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Foreword 
This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP). 

The contents of the present document are subject to continuing work within the TSG and may change following formal 
TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an 
identifying change of release date and an increase in version number as follows: 

Version x.y.z 

where: 

x the first digit: 

1 presented to TSG for information; 

2 presented to TSG for approval; 

3 or greater indicates TSG approved document under change control. 

y the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, 
etc. 

z the third digit is incremented when editorial only changes have been incorporated in the document. 
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3 Definitions, symbols and abbreviations 

3.1 Definitions 
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply. 

Definition format 

<defined term>: <definition>. 

example: text used to clarify abstract rules by applying them literally. 

3.2 Symbols 
For the purposes of the present document, the following symbols apply: 

Symbol format 
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<symbol> <Explanation> 
 

3.3 Abbreviations 
For the purposes of the present document, the following abbreviations apply: 

Abbreviation format 

<ACRONYM> <Explanation> 

4 Background and Introduction 
The standardization of 3rd generation WCDMA system has been going on in 3rd Generation Partnership Project (3GPP) 
since the end of 1998. The 3G systems bring a promise of much higher data rates and enhanced services when 
compared to 2G systems. As many of the proposed services, like wireless web browsing, are expected to be downlink-
intensive it was recognized from the very beginning that improvement of downlink capacity is one of the main 
challenges. 

Performance of radio system depends on various issues but one important factor is the available diversity (time, 
frequency, multipath etc.). Due to wide bandwidth WCDMA systems are especially effective in exploiting the multipath 
diversity existing in time dispersive radio environments. If little or no multipath diversity is available the performance 
can degrade quite considerably. One way of improving the situation is to utilize 2 or more receive and/or transmit 
antennas that effectively speaking introduce additional radio paths and thereby increase the available diversity. As 
receiver antenna diversity is implementation wise challenging especially for low cost terminals a lot of attention have 
been paid to various transmit diversity solutions to be employed on radio access network side. 

During 1999 a great deal of effort was put on defining transmit diversity solutions for Rel.-99 of 3GPP WCDMA 
specifications. As a result two open loop techniques, Space Time Transmit Diversity (STTD) and Time Switched 
Transmit Diversity (TSTD), and closed loop solution based on Transmit Adaptive Array (Tx AA) concept with two 
different modes were standardized for FDD [1,2]. For TDD, TSTD and Block STTD open loop methods can be used on 
SCH and P-CCPCH, respectively, and closed loop methods on DPCH [3, 4]. All the Rel.-99 Tx diversity methods 
assume two transmit antennas. 

Already during 1999 it was recognized that further performance improvements could be possible by increasing the 
number of transmit antennas. Yet, it was agreed that Tx diversity for more than 2 antennas will be studied for possible 
inclusion to Rel.-5 of 3GPP specifications. The following chapters describe the proposed concepts, present the 
performance results, consider the impacts on UE and UTRAN implementation, and physical layer operation, and, 
finally, present issues related to backwards compatibility to Rel.-99 followed by conclusions. 

5 Descriptions of studied concepts 

5.1 Description of the eigenbeamformer concept 
With increasing the number of antenna elements by using an extension of the Release-99 TxD modes, the amount of 
necessary feedback is increased. When keeping the uplink bandwith the same the antenna weights cannot be adjusted 
fast enough to account for fast fading. Hence, for higher velocities of the UE the gain due to the additional antenna 
elements is low. 

However there are ways to reduce the necessary feedback bandwith if the antenna channel paths are correlated. One 
possible concept to achieve a lower feedback bandwith is the eigenbeamformer concept which takes advantage of the 
correlated antenna paths. The general idea behind the eigenbeamformer is a decorrelation of the antenna signal paths to 
achieve a reduction in dimension of the spatial space. This enables subsequent short term processing at the UE to 
sufficiently mitigate fast fading. 

This decorrelation is performed by exploiting the long term properties of the propagation paths based on an 
eigenanalysis of its long term spatial covariance matrix. The eigenvectors (in the sequel also called eigenbeams) with 
the largest eigenvalues (largest average UE receive power) are determined and fed back step by step to the Node B. This 
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process takes place on the same time scale as the physical UE movement. Accordingly, the required operations in the 
UE as well as required feedback bits are distributed over a very large number of slots. 

In addition, a short term selection between the eigenbeams is carried out at the UE to account for fast fading. This 
information is fed back to the Node B on (almost) every slot. 

By this technique it is possible to address a larger number of antenna elements providing large beamforming gains at 
higher velocities. 
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Figure 1. Generic Downlink transmitter at the Node B with M = 4 antenna elements 

Figure 1 and Figure 2 show the generic architecture of the eigenbeamformer concept at the Node B and the UE. In the 
following sections the focus is on a system with M = 4 antenna elements and Nbeam = 2 or 4 eigenvectors. However the 
eigenbeamformer is easily extendable to more antenna elements. 
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Figure 2. Generic eigenbeamformer structure at the UE for M = 4 

 

5.1.1 Calculation of the Dominant Eigenvectors 

Using orthogonal pilot sequences transmitted from the Node B antenna elements, the UE estimates the short term 
spatial covariance matrix averaged over the temporal taps of the channel. 

  ∑
=

=
N

n

H
nn

1
ST hhR  (1) 

The column vector ( )T
nMnnn hhh ,,, 21 �=h  denotes the channel vector of the n-th temporal tap. The number of 

taps is denoted by N; M = 4 antenna elements are assumed. The long term spatial covariance matrix is obtained by 
averaging the short term matrix using a forgetting factor ρ. 

  )()1()1()( STLTLT iii RRR −+−=  (2) 

The symbol i denotes the time index. It is sufficient to perform an update once every frame or even in larger intervals. 

Decorrelation in space is achieved by an eigenanalysis of the long term spatial covariance matrix according to 

  VVR =LT  (3) 

The eigenvectors (eigenbeams) to be found are columns of V . Since the matrix  is diagonal by definition, 
transmission on different eigenbeams leads to uncorrelated fast fading. The diagonal entries indicate the long term UE 
received power of each beam. 

Note that the eigenbeamformer automatically adjusts to various propagation environments (spatially correlated or 
uncorrelated). If the channel is spatially correlated, the channel can accurately be described by a small number of 
eigenbeams. If, on the other hand, the channel has a spatial correlation of zero, no long term spatial channel information 
can be exploited and each eigenvector addresses only one antenna element. 

5.1.2 Long Term Feedback Scheme 

From the set of M = 4 eigenbeams in V , Nbeam vectors with the largest eigenvalues will be chosen to be transmitted 
in the long term feedback. 

