TSG-RAN Meeting \#9

Hawaii, U.S.A. , 20-22 September 2000

Title: \quad Agreed CRs to TS $\mathbf{2 5 . 2 2 1}$
Source: TSG-RAN WG1
Agenda item: 5.1.3

| No. | R1 T-doc | Spec | CR | Rev | Subject | Cat | Current | New |
| :---: | :---: | :---: | :---: | :---: | :--- | :--- | :---: | :---: | :---: |
| 1 | R1-000921 | 25.221 | 022 | 1 | Correction to midamble generation in UTRA TDD | F | 3.3 .0 | 3.4 .0 |
| 2 | R1-001105 | 25.221 | 026 | 2 | Some corrections for TS25.221 | F | 3.3 .0 | 3.4 .0 |
| 3 | R1-000940 | 25.221 | 028 | - | Terminology regarding the beacon function | F | 3.3 .0 | 3.4 .0 |
| 4 | R1-001000 | 25.221 | 030 | 1 | TDD Access Bursts for HOV | F | 3.3 .0 | 3.4 .0 |
| 5 | R1-001089 | 25.221 | 031 | 1 | Number of codes signalling for the DL common midamble case | F | 3.3 .0 | 3.4 .0 |

Reason for The correction is needed in order to align the assumptions on not allowed burst type 1 change: extended midamble shifts 9 and 10 in beacon timeslots. With the current formula (9) in section 5.2.3, extended midamble shifts 10 and 11 derive those user midambles which should not be allowed. A modification of formula (9) in section 5.2 .3 is necessary to derive the user midambles from the extended shifts in the correct order.

Clauses affected: Section 5.2.3

Other
 comments:

5.2.3 Training sequences for spread bursts

In this subclause, the training sequences for usage as midambles in burst type 1 and burst type 2 (see subclause 5.2.2) are defined. The training sequences, i.e. midambles, of different users active in the same cell and same time slot are cyclically shifted versions of one single basic midamble code. The applicable basic midamble codes are given in Annex A. 1 and A.2. As different basic midamble codes are required for different burst formats, the Annex A. 1 shows the basic midamble codes $\mathbf{m}_{\text {PL }}$ for burst type 1 and Annex and A. 2 shows $\mathbf{m}_{\text {PS }}$ for burst type 2 . It should be noted that the different burst types must not be mixed in the same timeslot of one cell.

The basic midamble codes in Annex A. 1 and A. 2 are listed in hexadecimal notation. The binary form of the basic midamble code shall be derived according to table 5 below.

Table 5: Mapping of 4 binary elements m_{i} on a single hexadecimal digit

4 binary elements m_{i}	Mapped on hexadecimal digit
-1-1-1-1	0
-1-1-1 1	1
-1-1 1-1	2
-1-1 111	3
-1 1-1-1	4
-1 1-1 1	5
-1 1 1 1-1	6
-1 11111	7
1-1-1-1	8
1-1-1 1	9
1-1 1-1	A
1-111	B
1-1-1	C
1 1-1 1	D
111 -1	E
1111	F

For each particular basic midamble code, its binary representation can be written as a vector \mathbf{m}_{P} :

$$
\begin{equation*}
\mathbf{m}_{\mathrm{P}}=\left(m_{1}, m_{2}, \ldots, m_{P}\right) \tag{1}
\end{equation*}
$$

According to Annex A.1, the size of this vector \mathbf{m}_{P} is $\mathrm{P}=456$ for burst type 1. Annex A. 2 is setting $\mathrm{P}=192$ for burst type 2. As QPSK modulation is used, the training sequences are transformed into a complex form, denoted as the complex vector $\underline{\mathbf{m}}_{P}$:

$$
\begin{equation*}
\underline{\mathbf{m}}_{\mathrm{P}}=\left(\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{P}\right) \tag{2}
\end{equation*}
$$

The elements \underline{m}_{i} of $\underline{\mathbf{m}}_{\mathrm{P}}$ are derived from elements m_{i} of \mathbf{m}_{P} using equation (3):

$$
\begin{equation*}
\underline{m}_{i}=(\mathrm{j})^{i} \cdot m_{i} \text { for all } i=1, \ldots, P \tag{3}
\end{equation*}
$$

Hence, the elements \underline{m}_{i} of the complex basic midamble code are alternating real and imaginary.

