarized and cross-pol orientations.)