Each weight vector is a vector of complex numbers. The size of this vector equals the number of antenna elements (M = 
4). Each complex vector element is quantized by a number of bits. There are different ways for quantization. For 
example, the absolute value and the phase can be quantized with 3 and 5 bits respectively. Hereby, the amount of bits 
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can be reduced if the phase of the first vector element is set to zero. Thus, for the transmission of one eigenbeam 
4������������	
��������������� 

This number applies for the direct feedback of the eigenbeams from the UE to the Node B. Also methods with 
progressive refinement could be used that transmit only the difference to the previously sent vector. This could reduce 
the subsequent update period and an increased quantization / resolution is possible. 

More advanced long term feedback concepts could be used which require less feedback bits. 

The implementation of mechanisms to protect the long term bits from bit errors are for further study. 

  

5.1.3 Short Term Feedback Scheme 

Scheme 1: Eigenbeamformer using selection 

A short term estimate of the UE received power is performed for each eigenbeam by calculating 
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where m characterizes the eigenbeam. The eigenbeam that results in the maximum value for the received power Pm is 
selected and signalled to the Node B. 

For two (four) eigenbeams 1 (2) bit(s) is (are) transmitted to indicate the selection. 

The overlaying long term processing makes it possible to switch between eigenbeams instead of antenna elements. An 
increasing number of antenna elements can be addressed without reducing the UE velocity threshold. 

Note that the pilot symbols of the DPCCH may be used for eigenbeam verification similar to the closed loop modes in 
Release-99. 

 

Scheme 2: Eigenbeamformer using weighted combining 

A short term estimate of the UE received power is performed for each weight vector by calculating 
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where ( ) }4/4/34/34/{),exp(2121 ππππθθλλ −−∈+= mmm jvvw . m characterizes the 

degree of the combining phase. Where λ1 and λ2 is first and second largest eigenvalue of long term covariance matrix, 
RLT, respectably and θm is a short term parameter. The weight vector that results in the maximum value for the received 
power Pm is selected and signalled to the Node B. 

For two (four) eigenbeams 2 (4) bits are transmitted to indicate the selection and progressive refine is applied to 
transmit each bit. The overlaying long term processing makes it possible to co-phase combine two(four) eigenbeams 
instead of  antenna elements. 

 

An increasing number of antenna elements can be addressed without reducing the UE velocity threshold. Note that the 
pilot symbols of the DPCCH may be used for eigenbeam verification similar to the closed loop modes in Release-99. 

 

5.1.4 Format of Feedback Information 

The feedback rate for the eigenbeamformer is kept at the same rate as in Release-99 and is 1500 bit/s. The long term 
information bits (for feedback of eigenbeams) and the short term information bits (for feedback of eigenbeam selection) 
are multiplexed. The following frame format for the feedback information bits is proposed: 
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Table 1: Multiplexing of long term / short term feedback information 

Slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
short term FB bits 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0
long term FB bits 0 0 0 0 0 0 0 0 0 0 0 0 0 0 1  

In this multiplexing format the transmission of two eigenbeams would take 2*�������������������������������
���
5.1.2). The eigenbeam selection of the previous slot is applied in the slots where no short term feedback information is 
received by the Node B (slot #15). 

This format is confined to one radio frame. Thus, no counting over frame boundaries is necessary. 

In a later extension with more than 4 antenna elements other formats could be used, e.g. using 3 long term feedback bits 
within one frame. This is for further study. 

Table 2: Multiplexing format of long term / short term information for more than 4 antenna elements 

Slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
short term FB bits 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
long term FB bits 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  

 

Since no long term channel information is available at the Node B for a user at the start of transmission, initial weight 
vectors may, for instance, address only one of the antenna elements, e.g.,  
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= vv   for M = 4 antenna elements. 

5.2   Basis selection scheme for > 2 Tx antennas 

5.2.1 Tx antenna weights  

In closed loop Tx diversity systems, the weights of transmit antennas are determined at a mobile station and fed back to 
the base station. These weights should result in as high SNR as possible at the mobile. The set of these weights may be 
viewed as a vector w= [w1 w2 …wi… wM]T, where wi is a complex weight associated with the ith Tx antenna. For the 
maximum SNR at the mobile, the weights should maximize P below:  

  P w H H wH H= , (5) 

when H=[h1 h2 …hi…hM] and M is the number of Tx antennas. The column vector hi represents an estimated channel 
impulse response for the ith Tx antenna, and its vector length equals to the number of paths. The weight vector w 
information is periodically fed back to the base station. Note that the amount of feedback information and the 
implementation complexity increase with the number of Tx antennas. The efficient representation of a weight vector is 
desired to reduce the amount of feedback data and the implementation complexity. Furthermore, backward 
compatibility is desirable.  

A weight vector with M elements may be represented as a linear sum of basis vectors, which span an M-dimensional 
space. Examples of basis vectors for 2-, 3-, 4-dimensional spaces are shown in Appendix A of [9]. Let’s assume for 
explanation that 4 Tx antennas are used for Tx diversity. The optimal weight vector wopt for this system has 4 elements 
and may be represented as a linear sum of four basis vectors, B1, B2, B3, B4, as follows: 

  � � � � � � � � �
RSW

= + + +
� � � � � � � �

 (6) 

where c1,…,c4 are complex coefficients associated with corresponding vectors. Assuming that | c1|>| c2|>| c3|>| c4|, wopt 
may be approximated as 
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  w c Bapp_1 1 1≅ , (7.a) 

  w c B c Bapp_2 1 1 2 2≅ + , (7.b) 

  w c B c B c Bapp_3 1 1 2 2 3 3≅ + + ,  (7.c) 

These vectors wapp_1 , wapp_2, wapp_3, may be viewed as the projections of wopt into 1-dim, 2-dim, and 3-dim subspaces. 
wapp_3 is more accurate representation of wopt than wapp_1 and wapp_2 . 

5.2.2 Representation of weight vectors 

The conventional representation of the vector wopt may require (M-1)*Nc bits, where Nc bits are required to represent 
each element of wopt. This representation indicates that the transmission of (M-1)*Nc bits at 1500Hz is required to 
support Tx diversity with M Tx antennas. The reason for (M-1)*Nc not M*Nc is that one of M Tx antennas may be 
viewed as reference and the relative weights for other antennas are required. To reduce the required number of bits, it is 
proposed to feedback information on the approximated vector, instead of wopt. The representation of the approximated 
vector includes the specification of basis vectors and associated coefficients. When there are M Tx antennas and the 
approximation is made in a S-dimensional subspace, there are MCS combinations for selecting S basis vectors among M 

vectors and the required number of bit to specify the basis vector combination is ( ) SM2 Clog . 