To derive the required training sequences, this vector $\underline{\mathbf{m}}_{\mathrm{P}}$ is periodically extended to the size:

$$
\begin{equation*}
i_{\max }=L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor \tag{4}
\end{equation*}
$$

Notes on equation (4):

- K', W and P taken from Annex A. 1 or A. 2 according to burst type and thus to length of midamble L_{m}
- $\mathrm{K}=2 \mathrm{~K}^{\prime}$
- $\lfloor x\rfloor$ denotes the largest integer smaller or equal to x

So we obtain a new vector $\underline{\mathbf{m}}$ containing the periodic basic midamble sequence:

$$
\begin{equation*}
\underline{\mathbf{m}}=\left(\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{i_{\max }}\right)=\left(\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor}\right) \tag{5}
\end{equation*}
$$

The first P elements of this vector $\underline{\mathbf{m}}$ are the same ones as in vector $\underline{\mathbf{m}}_{\mathrm{P}}$, the following elements repeat the beginning:

$$
\begin{equation*}
\underline{m}_{i}=\underline{m}_{i-P} \text { for the subset } i=(P+1), \ldots, i_{\max } \tag{6}
\end{equation*}
$$

Using this periodic basic midamble sequence $\underline{\mathbf{m}}$ for each user k a midamble $\underline{\mathbf{m}}^{(k)}$ of length L_{m} is derived, which can be written as a user specific vector:

$$
\begin{equation*}
\underline{\mathbf{m}}^{(k)}=\left(\underline{m}_{1}^{(k)}, \underline{m}_{2}^{(k)}, \ldots, \underline{m}_{L_{m}}^{(k)}\right) \tag{7}
\end{equation*}
$$

The L_{m} midamble elements $\underline{m}_{i}^{(k)}$ are generated for each midamble of the first K^{\prime} users $\left(\mathrm{k}=1, \ldots, \mathrm{~K}^{\prime}\right)$ based on:

$$
\begin{equation*}
\underline{m}_{i}^{(k)}=\underline{m}_{i+\left(K^{\prime}-k\right) W} \text { with } i=1, \ldots, L_{m} \text { and } k=1, \ldots, K^{\prime} \tag{8}
\end{equation*}
$$

The elements of midambles for the second K^{\prime} users $\left(k=\left(K^{\prime}+1\right), \ldots, K=\left(K^{\prime}+1\right), \ldots, 2 K^{\prime}\right)$ are generated based on a slight modification of this formula introducing intermediate shifts:

$$
\begin{gather*}
\left.\underline{m}_{i}^{(k)}=\underline{m}_{i+(K-k) W+\lfloor P / K}\right\rfloor^{\text {with } i} i=1, \ldots, L_{m} \text { and } k=K^{\prime}+1, \ldots, K \\
\left.\underline{m}_{i}^{(k)}=\underline{m}_{i+(K-k-1) W+\lfloor P / K\rfloor}\right\rfloor \underline{\text { with }} i=1, \ldots, L_{m} \underline{\text { and }} k=K^{\prime}+1, \ldots, K-1 \\
-\underline{m}_{i}^{(k)}=\underline{m}_{i+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor} \underline{\text { with }} i=1, \ldots, L_{m} \underline{\text { and }} k=K
\end{gather*}
$$

Whether intermediate shifts are allowed in a cell is broadcast on the BCH .
The midamble sequences derived according to equations (7) to ($\mathcal{(1 0)}$) have complex values and are not subject to channelisation or scrambling process, i.e. the elements $\underline{m}_{i}^{(k)}$ represent complex chips for usage in the pulse shaping process at modulation.

The term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$, based on a single basic midamble code \mathbf{m}_{P} according to (1).

25.221 CR 026r2

Current Version:
3.3.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team

For submission to: RAN\#9
list expected approval meeting \# here

(for SMG use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \mathbf{X}
UTRAN / Radio \qquad Core Network \square
(at least one should be marked with an X)

Source: \quad TSG RAN WG1

Date: 22/08/00
Subject: \quad Some corrections for TS25.221

Work item:

Reason for	The following changes are included in this CR:
change:	- Removal of a remaining reference to ODMA
	-
	Correction of the PI to bit mapping and aligning terminology with WG2/WG3
	- Alignment with FDD regarding 'Indicator Channel' Terminology
	-
	- Correction of Abbreviations and References
	- Correction of UL TS format numbering
	- Correction of DTrCH mapping
	- Correction of a reference to TS25.302

Clauses affected: $\quad 3 ; 4 ; 5.2 .2 .3 .2 ; 5.3 .1 .3 ; 5.3 .4 ; 5.3 .7 ; 5.5 .2 ; 5.6 .1 ; 6 ;$ Annex B

Other specs affected:

Other 3G core specifications
Other GSM core specifications
MS test specifications
BSS test specifications
O\&M specifications

\rightarrow List of CRs:

Other comments:

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
[1] 3G TS 25.201: "Physical layer - general description".
[2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".
[3] 3G TS 25.212: "Multiplexing and channel coding (FDD)".
[4] 3G TS 25.213: "Spreading and modulation (FDD)".
[5] 3G TS 25.214: "Physical layer procedures (FDD)".
[6] 3G TS 25.215: "Physical layer - Measurements (FDD)".
[7] 3G TS 25.222: "Multiplexing and channel coding (TDD)".
[8] 3G TS 25.223: "Spreading and modulation (TDD)".
[9] 3G TS 25.224: "Physical layer procedures (TDD)".
[10] 3G TS 25.225: "Physical layer - Measurements (TDD)".
[11] 3G TS 25.301: "Radio Interface Protocol Architecture".
[12] 3G TS 25.302: "Services Provided by the Physical Layer".
[13] 3G TS 25.401: "UTRAN Overall Description".
[14] 3G TS 25.402: "Synchronisation in UTRAN, Stage 2".
[15] 3G TS 25.304: "-UE Procedures in Idle Mode and Procedures for Cell Reselection in Connected Mode".
[16] 3G TS 25.427: "UTRAN Iur and Iub interface user plane protocols for DCH data streams".

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

BCH	Broadcast Channel
CCPCH	Common Control Physical Channel
CCTrCH	Coded Composite Transport Channel
CDMA	Code Division Multiple Access
DPCH	Dedicated Physical Channel
DRX	Discontinuous Reception
DSCH	Downlink Shared Channel
FACH	Forward Access Channel
FDD	Frequency Division Duplex
FEC	Forward Error Correction
GP	Guard Period
GSM	Global System for Mobile Communication
NRT	Non-Real Time
OVSF	Orthogonal Variable Spreading Factor
P-CCPCH	Primary CCPCH
PCH	Paging Channel
PDSCH	Physical Downlink Shared Channel
PDU	Protocol Data Unit
PI	Paging Indicator (value calculated by higher layers)
PICH	Pageing Indicator Channel
\underline{P}_{g}	Paging Indicator (indicator set by physical layer)
PRACH	Physical Random Access Channel
PUSCH	Physical Uplink Shared Channel
RACH	Random Access Channel
RLC	Radio Link Control
RF	Radio Frame
RT	Real Time
S-CCPCH	Secondary CCPCH
SCH	Synchronisation Channel
SFN	Cell System Frame Number
TCH	Traffic Channel
TDD	Time Division Duplex
TDMA	Time Division Multiple Access
TrCH	Transport Channel
UE	User Equipment
USCH	Uplink Shared Channel

4 Services offered to higher layersTransport channels

4.1 Transport channels

Transport channels are the services offered by layer 1 to the higher layers. A transport channel is defined by how and with what characteristics data is transferred over the air interface. A general classification of transport channels is into two groups:

- Dedicated Channels, using inherent addressing of UE
- Common Channels, using explicit addressing of UE if addressing is needed

General concepts about transport channels are described in [12]3GPP RAN TS 25.302 (L2 specification).

4.1.1 Dedicated transport channels

The Dedicated Channel (DCH) is an up- or downlink transport channel that is used to carry user or control information between the UTRAN and a UE.

4.1.2 Common transport channels

There are six types of transport channels: BCH, FACH, PCH, RACH, USCH, DSCH

4.1.2.1 BCH - Broadcast Channel

The Broadcast Channel (BCH) is a downlink transport channel that is used to broadcast system- and cell-specific information.

4.1.2.2 FACH - Forward Access Channel

The Forward Access Channel (FACH) is a downlink transport channel that is used to carry control information to a mobile station when the system knows the location cell of the mobile station. The FACH may also carry short user packets.