5.2.3 Feedback protocol structure 

In the simulation, the two cases for antenna selection is considered: Case 1) 2 antenna selection (M=4, S=2), it noted as 
4C2 and Case 2) 3 antenna selection (M=4, S=3), it noted as 4C3. In both cases, 2bit representation for each element 
(phase only) is used (Nc = 2). The required number of feedback information per signalling word is: Case 1) 5 bits, and 
Case 2) 6bits. For detail simulation scheme, section 6.2.1 can be referred. The considered frame format of feedback 
information is: 

(Case 1: 2 best selection among 4 basis and combine all 2 with received phase information) 

Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Phase    P1 P2    P1 P2    P1 P2 

Selection S1 S2 S3   S1 S2 S3   S1 S2 S3   

 Si: Antenna selection bits 
   Pi: Phase difference with respect to the coefficient associated with the first basis vector 

 

( Case 2 : 3 best selection among 4 basis and combine all 3 with received phase information) 

Slot 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 
Phase   P11 P12 P21 P22   P11 P12 P21 P22   P11 

Selection S1 S2     S1 S2     S1 S2  

 Si: Antenna selection bits 
  Pij: Phase difference with respect to the coefficient associated with the first basis vector 

5.3 New CPICH Transmission scheme for > 2 Tx antennas 
In Release 99 specification, transmit diversity using 2 antennas is included. Currently, various transmit diversity 
schemes using 4 transmit antenna are considered for possible extension to Release 2000. However, the most important 
thing that should be solved first is the pilot reference channel for 4-antenna.  

In this document, a new CPICH transmission scheme is propose for 4-antenna transmit diversity. The most important 
thing that should be kept in mind when proposing new CPICH transmission scheme for 4-antenna transmit diversity is 
the backward compatibility. Here, the backward compatibility means that the Release 99 UE should be able to 
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demodulate the whole physical channels (dedicated or common physical channel) without any change in receiver 
structure.  

In section 5.3.1, the transmission scheme of CPICH for 4-antenna transmit diversity is described and the backward 
compatibility is proved. In section 5.3.2, corresponding common physical channel transmission scheme with 4 transmit 
antenna to satisfy the backward compatibility is proposed. And the corresponding transmission schemes of dedicated 
physical channel with 2-antenna and 4-antenna transmit diversity UE are described in section 5.3.3.  

Let’s distinguish UEs by their diversity mode as following. 

 2-ant diversity UE: UE in 2-antenna diversity mode (open/closed) 
 4-ant diversity UE: UE in 4-antenna diversity mode (open?/closed?) 

5.3.1 CPICH Transmission Scheme 

5.3.1.1 CPICH Transmission Scheme 

If UTRAN supports 4 transmit diversity (open or closed loop) for dedicated channel to UE in the cell, then it should 
provide 3 additional diversity pilot channels as well as primary CPICH. However, since the CPICH is a common 
physical channel it also should be received by all UEs with different diversity mode, and thus one and only one CPICH 
transmission scheme should be used. Each UE should estimate the channel(s) as many as the number of transmit 
antenna, since each antenna has its own path. That is, common CPICH transmission scheme for 4 transmit antenna shall 
have the property that it must be recognised as one, two, or 4 pilot channels to 2-ant diversity UE and 4-ant diversity 
UE, respectively. Figure 3 shows the proposed CPICH transmission scheme for 4 transmit antenna which satisfies the 
property. The main characteristics of the proposed CPICH transmission scheme are: 

- using two OVSF codes (COVSF1 and COVSF2) 

- same pilot pattern as Release 99’ 2-ant CPICH (AA and A-A/ –AA) 

- different control of pilot channel gain for 2-ant or 4-ant diversity reception 

- backward compatible with Release 99 

- reduce PAPR by distributing physical channels to 4 antenna 
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Figure 3.  Proposed CPICH transmission scheme for 4 antenna transmit diversity 
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The CPICH signal from each antenna at the receiver side is given by the following equations. The timing index and 
background noise is ignored for simplicity. 

  

42124

32123

22112

12111

)(P

)(P

)(P

)(P

hCCCgX

hCCCgX

hCCCgX

hCCCgX

SCOVSFOVSF

SCOVSFOVSF

SCOVSFOVSF

SCOVSFOVSF

××−⋅×=
××+⋅×=
××−⋅×=
××+⋅×=

  (8) 

where P1 (=AA) and P2 (=A-A or –AA) are the two pilot patterns defined for 2-ant CPICH in Release 99, and CSC is the 
primary scrambling code. In Eq. ([9]), COVSF1 and COVSF2 are two OVSF codes where COVSF1 is Cch,256,0 and COVSF2 is 

one additional OVSF code. 4321 ,,, hhhh  are the channel coefficients for each antenna path. It is worth noting that the 

parameter g in Eq. ([9]) is the gain factor to discriminate the received pilot power for 2-ant and 4-ant diversity UE. By 
varying the gain g, the received pilot strength can be controlled to 2-ant diversity UE and 4-ant diversity UE. For 2-ant 
diversity UE only COVSF1 is used and thus the second term in Eq. ([9]) is removed. On the other hand, for 4-ant diversity 
UE, both COVSF1 and COVSF2 will be used and it can discriminate 4 different antenna paths. Detail receiver structure of 
different diversity UE are described in next section. 

 

5.3.1.2 Receiver Structure of CPICH 

5.3.1.2.1 Receiver structure of 4-ant diversity UE 
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Figure 4. Receiver structure of 4-ant diversity UE 

Figure 4 shows how the 4-ant diversity UE can receive and estimate the 4 channels. In Figure 4, ba hh ˆ ,ˆ  denote the 

channel estimation of )( 21 hhgha += , )( 43 hhghb += , respectively. Similarly, DCBA hhhh ˆ,ˆ,ˆ ,ˆ  denote the 

estimation of 21 hhhA += , 43 hhhB += , 21 hhhC −= ,  43 hhhD −= , respectively. Note that these channel 

estimation pairs }ˆ,ˆ{ ba hh , }ˆ,ˆ,ˆ,ˆ{ DCBA hhhh , or }ˆ,ˆ,ˆ,ˆ{ 4321 hhhh  can be used to compensate the common or dedicated 

physical channels. 

5.3.1.2.2 Receiver structure of 2-ant diversity UE 

Figure 5 is the CPICH receiver structure of 2-ant diversity UE and it can also be used with the proposed CPICH 
transmission scheme without any change. Note that the channel estimation value with the receiver is exactly same as the 
output of the first branch output in Figure 4. That is,  )( 21 hhgha += and )( 43 hhghb += .  Consequently, there’s no 

change required to Release 99 UE in terms of pilot channel estimation. The only difference is the effective channel 
through which the pilot signal is transmitted. In order for the proposed CPICH transmission scheme to become fully 
backward compatible , UTRAN also should modify the transmission structure of common/dedicated physical channels 
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with considering the channel estimation outputs of 2-ant diversity UE, and 4-ant diversity UE. The detail of the 
common/dedicated physical channel transmission structure is given in section 5.3.2 and 5.3.3. 
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Figure 5.  Receiver structure of 2-ant diversity UE 

 

5.3.1.2.3 Summary of channel estimation outputs 

Table 3. shows the summary of demodulation parameters and the channel estimation output according to the UE 
diversity mode. In Table 3 the related physical channel implies the physical channel that utilises the corresponding 
channel estimation output during demodulation. The main idea of the Table 3 is that the transmission structure of the 
related physical channel should be designed carefully with considering the corresponding channel estimation output. 