4.1.2.3 PCH - Paging Channel

The Paging Channel (PCH) is a downlink transport channel that is used to carry control information to a mobile station when the system does not know the location cell of the mobile station.

4.1.2.4 RACH - Random Access Channel

The Random Access Channel (RACH) is an up link transport channel that is used to carry control information from mobile station. The RACH may also carry short user packets.

4.1.2.5 USCH - Uplink Shared Channel

The uplink shared channel (USCH) is an uplink transport channel shared by several UEs carrying dedicated control or traffic data.

4.1.2.6 DSCH - Downlink Shared Channel

The downlink shared channel (DSCH) is a downlink transport channel shared by several UEs carrying dedicated control or traffic data.

4.2 Indicators

Indicators are means of fast low-level signalling entities which are transmitted without using information blocks sent over transport channels. The meaning of indicators is implicit to the receiver.

The indicator(s) defined in the current version of the specifications are: Paging Indicator.

5.2.2.3.2 Uplink timeslot formats

The uplink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI bits. Due to TPC, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 4 b .

Table 4b: Timeslot formats for the Uplink

Slot Format \#	Spreadin g Factor	Midambl e length (chips)	$\mathrm{N}_{\mathrm{TFCL}}$ (bits)	$\mathrm{N}_{\text {TPC }}$ (bits)	Bits/sl ot	$\mathbf{N}_{\text {Data/Slo }}$ t (bits)	$\mathbf{N}_{\text {data/data }}$ field(1) (bits)	$\mathbf{N}_{\text {data/data }}$ field(2) (bits)
0	16	512	0	0	244	244	122	122
51	16	512	0	2	244	242	122	120
$\underline{26}$	16	512	4	2	244	238	120	118
37	16	512	8	2	244	234	118	116
48	16	512	16	2	244	226	114	112
59	16	512	32	2	244	210	106	104
610	16	256	0	0	276	276	138	138
715	16	256	0	2	276	274	138	136
816	16	256	4	2	276	270	136	134
917	16	256	8	2	276	266	134	132
108	16	256	16	2	276	258	130	128
119	16	256	32	2	276	242	122	120
1220	8	512	0	0	488	488	244	244
1325	8	512	0	2	488	486	244	242
1426	8	512	4	2	488	482	242	240
1527	8	512	8	2	488	478	240	238
1628	8	512	16	2	488	470	236	234
1729	8	512	32	2	488	454	228	226
1830	8	256	0	0	552	552	276	276
1935	8	256	0	2	552	550	276	274
2036	8	256	4	2	552	546	274	272
2137	8	256	8	2	552	542	272	270
2238	8	256	16	2	552	534	268	266
2339	8	256	32	2	552	518	260	258
2440	4	512	0	0	976	976	488	488
2545	4	512	0	2	976	974	488	486
2646	4	512	4	2	976	970	486	484
2747	4	512	8	2	976	966	484	482
2848	4	512	16	2	976	958	480	478
2949	4	512	32	2	976	942	472	470
3050	4	256	0	0	1104	1104	552	552
3155	4	256	0	2	1104	1102	552	550
3256	4	256	4	2	1104	1098	550	548
3357	4	256	8	2	1104	1094	548	546
3458	4	256	16	2	1104	1086	544	542
3559	4	256	32	2	1104	1070	536	534
3660	2	512	0	0	1952	1952	976	976
3765	2	512	0	2	1952	1950	976	974
3866	2	512	4	2	1952	1946	974	972
3967	2	512	8	2	1952	1942	972	970
4068	2	512	16	2	1952	1934	968	966
4169	2	512	32	2	1952	1918	960	958
4270	2	256	0	0	2208	2208	1104	1104
4375	2	256	0	2	2208	2206	1104	1102
4476	2	256	4	2	2208	2202	1102	1100
4577	2	256	8	2	2208	2198	1100	1098
4678	2	256	16	2	2208	2190	1096	1094
4779	2	256	32	2	2208	2174	1088	1086

Slot Format $\#$ Spreadin g Factor Midambl e length (chips) $\mathbf{N}_{\text {TFCl }}$ (bits) $\mathbf{N}_{\text {TPC }}$ (bits) Bits/sl ot 4880 1 512 0 0 3904 $\mathbf{N}_{\text {Data/Slo }}$ (bits)	$\mathbf{N}_{\text {data/data }}$ field(1) (bits)	$\mathbf{N}_{\text {data/data }}$ field(2) (bits)						
4985	1	512	0	2	3904	3902	1952	1952
$\underline{5086}$	1	512	4	2	3904	3898	1950	1950
5187	1	512	8	2	3904	3894	1948	1948
$\underline{5288}$	1	512	16	2	3904	3886	1944	1942
5389	1	512	32	2	3904	3870	1936	1934
5490	1	256	0	0	4416	4416	2208	2208
5595	1	256	0	2	4416	4414	2208	2206
5696	1	256	4	2	4416	4410	2206	2204
5797	1	256	8	2	4416	4406	2204	2202
5898	1	256	16	2	4416	4398	2200	2198
5999	1	256	32	2	4416	4282	2192	2190

5.3.1.3 P-CCPCH Training sequences

The training sequences, i.e. midambles, as described in subclause 5.2.3 are used for the P-CCPCH. For those timeslots in which the P-CCPCH is transmitted, the midambles $\mathrm{m}^{(1)}$, and $\mathrm{m}^{(2)}, \mathrm{m}^{(-)}$and $\mathrm{m}^{(4)}$ are reserved for P-CCPCH in order to support Block STTD antenna diversity and the beacon function, see 5.4 and 5.5. The use of midambles depends on whether Block STTD is applied to the P-CCPCH:

- If no antenna diversity is applied to P-CCPCH, $\mathrm{m}^{(1)}$ is used and $\mathrm{m}^{(2)}$ is left unused;
- If Block STTD antenna diversity is applied to P-CCPCH, $\mathrm{m}^{(1)}$ is used for the first antenna and $\mathrm{m}^{(2)}$ is used for the diversity antenna.

The midambles $\mathrm{m}^{(9)}$ and $\mathrm{m}^{(10)}$ are always left unused in the P-CCPCH time slots.

5.3.4 The synchronisation channel (SCH)

In TDD mode code group of a cell can be derived from the synchronisation channel. In order not to limit the uplink/downlink asymmetry the SCH is mapped on one or two downlink slots per frame only.

There are two cases of SCH and P-CCPCH allocation as follows:
Case 1) SCH and P-CCPCH allocated in TS\#k, k=0... 14
Case 2) SCH allocated in two TS: TS\#k and TS\#k $+8, \mathrm{k}=0 \ldots 6$; P-CCPCH allocated in TS\#k.
The position of SCH (value of k) in frame can change on a long term basis in any case.
Due to this SCH scheme, the position of P-CCPCH is known from the SCH.
Figure 14 is an example for transmission of $\mathrm{SCH}, \mathrm{k}=0$, of Case 2.

Figure 14: Scheme for Synchronisation channel SCH consisting of one primary sequence C_{p} and $N=3$ parallel secondary sequences $\underline{C}_{s, i}$ in slot k and $k+8$ (example for $k=0$ in Case 2)
(example for $\mathrm{k}=0$ in Case 2)
As depicted in figure 14, the SCH consists of a primary and three secondary code sequences with 256 chips length. The primary and secondary code sequences are defined in [8] clause 7 'Synchronisation codes'.

Due to mobile to mobile interference, it is mandatory for public TDD systems to keep synchronisation between base stations. As a consequence of this, a capture effect concerning SCH can arise. The time offset $\mathrm{t}_{\text {offset }}$ enables the system to overcome the capture effect.

The time offset $\mathrm{t}_{\text {offset }}$ is one of 32 values, depending on the cell parameter, thus on the code group of the cell, cf. 'table 6 Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $\mathrm{t}_{\text {offset }}{ }^{\text {e }}$ in [8]. Note that the cell parameter will change from frame to frame, cf. 'Table 7 Alignment of cell parameter cycling and system frame number' in [8], but the cell will belong to only one code group and thus have one time offset $\mathrm{t}_{\text {offser }}$. The exact value for $\mathrm{t}_{\text {offset }}$, regarding column 'Associated $t_{\text {offset }}$ ' in table 6 in [8] is given by:

$$
\begin{aligned}
t_{\text {offset,n}} & =n \cdot T_{c}\left\lfloor\frac{2560-96-256}{31}\right\rfloor \\
& =n \cdot 71 T_{c} ; n=0, \ldots, 31
\end{aligned}
$$

Please note that $\lfloor x\rfloor$ denotes the largest integer number less or equal to x and that T_{c} denotes the chip duration.