 

Table 3. Summary of demodulation parameters and channel estimation output 

Pilot Channel Rx  
                parameters 

 
UE mode 

scrambling 
code 

channelisation 
code 

pilot pattern 
channel estimation 

output 

Related physical 
channel 

2-ant diversity CSC COVSF1 = Cch,256,0 
AA 

A-A/-AA 

)( 21 hhgha +=  

)( 43 hhghb +=  

Common CH 
Dedicated CH 

)( 21 hhgha +=  

)( 43 hhghb +=  
Common CH 

4-ant diversity CSC COVSF1 = Cch,256,0 

COVSF2 = Cch,256,I 
AA 

A-A/-AA 

1h , 2h , 3h , 4h  Dedicated CH 

 

5.3.2 Common Physical Channel Tx Scheme 

5.3.2.1 Common Physical Channel Tx Scheme 

Common physical channel should be transmitted with one and only one transmission scheme. However, each UE should receive the 
common physical channel as their transmit diversity mode. Figure 6 is the proposed common physical channel transmission scheme 
where the original symbols (S1, S2) are transmitted to antenna 1 and 2, while the STTD encoded symbols (-S2

*, S1
*) are transmitted to 

antenna 3 and 4. Backward compatibility of this scheme can be easily proved and shown in section 5.3.2.2. 
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Figure 6. Common Physical Channel Transmission 

 

5.3.2.2 Receiver Structure of Common Physical Channel Tx Scheme 

If the common physical channel transmission scheme in Figure 6 is used, 2-ant and 4-ant diversity UE can receive the signals with 
the conventional STTD decoder as shown in Figure 7. 
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Figure 7. Receiver Structure for Common Physical Channel Transmission Scheme 1 

 
The received signal after multiplication of OVSF in Figure 6 is given by 
 

  
bat

bat

hShShhShhSr

hShShhShhSr
*
1243

*
12122

*
2143

*
22111

)()(

)()(

+=+++=

−=+−+=
 (9) 

where 2,1 tt  denote the time unit. Since the channel estimation provided by 2-antenna CPICH receiver are aĥ and bĥ  (See Table 

3), conventional STTD receiver can be used without any change. 
 

5.3.3 Dedicated Physical Channel Tx Scheme 

In case of a dedicated physical channel, transmission scheme should be different for each UE according to the diversity 
mode. However, the transmission scheme should be carefully designed with considering the available channel 
estimation output as given in Table 3. 

5.3.3.1 Dedicated Physical Channel Tx Scheme for 2-ant UE 

For 2-ant diversity UE, the available channel estimation is )( 21 hhgha += , )( 43 hhghb +=  (See Table 3). It 

means that the antenna 1 and antenna 2 should transmit one signal, and antenna 3 and antenna 4 should transmit the 
other signal. Based on the above constraint, Figure 8 and Figure 9 show the proposed transmission scheme for dedicated 
physical channel to 2-ant STTD and closed loop transmit diversity UE, respectively. By distributing 2-antenna signals 
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to 4-antenna, such situation that the power of 2-ant diversity UE’s concentrate on two antenna can be avoided. 
Definitely, it reduces the PAPR (Peak to Average Power Ratio) 
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Figure 8. Dedicated physical channel transmission scheme for 2-ant STTD diversity UE 
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Figure 9. Dedicated physical channel transmission scheme for 2-ant closed loop transmit diversity UE 

 

5.3.3.2 Dedicated Physical Channel Transmission Scheme for 4-ant UE 

If a dedicated physical channel is transmitted to a 4-ant diversity UE, the transmission scheme should be designed with 
considering the available channel estimations output to the UE. With the proposed CPICH transmission scheme, the 

available channel estimation output of the 4-ant diversity UE are 1̂h , 2ĥ , 3ĥ , 4ĥ  (See Table 3). Currently, there is no 

accepted 4-antenna open/closed loop transmit diversity scheme but the proposed CPICH transmission scheme can be 
used with any kind of open/closed loop diversity proposal. 
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5.4. Tx diversity scheme with beamforming feature 
It is desirable that the closed loop multiple antenna transmit diversity/beamforming scheme can support a variety of 
antenna configurations and beamforming algorithms. To achieve it efficiently, the higher layer signaling information 
about Tx antenna configurations of Node B to UE is necessary. As the spatial correlation largely depends on the Tx 
antenna configurations in most cases, it will greatly help UEs to determine how appropriately the diversity and 
beamforming be combined, e.g. the number of beams and the feedback frame format. 

 

Spatial correlation property depends on both the transmit antenna configuration and the radio propagation environment. 
The latter is unpredictable and performance depends on how feedback scheme matches the channel. For example, in 
strong spatially correlated channels, frequent update of short-term diversity weights is not efficient. In spatially 
uncorrelated channels, feedback bits for long-term beamforming weights are useless. The former, selection of antenna 
configuration, is one of the design criteria for cellular operators. It is rather easy to control spatial correlation by 
choosing appropriate antenna configuration. 

 

In theory, employing multiple transmit antenna elements can achieve both diversity gain and beamforming gain. If the 
antennas are placed far away from each other, maximum diversity gain can be achieved but, due to the grating lobe 
problem, the achievable beamforming gain is limited. On the other hand, if the inter-element spacing in the antenna 
array is small, maximum beamforming gain can be obtained but the diversity gain will be limited as signals from 
different antenna elements are highly correlated. 

 

5.4.1. Description of our solution 

According to the transmit antenna configuration of the Node B, UE calculate short-term diversity weights and long-term 
beamforming weights. The hierarchical weighting is defined as shown in Figure 10. 

 

Consider an M sub-arrays configuration in which each sub-array consists of K=N/M elements. Firstly, UE finds an M-

dimensional short-term diversity weight vector Dw , which maximize 

DD
H

D
H

DD wHHwP =        (1) 

with ],,,[ 1)1(11 +−+= KMKD hhhH �  

where, 1)1( +− Kmh   )1( Mm �=  is the channel response vector, which represents the m-th sub-array. 

 

Secondly, UE finds a K-dimensional beamforming weight vector mBw ,  for each sub-array which maximize  

mBmB
H

mB
H

mBmB wHHwP ,,,,, =        (2) 

with ],,,[ )1(2)1(1)1(, KKmKmKmmB hhhH +−+−+−= �  

where, kKmh +− )1(   )1( Kk �=  is the channel response vector of the k-th element in the m-th sub-array. 

 

Then, short-term diversity weights D1,m and long-term beamforming weights Bm,k for the hierarchical weighting are 

calculated from Dw and mBw , as follows. 
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{D1,m} corresponds to the M-branch Tx diversity weights and {Bm,k} are beamformer weights for the m-th antenna group. 
The feedback frequency for {D1,m} is much higher than that for {Bm,k} to suit for fast fading environment. 
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Figure 10. Hierarchical weighting for the transmit antenna diversity/beamforming 

 

5.4.2. Example format of feedback information 

The following frame formats for the feedback information bits are desirable. Format 1 is for Tx diversity and it allows 
employing the scheme without beamforming features. Format 2 is for beamforming with small inter-element spacing 
less than spatial correlation length. All of 15 bits/frame for beamformer weights can be used for accurate control of the 
beam. Format 3 is for combination of diversity and beamforming, which is suitable for the sub-array antenna 
configuration. Single beamformer weight is quantized by 3 bits and fed back in a frame to Node B. In case of two-sub-
array system, the beamformer weight of sub-array #1 is transmitted in the first frame, then the beamformer weight of 
sub-array #2 is transmitted in the second frame. The number of antenna elements in each sub-array can be increased, as 
long as the feedback delay is permissible for updating the beamformer weights. 

 

Table 4. Multiplexing format 1 of feedback information for Tx diversity 

Slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FB bits for D 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
FB bits for B 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0  

 

Table 5. Multiplexing format 2 of feedback information for beamforming 

Slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FB bits for D 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
FB bits for B 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1  
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Table 6. Multiplexing format 3 of feedback information for combination of diversity and beamforming 

Slot # 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
FB bits for D 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0
FB bits for B 0 0 0 0 1 0 0 0 0 1 0 0 0 0 1  

5.5 Closed loop transmit diversity mode 2 with reduced states 
for 4 elements 

Similar to Rel-99 closed loop Tx diversity systems, the weights of transmit antennas are determined at a 
mobile station and fed back to the base station. The set of weights at the UTRAN-AP w= [w1 w2 …wi… wM]T, 
where wi is a complex weight associated with the ith Tx antenna are chosen to maximize P below:  

  P w H H wH H= , (5) 

where H=[h1 h2 …hi…hM] and M is the number of Tx antennas. The column vector hi represents an estimated 
channel impulse response for the ith Tx antenna, and its vector length equals to the number of paths.  

Recalling the description of the modified mode 2 CL transmit diversity (“Mode2_4p0g”)  in R1-00-1132, 
we consider 4 phase states per element which are defined in Table 1.  

Table 7. FSM of modified closed loop mode 2 signalling message per element 
FSM Phase difference between antennas (degrees) 
00 π 
01 -π/2 
11 π/2 
10 0 

 

Therefore we need 6 bits feedback per slot for the update of the antenna coefficients.  If we consider 1 bit feedback per 
slot, Progressive refinement (as described for Rel 99 Closed loop transmit diversity Mode 2) is used to update the 
antenna coefficients.  

5.5.1 Format of Feedback Information 

The uplink feedback information signalling is similar to the Rel-99 mode 2, that is using progressive 
refinement both at the UE and UTRAN-AP.   The only change is the number of states, at the UE, to be 
compared for maximising P w H H wH H= , is increased due to 4 elements instead of 2 (Rel 99) and the FSM 
(Table 8) corresponding to coefficient of the antenna 2, 3 and 4 are sent successively. 

 

6 Performance 

6.1 Link level simulation assumptions 

6.1.1 Regular simulation assumptions 

Table 8 1 lists the simulation parameters that should be used in the Tx diversity simulations. 

Table 8. Recommended simulation parameters for multiantenna Tx diversity simulations. 

Bit Rate 12.2 kbps 
Chip Rate 3.84 Mcps 

Convolutional code rate 1/3 



 

3GPP 

3G TR25.869 V0.1.0(2001-06)23Release 5

Carrier frequency 2 GHz 
Power control rate 1500 Hz 

PC error rate 4 % 
PC Step Size 1 dB per antenna 

Channel model(s) and UE 
velocities 

1-path Rayleigh: 3, 10, 40, 120 km/h 
Modified ITU Ped A: 3, 10, 40 km/h 

Modified ITU Veh. A: 10, 40, 120 km/h 
CL feedback bit error 

rate 
4 % 

CL feedback delay  1 slot 
TTI 20 ms 

Downlink DPCH slot 
format 

#10 or #11 

Min. # of RAKE fingers 
for modified Vehicular A 

channel 

5 

Target FER/BlkER 1 % 
Geometry (G) -3, 0 and 6 dB 
Common Pilot -10 dB total 

Correlation between 
antennas 

0 

Performance measure Tx Eb/Ior 
CL feedback rate 1500 Hz 

 

The following notes should be taken: 

1. Definition of Tx Eb/Ior 

Eb =  The average energy per information bit as measured at the base station. Defined after CRC attachment 
but before channel encoding. 

Ior = The total power density of the base stations in soft handoff with the mobile, measured at the base 
station 

2. Definition of Geometry (G) 

Geometry, G, is defined as: 

  
ooc

orx

NI

IRaverage
G

+
=

)(
 (10) 

where, 

orx IR  =  The total power density of the base stations in soft handoff with the mobile, measured at the 

mobile station 

ocI  =  The interference power density at a mobile due to all the base stations not in soft handoff with the 

mobile 

oN  =  The thermal noise power spectral density 

3. Power control step size 

The power control step size is 1 dB per antenna. This means that when up/down command is received the tranmitter 
increases/decreases the Tx power per antenna by 1 dB which also results in 1 dB increase/decrease of the total Tx 
power. 

4. Modeling of downlink channels 
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The only common channel modeled in downlink is the CPICH. The detailed implementation of the CPICH can vary but 
the total power allocated to it is 10 % of the total Tx power of the BS. This 10 % allocation needs to be valid only in the 
beginning of the simulation, i.e. the CPICH total power is kept fixed during the simulation. Thus, the change of the user 
signal power due to power control does not affect the total CPICH Tx power. 

5. Modified ITU channel models 

As all of the path delays of the ITU channel models will not be multiples of the the length of one chip the channel 
models will be modified. In case a path (ray) is between two channel delay samples, the following modification will be 
done: 

• The ray is split into two rays, one to the sample to the left and one to the sample to the right. The power of these 
new rays is such that the sum is equal to the original power, and the power of each of the new rays is proportional 
to the (1-normalised distance to the original ray). Finally, the power of all rays on one sample are added up and 
normalised to yield total channel power of 1. 

Consider the example shown in the Figure 11 . In this case a path of power P located between two delay samples (Tc = 
length of a chip in time) is split to two separate paths with power 0.75P at delay sample k and power 0.25P at delay 
sample k+1.  

0.25Tc 0.75Tc

0.25P

P

k k+1Delay sample

0.75P

k k+1Delay sample
 

Figure 11. Example of a modification of one path. 