5.3.7 The Paginge Indicator Channel (PICH)

The Paginge Indicator Channel (PICH) is a physical channel used to carry the Ppaginge iIndicators(PI). The PICH is always transmitted at the same reference power level as the P-CCPCH.

Figure 15 depicts the structure of a PICH burst and the numbering of the bits within the burst. The same burst type is used for the PICH in every cell. $\mathrm{N}_{\text {PIB }}$ bits in a normal burst of type 1 or 2 are used to carry the Ppaging findicators, where $\mathrm{N}_{\text {PIB }}$ depends on the burst type: $\mathrm{N}_{\text {PIB }}=240$ for burst type 1 and $\mathrm{N}_{\text {PIB }}=272$ for burst type 2 . The bits $\mathrm{b}_{\mathrm{NPIB}}, \ldots, \mathrm{b}_{\mathrm{NPIB}+3}$ adjacent to the midamble are reserved for possible future use. They shall be set to 0 and transmitted with the same power as the Ppaging findicator carrying bits.

Figure 15: Transmission and \underline{n} Numbering of Ppaging lindicator carrying beBits in a PICH burst
In each time slot, N_{PI} paginge indicators are transmitted, using of length $\mathrm{L}_{\mathrm{PI}}=4 \underline{2}, \mathrm{~L}_{\mathrm{PI}}=8-4$ or $\mathrm{L}_{\mathrm{PI}}=16-8$ bits-symbolsare transmitted in one time slot. $\underline{L}_{P I}$ is called the paging indicator length. The number of paginge indicators N_{PI} per time slot is given by the paging indicator length the number $L_{\text {pl }}$-f bits for the page indicators-and the burst type, which are both known by higher layer signalling. In table 8 this number is shown for the different possibilities of burst types and paging indicatorPY lengths.

Table 8: Number N_{PI} of paging indicatorsPI per time slot for the different burst types and paging indicatorPl lengths L_{PI}

	$\mathrm{L}_{\mathrm{PI}}=4 \underline{2}$	$\mathrm{~L}_{\mathrm{PI}}=84$	$\mathrm{~L}_{\mathrm{PI}}=16 \underline{8}$
Burst Type 1	$\mathrm{N}_{\mathrm{P} \mathrm{I}}=60$	$\mathrm{~N}_{\mathrm{P} \mid}=30$	$\mathrm{~N}_{\mathrm{PI}}=15$
Burst Type 2	$\mathrm{N}_{\mathrm{PI}}=68$	$\mathrm{~N}_{\mathrm{PI}}=34$	$\mathrm{~N}_{\mathrm{PI}}=17$

As shown in figure 16, the Ppaginge İindicators of $\mathrm{N}_{\text {PICH }}$ consecutive frames form a PICH block, $\mathrm{N}_{\text {PICH }}$ is configured by higher layers. Thus, $\mathrm{N}_{\underline{P}}=\mathrm{N}_{\text {PICH }} * \mathrm{~N}_{\mathrm{PI}}$ Ppaginge iIndicators are transmitted in each PICH block.

Figure 16: Structure of a PICH block
The value $\operatorname{PI}\left(\operatorname{PI}=0, \ldots, \underline{N}_{\underline{p}}-1\right)$ calculated by higher layers for use for a certain UE, see [15], is associated mapped to the Ppaginge Iindicator $\mathrm{PI}_{\mathrm{pq}}$ in the nth frame of one PICH block, where pq is given by

$$
p-q=P I \bmod N_{P I}
$$

and n is given by

$$
\mathrm{n}=\mathrm{PI} \operatorname{div} \mathrm{~N}_{\mathrm{PI}} .
$$

The PI bitmap in the PCH data frames over Iub contains indication values for all possible higher layer PI values, see [16]. Each bit in the bitmap indicates if the paging indicator P_{g} associated with that particular PI shall be set to 0 or 1 . Hence, the calculation in the formulas above is to be performed in Node B to make the association between PI and P_{q} :
 ${ }_{1}$) within this time slot, as exemplary shown in figure 17 . Thus, half of the L L_{II} symbols used for each paging indicator are transmitted in the first data part, and the other half of the $\mathrm{L}_{\underline{P} \text { I }}$ symbols are transmitted in the second data part.