6. Number of RAKE fingers 

As the ray splitting technique leads to a high number of channel taps in case of Vehicular A channel the minimum 
number of RAKE fingers that should be used in simulations has been set to 5. 

6.1.2 Additional simulation assumptions for the eigenbeamformer 

• The feedback error rate for short term bits for switching the eigenbeams was 4%. The long term feedback to 
transmit the eigenvectors was assumed to be error free [simulations with 4% error rate on long term feedback will 
be provided in future]. 

• The eigenvectors were quantized with 5 bits for phase and 3 bits for amplitude of each vector element. 

• Ideal antenna verification was assumed at the UE. 

• Correlation between antennas was assumed as described in the following section. 
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6.1.2.1 Channel model for correlated antennas 

The channel model described in [5] is extended by incorporating spatial correlation between the signals from antennas 

m and n of the base station, denoted by nm,ρ  , which are general complex numbers. The corresponding matrix 

capturing all correlation coefficients is denoted by ][ ,nmρ=R  of size M × M when M antennas are used. Assuming 

Rayleigh fading for each antenna, the receive vector )(tx  at the UE can be expressed by an overlay of M independent 

and normalized complex Gaussian fading processes T
M tgttgt )](...)(g)([)( 21=g  , with Jakes power 

density spectrum, i.e., 

  )()()( tutPt hx =  (11) 

where 

  )()( 2/1 tt gRh =  (12) 

is the M-dimensional channel vector. Here, u(t) and P denote the transmitted signal and the transmit power per antenna, 
respectively. Figure 12 shows the applied model. 

R1/2

h(t)g(t)

x(t)

√P u(t)

Node B channel

 

Figure 12. Correlated channel model. Here, the Node B is shown without channel weights applied to the antennas. 

By taking the expected value of the receive vector, it can be verified: Rxx =PE H /}{  (Note: RRR =H2/12/1  ). 

6.1.2.2 Parameters for micro and macro cell scenarios 

Based on a comparison with mathematical descriptions of propagation models [7] two parameters sets for the 
correlation coefficients have been defined. These correspond to a micro cell scenario and a macro cell scenario. 

• Micro cell 
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The correlation coefficients of this matrix correspond to planar waves which power is uniformly distributed in an 
angular spread of 45°. 

• Macro cell 
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R            where 4.26.18.0 88.0,94.0,97.0 jjj ecebea −−− ===   

The correlation coefficients of this matrix correspond to planar waves which power is uniformly distributed in an 
angular spread of 10°. 

Details on the derivation of these parameters can be found in [7, 8]. 

6.1.3 Basis selection for > 2 Tx antennas 

Basic link level simulation assumptions described in [5] and additional assumptions descried Table 9. were used.  

Table 9. Additional simulation parameters. 

Comparing output Ec/Ior 
Modulation QPSK 

Physical channel rate 30ksps 

Number of antennas Release 99: 2, Release 2000: 4 (New) 
Release 99  Mode2: 4bits Total FSM bits 

Release 2000 
Case I (4C2): 5bits 
Case II (4C3): 6bits 

Slot format #10 (6,2,0,24,8) 
Channel estimation WMSA – 4slots (1,4,4,1) 

MPI modeling All noncoherent except self (Fig1 and 2) 
Coherent and noncoherent (Fig 3 and 4) 

 

6.1.4. Additional simulation parameters for the Tx diversity scheme with 
beamforming feature 

Table 10 lists the additional simulation parameters that should be used for the Tx diversity scheme with beamforming 
feature. The frame format for the feedback information bits shown in Table 6 are used for the simulation. 

Table 10. Additional simulation parameters 

Channel estimation from CPICH with ideal weight verification 
Correlation between antennas 0: between diversity branches 

1: among each sub-array 

UE location preserving 0° direction from Node B 
Multipath angular spread 0° 
BF weight step size 45° 
BF element space λ/2 
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6.2 Link level simulation results 

6.2.1 Link level simulation results of the eigenbeamformer 

6.2.1.1 Uncorrelated case 

In Figure 13  the performance of the eigenbeamformer with switching between Nbeam = 4 eigenvectors compared to 
the Release-99 mode 1 with two antennas is shown. The eigenbeamformer performs about 2.2 dB better than Release-
99 mode 1 for the UE velocity of 3 km/h and 10 km/h. Using four eigenbeams in an uncorrelated scenario has the result 
that each antenna element is addressed by one eigenbeam and effectively switching between antenna elements is done. 

For higher velocities the Release-99 mode 1 with only two antennas will have the same or better performance. This can 
be explained with the increased number of feedback bits for 4 antenna elements which cannot be transmitted fast 
enough. 

 

Figure 13. Simulation results for 0 dB geometry and uncorrelated antenna paths 

Note that the velocity of 120 km/h is shown here for explanation of the behaviour and is quite unrealistic for the 
assumed Pedestrian A channel model. 

6.2.1.2 Micro cell scenario 

For the micro cell scenario switching between Nbeam = 2 eigenbeams was done. For all simulated velocities the 
eigenbeamformer performs with an advantage of about 3 dB compared to Release-99 mode 1. 
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Figure 14. Simulation results for 0 dB geometry and micro cell scenario 

Note that the velocity of 120 km/h is shown here for explanation of the behaviour and is quite unrealistic for the 
assumed Pedestrian A channel model. 

6.2.1.3 Macro cell scenario 

For the macro cell scenario also switching between Nbeam = 2 eigenbeams was done. For all simulated velocities the 
eigenbeamformer performs with an advantage of about 3 dB compared to Release-99 mode 1. 

 

Figure 15. Simulation results for 0 dB geometry and macro cell scenario 
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6.2.2  Basis selection for > 2 Tx antennas 

Release 99 scheme and two other schemes are simulated as in Table 11.  

Table 11. Scheme description 

Scheme Description 

2-mode-2 

�� Closed loop mode 2 according to Rel.99  
�� Number of Tx antennas = 2 
�� Feedback bit rate = 1500 bps 
�� Total bits of FSM = 4bits: 1bit for gain, 3bits for phase 

4C2 

�� Number of Tx antennas = 4  
�� Feedback bit rate = 1500 bps 
�� 2 best antenna selection among 4 transmit antenna  
�� Total bits of FSM = 5bits: 3bits for selection, 2bits for phase  

4C3 

�� Number of Tx antennas = 4  
�� Feedback bit rate = 1500 bps  
�� 3 best antenna selection among 4 transmit antenna  
�� Total bits of FSM = 6bits: 2bits for selection, 4bits for phase 
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Figure 15. Single path simulation results for 0 dB geometry and 1 % FER. 
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Figure 16. Simulation results for modified ITU Ped. A channel at 0 dB geometry. 
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Figure 17. Simulation results for modified ITU Veh. A channel at 0 dB geometry. 

In these simulation results, “2-mode-2” scheme, “4C2” scheme, and “4C3” scheme is compared. The “2-mode-2” 
scheme is closed loop Tx diversity mode 2 of two antennas in Rel 99. In addition, the “4C2” and “4C3” schemes are the 
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basis selection methods of closed loop Tx diversity for more than two antennas. In the “4C2” scheme, the UE selects 
two antennas among four antennas. Consequently, the UE selects three antennas in “4C3” scheme. 

The results of Fig.6.3.1.1., single path case, show that the new scheme has 2.7dB@ FER=1% gain for 4C2 and 3.0dB@ 
FER=1% for 4C3 over the Release 99 Tx diversity Mode 2 when the UE speed is 3km/h.  

As shown in Fig.6.3.1.2, the “modified ITU pedestrian A” channel model is used. The multipath model is 
“noncoherent”. When compared to “2-mode-2” scheme, performance gains of “4C2” scheme and “4C3” scheme are 
3.5dB and 4dB, respectively. The crossover point between “2-mode-2” scheme and other schemes is about 25km/h.    

In Fig.6.3.1.3, these schemes are compared in the “modified ITU vehicular A channel”. As the same as in Fig.6.3.1.2, 
the “noncoherent” multipath model is used. The suggested “4C2” and “4C3” scheme have better performance 
(approximately 1.3dB) in low speed than that of the “2-mode-2” scheme. If, however, the velocity is higher than 
30km/h, performance is similar for three schemes. 

 

6.2.3. Link level simulation results of the Tx diversity scheme with 
beamforming feature 

6.2.3.1. Comparison with other schemes 

Five different antenna schemes were simulated and compared as follows. 

 

♦ 1 Ant. 

• Number of Tx antennas = 1 

• Without closed loop Tx diversity 

♦ 2 Ant. Mode 1 

• Number of Tx antennas = 2 

• Closed loop Tx diversity Mode 1 (Release’99) 

♦ 4 Ant. Mode 1 

• Number of Tx antennas = 4 

• Extension of closed loop Tx diversity Mode 1 

♦ 2x2 Ant. Mode 1 

• Number of Tx antennas = 4 ( two-sub-array configuration ) 

• Extension of closed loop Tx diversity Mode 1 

♦ 2x2 Ant. BF 

• Number of Tx antennas = 4 ( two-sub-array configuration ) 

• Proposed weight adaptation, see Table 6 

 

Figure 16–Figure 18 show the simulation results for three different channel models with 0dB geometry. 
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1Path Rayleigh Channel, 0dB Geom.
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Figure 16. 1 path Rayleigh channel, 0 dB geometry 
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Figure 17. ITU Pedestrian A channel, 0 dB geometry 
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ITU Veh. A Channel, 0dB Geom.
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Figure 18. ITU Vehicular A channel, 0 dB geometry 

 

6.2.4 Closed loop transmit diversity mode 2 with reduced states for 4 
elements  

<t.b.d. > 

 

 

6.3 System level evaluation 
System level evaluations are necessary to get the full understanding of e.g. impacts of different Tx diversity schemes on 
the cellular capacity. Generally speaking, however, decreased Tx Ec/Ior results in improved cellular performance. For 
example, when considering the cellular capacity, halving the Tx power roughly speaking doubles the capacity. 

One issue to consider is the power allocated to CPICH and co-existence of terminals based on different specification 
releases. As such, the Tx power of the CPICH is not standardized, and it is up to the operator to define how much of the 
total BS power will be allocated to CPICH. As Rel.-99 terminals can utilize CPICH transmitted from 2 antennas some 
care must be taken when doing the network planning in case there are more than 2 Tx antennas. In Tx diversity 
simulations it has been assumed that the total CPICH power is 10 % of the BS power. That assumption may be too 
optimistic in a real deployment scenario due to existing Rel.-99 terminals. As a kind of worst case analysis you could 
define that when going from 2 to 4 Tx antennas the total Tx power of the CPICH will also be doubled. That would 
correspond to about 0.5 dB loss in Tx Ec/Ior performance when compared to the assumed 10 % CPICH power allocation. 
The worst case analysis does not account for the fact that increased CPICH power could improve channel estimation, 
weight calculation and weight verification performance. 
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7 Impacts to UE and UTRAN implementation 

7.1 Impacts to UE implementation 

7.1.1 General impacts to UE implementation 

Main complexity increase comes from RAKE implementation as number of channel estimation units increases as a 
function of the number of Tx antennas. Yet, even in the case of 4 Tx antennas the complexity increase due to 4 channel 
estimators per finger is considered to be small when compared to the case of 2 Tx antennas with 2 estimators per finger. 

When CPICH based channel estimation is used some kind of weight verification algorithm seems to be necessary. That 
holds also for Rel.-99 mode 1. Thus, additional complexity increase comes from the need to perform the verification for 
e.g. 4 antennas instead of 2. The complexity increase is considered to be small although more detailed analysis is 
needed for the more advanced verification algorithms.  

Note that if the feedback rate is kept the same as in Rel.-99, short term calculation of the feedback commands requires 
about the same effort as in Rel.-99 based terminals. For concepts that exploit correlation between antenna elements 
additional complexity is needed for the long term analysis. This is regarded as small compared to the complexity needed 
for calculating the short term feedback commands. 

7.1.2 Complexity evaluation of the eigenbeamformer concept 

This evaluation is done by estimating the necessary complex multiplications. The numbers given can be regarded as the 
upper limit of complexity, since the actual implementation can still reduce the computational effort. 

• Channel estimation 

For all the proposed concepts on closed loop Tx diversity with M = 4 antenna elements, the UE has to perform a short 
term channel estimate over the antenna elements at N dominant temporal taps. To calculate for example N = 4 spatial 

channel estimation vectors nh  of length M from the global pilots, N*���������������� ��
��
��
����������������

necessary regardless of the diversity concept used. 

• Calculation of matrix update 

It is assumed that the update in equation (2) is calculated every 5th frame to be used for the long term averaging. The 

covariance matrix STR  is symmetric, so for each tap (M+1)��!����������� ��
��
�tions (and additions) are needed. 

Over all taps 

 
( )

1552

1

∗
+ NMM

 complex multiplications (and additions) per slot are needed. Assuming N = 4 taps this results in 

0.53 complex multiplications per slot. 

• Calculation of eigenbeams (long term processing) 

The power method can be used for the calculation of the eigenbeams. It is assumed that 4 iterations are sufficient to 
yield one dominant eigenbeam. Thus, the complexity approximately equals 4*M*M multiplications for each eigenbeam. 

Further, it is assumed that for each eigenbeam this calculation is done every 300 ms which equals to 30 frames (each 
frame consists of 15 slots). So this concludes to  

4*M*M / 15*30 (= 0.14) complex multiplications per slot in average. 

Advanced methods could be used based on subsequent updating of the eigenbeams which significantly reduce the 
computational effort. 