The coding of the paging indicator P_{g} is given in [7].

Figure 17: Example of mapping of paging indicators on PICH bits for $L_{\underline{p}}=4$

5.5.2 Physical characteristics of the beacon function

The physical channels providing the beacon function:

- are transmitted with reference power;
- are transmitted without beamforming;
- use burst type 1 ;
- use midamble $\underline{\mathrm{m}} \mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$ exclusively in this time slot; and
- midambles ${\underline{m} \not m^{(9)}}^{(a n d} \mathrm{m}^{(10)}$ are always left unused in this time slot, if 16 midambles are allowed in that cell.

Note that in the time slot where the P-CCPCH is transmitted only the midambles $\mathrm{m}^{(1)}$ to $\mathrm{m}^{(8)}$ shall be used, see 5.6.1. Thus, midambles $\mathrm{m}^{(9)}$ and $\mathrm{m}^{(10)}$ are always left unused in this time slot.

The reference power corresponds to the sum of the power allocated to both midambles $\underline{m} \neq t^{(1)}$ and $m^{(2)}$. Two possibilities exist:

- If no Block STTD antenna diversity is applied to P-CCPCH, all the reference power of any physical channel providing the beacon function is allocated to $\mathrm{m}^{(1)}$.
- If Block STTD antenna diversity is applied to P-CCPCH, for any physical channel providing the beacon function midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$ are each allocated half of the reference power. Midamble $\mathrm{m}^{(1)}$ is used for the first antenna and $\mathrm{m}^{(2)}$ is used for the diversity antenna. Block STTD encoding is used for the data in P-CCPCH, see [9]; for all other physical channels identical data sequences are transmitted on both antennas.

5.6.1 Midamble Allocation for DL Physical Channels

Physical channels providing the beacon function shall always use the reserved midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$, see 5.4. For all other DL physical channels the midamble allocation is signalled or given by default.

6 Mapping of transport channels to physical channels

This clause describes the way in which transport channels are mapped onto physical resources, see figure $1 \underline{8}$.

Transport Channels DCH	Physical Channels Dedicated Physical Channel (DPCH) BCH FACH PCH RACH QRACH USCH
Primary Common Control Physical Channel (P-CCPCH) DSCH Secondary Common Control Physical Channel (S-CCPCH)	
	Physical Random Access Channel (PRACH)
	Physical Uplink Shared Channel (PUSCH)
	Physical Downlink Shared Channel (PDSCH)

Figure 17Figure 18: Transport channel to physical channel mapping

6.1 Dedicated Transport Channels

A dedicated transport channel is mapped onto one or more physical channels. An interleaving period is associated with each allocation. The frame is subdivided into slots that are available for uplink and downlink information transfer. The mapping of transport blocks on physical channels is described in TS 25.222 ("multiplexing and channel coding").

Figure 198: Mapping of Transport BlocksPDU onto the physical bearer
For NRT packet data services, shared channels (USCH and DSCH) can be used to allow efficient allocations for a short period of time.

6.2 Common Transport Channels

6.2.1 The Broadcast Channel (BCH)

The BCH is mapped onto the P-CCPCH. The secondary SCH indicates in which timeslot a mobile can find the PCCPCH containing BCH. If the broadeast information requires more resources than provided by the P CCPCH, the BCH in P CCPCH will comprise a pointer to additional S CCPCH resources for FACH in which this additional broadeast information shall be sent.

6.2.2 The Paging Channel (PCH)

The PCH is mapped onto one or several S-CCPCHs so that capacity can be matched to requirements. The location of the PCH is indicated on the BCH. It is always transmitted at a reference power level.

To allow an efficient DRX, the PCH is divided into PCH blocks, each of which comprising $\mathrm{N}_{\mathrm{PCH}}$ paging sub-channels. $\mathrm{N}_{\mathrm{PCH}}$ is configured by higher layers. Each paging sub-channel is mapped onto 2 consecutive PCH frames within one PCH block. Layer 3 information to a particular UE is transmitted only in the paging sub-channel, that is assigned to the UE by higher layers, see [15]. The assignment of UEs to paging sub-channels is independent of the assignment of UEs to page indicators.