• Eigenbeam selection (short term processing) 

For each eigenbeam the UE receive power has to be calculated, e.g. using equation (4). This implies about 2*M*N (= 
32) complex multiplications per slot. The eigenbeam which yields the highest power is selected. Since for the other 



 

3GPP 

3G TR25.869 V0.1.0(2001-06)35Release 5

proposals a similar processing as the short term selection has to be performed, about 32 complex multiplications would 
be also necessary. If progressive refinement is used, the complexity would be higher for these proposals. 

 

Thus, the eigenbeamformer comes at the cost of 0.53 + 0.14 = 0.67 complex multiplications per slot (matrix update and 
calculation of eigenbeams) which is relatively low with respect to 16 + 32 = 48 complex multiplications that are 
necessary in any case for an extension of the closed loop Tx diversity concept. 

7.1.3 Basis selection scheme for > 2 Tx antennas 

In order to obtain feedback weight in UE, it is necessary to perform the matrix operation in Eq. (5). In general, it is 
known that the searching is one of the efficient methods to calculate the weight for antennas. If the number of antenna is 
limited by selection, then the complexity of calculation could be reduced. 

In detail, the number of multiplication of Eq. (5) is proportional to M2+M if the weight for each antenna is transmitted, 
where M denotes the number of antenna. It is worth noting that the (M2+M) is for only one weight vector. Thus the 
resultant number of multiplication is proportional to (size of weight vector set)* (M2+M). Note that the size of weight 
vector set is LM, where L=2Nc is the possible number of weight vector per antenna. 

If the weight for the reference antenna is set to one, then the number of multiplication is proportional to (size of weight 
vector set)*(M(M-1)+M-1), where the size of weight vector is LM-1. 

If the number of transmit antenna is reduced to S, then the number of multiplication reduces to (size of weight vector 
set)*(S(S-1)+S-1). In this case, the size of weight vector set reduces to MCS*LS-1 due to the reduced number of antenna. 

For example, in case of M=4, S=2, Nc=2, the number of multiplication of the proposed scheme is proportional to 
6*4*3=72 while that of the full representation with reference antenna is 4^3*(12+3)=64*15=960. Note that in case of 
M=2, Nc=4 (3GPP Mode 2), the number of multiplication is 16*3=48. 

 

7.1.4 Complexity evaluation of the Tx diversity scheme with beamforming 
feature 

• Estimation of spatial channel vectors 

For all of the closed loop Tx diversity proposals, the UE should perform channel estimation over N antenna 
elements at L dominant temporal taps. This yields N channel estimation vectors of length L. Both the channel 
estimation using CPICH for Tx diversity/beamforming control and the channel estimation using DPCCH for 
antenna verification or RAKE combining will be necessary. (N*L*10)+(N*L*Ndp) complex additions are 
required for channel estimation (CPICH+DPCCH), where Ndp is the number of pilot symbols in DPCCH. (M-
1)*L complex multiplications is required for the antenna verification. In case of N=4 and M=2, the number of 
complex multiplications of L is identical to that of the conventional 2-branch diversity scheme. 

• Calculation of diversity weights 

The weights are calculated by using M channel response vectors of length L in which one vector from each 
sub-array, where M is the number of sub-arrays. The calculation method described in Section 3.1 is same as 
that specified in the current closed-loop Tx diversity modes. In case of M=2, the complexity is same as that 
of the conventional 2-branch diversity scheme. 

• Calculation of beamforming weights 

The weights are calculated by using K=N/M channel response vectors of length L for each sub-array. In case 
of M=2 and N=2, M*L*(K-1)=8 complex multiplications are required. 

 

The complexity of the case N=4, M=2 and the conventional 2-branch diversity are shown in Table 12, where L=4, 
Ndp=4. Most of the additional complexity comes from the channel estimation and the algorithm complexity is relatively 
small. 
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Table 12. Complexity of UE 

 2-branch 4-branch (M=2) 

Complex additions 116 232 

Complex multiplications 4+4+0=8 4+8+8=20 

 

 

7.2 Impacts to UTRAN implementation 

7.2.1 General impacts to UTRAN implementation 

If the number of Tx antennas is increased, the number of power amplifiers is increased accordingly. However, Tx power 
per amplifier can be lower as the total power is split between several amplifiers by which the PA requirements can be 
alleviated. 

7.2.2 Eigenbeamformer concept 

A small memory for storing the current eigenvector set at the UTRAN would be needed. 

7.2.3. Tx diversity scheme with beamforming feature 

The higher layer signaling information about Tx antenna configurations of Node B to UE is necessary to achieve 
efficient multiple antennas diversity/beamforming gain. An appropriate feedback frame format information should also 
be transmitted through higher layer signaling. 

 

The procedure in soft handover is one of the most important issues for the feasibility study. Two handover methods 
were proposed for the Tx diversity scheme with beamforming feature. 

 

• The common feedback weight is used to control the beamformer weights of active set of Node B. 

• The individual beamformer weight is calculated and fed back in sequence among active set of Node B. 

 

The former is the same method as described in Release’99 specification. In the latter method, the feedback delay occurs 
in proportion to the number of Node Bs. Since the UE in handover mode generally locates at cell edge, it is expected 
that the permissible feedback delay becomes much longer. However, this method needs higher layer signaling to assign 
the order of Node B, whose beamformer weights are transmitted in sequence from UE. On the other hand, the Tx 
diversity weight, that is vulnerable to feedback delay, is calculated and fed back to Node B in the same manner as 
described in Release’99 specification. 
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8 Impacts to physical layer operation 

8.1 Definition of additional orthogonal pilot sequences 
Additional orthogonal dedicated pilot sequences should be defined as many verification methods require the use of 
them. For dedicated pilot of length > 2 bits it is easy to do but the special case of length 2 bit pilot is more problematic. 
Some further studies on verification algorithms are needed. 

CPICH used for weight calculation at UE should be transmitted from all of the Tx antennas. Furthermore, the CPICH 
from the different antennas should be orthogonal. Thus, additional orthogonal symbol sequences for Primary-CPICH 
should be defined or, alternatively, Secondary-CPICHs could be used. 

8.2 Eigenbeamformer concept 
The procedures for initialization and compressed mode singularities will be defined for the eigenbeamformer concept in 
a straightforward way. 

 

9 Backwards compatibility to Release-99 

9.1 Eigenbeamformer concept 
With the eigenbeamformer no backward compatibility problem is identified for Release-99. 

9.2   Basis selection scheme for > 2 Tx antennas 

9.3 New CPICH Transmission scheme for > 2 Tx antennas 
This proposed scheme satisfies the backward compatibility with Release 99 2-ant diversity UE. The proper 
common/dedicated physical channel transmission scheme is also considered to be used with the proposed CPICH 
transmission scheme. With only one additional channelisation code, the proposed CPICH transmission scheme can be 
used as diversity pilot for 4 transmit antenna. 

10 Conclusions 
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