6.2.2.1 PCH/PICH Association

As depicted in figure 2019, a paging block consists of one PICH block and one PCH block. If a pPaginge indicator in a certain PICH block is set to ' 1 ' it is an indication that UEs associated with this pPaginge iIndicator shall read their corresponding paging sub-channel within the same paging block. The value $\mathrm{N}_{\mathrm{GAP}}>0$ of frames between the end of the PICH block and the beginning of the PCH block is configured by higher layers.

Figure 2019: Paging Sub-Channels and Association of PICH and PCH blocks

Annex B (Informative): CCPCH Multiframe Structure

In the following figures B. 1 to B. 3 some examples for Multiframe Structures on Primary and Secondary CCPCH are given. The figures show the placement of Common Transport Channels on the Common Control Physical Channels. Additional S-CCPCH capacity can be allocated on other codes and timeslots of course, e.g. FACH capacity is related to overall cell capacity and can be configured according to the actual needs. Channel capacities in the annex are derived using bursts with long midambles (Burst format 1). Every TrCH-box in the figures is assumed to be valid for two frames (see row 'Frame \#'), i.e. the transport channels in CCPCHs have an interleaving time of 20 msec .

The actual CCPCH Multiframe Scheme used in the cell is described and broadcast on BCH. Thus the system information structure has its roots in this particular transport channel and allocations of other Common Channels can be handled this way, i.e. by pointing from BCH .

Frame \#	01	23	45	67	89	$\begin{aligned} & 10 \\ & 4 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 24 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & 34 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & 44 \end{aligned}$	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	$\begin{aligned} & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & 44 \end{aligned}$	$\begin{aligned} & 52 \\ & 53 \\ & \hline \end{aligned}$	$\begin{aligned} & \hline 54 \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \\ & \hline \end{aligned}$	$\begin{aligned} & 60 \\ & 64 \end{aligned}$	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	$\begin{array}{\|l\|} \hline 64 \\ 65 \end{array}$	$\begin{aligned} & 66 \\ & 67 \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & 70 \\ & 74 \end{aligned}$
CCPCHs in TS k, Code θ																																				
CCPCHs in TSk+ $8, \mathrm{Co} \theta$																																				
BCH transperting BCCH $2,71 \mathrm{kbps}$							FACH transperting BCCH 2,71kbps														PCH 13,5kbps						PICH 2,71 kbps					FACH 27,1 kbps				

Figure B.1: Example for a multiframe structure for CCPCHs that is repeated every 72 th frame

Frame \#	01	23	45	67	89	$\begin{aligned} & \hline 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	$\begin{array}{\|l\|} \hline 44 \\ 45 \end{array}$	$\begin{aligned} & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & 41 \end{aligned}$	$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\begin{aligned} & 54 \\ & 55 \end{aligned}$	$\begin{aligned} & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \end{aligned}$	$\begin{aligned} & 60 \\ & 61 \end{aligned}$	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	$\begin{aligned} & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 66 \\ & 67 \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & \hline 70 \\ & 71 \end{aligned}$
CCPCHs in TSk, Code θ																																				
CCPCHs in TSk, Code n																																				
CCPCHs in TSk+ 8 , $\mathrm{Co}-\theta$																																				

BCH transperting BCCH 2,71kbps	FACH transperting BCCH 2,71 kbps	PCH13,5kbps	PICH 2,71 kbps	FACH 51,5 kbps

Figure B.2: Example for a multiframe structure for CCPCHs that is repeated every 72 th frame, $n=1, .7$

Frame \#	01	23	45	67	89	$\begin{aligned} & \hline 10 \\ & 14 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 17 \end{aligned}$	$\begin{aligned} & 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	$\begin{array}{\|l\|} \hline 44 \\ 45 \end{array}$	$\begin{aligned} & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & 41 \end{aligned}$	$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\begin{aligned} & 54 \\ & 55 \end{aligned}$	$\begin{aligned} & 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 64 \end{aligned}$	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	$\begin{aligned} & 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 66 \\ & 67 \end{aligned}$	$\begin{aligned} & 68 \\ & 69 \end{aligned}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$
ECPCHs in TSk, Code θ																																				
CCPCHs in TS $\mathrm{k}+8, \mathrm{Co} \theta$																																				

BCH transperting BCCH $2,71 \mathrm{kbps}$	FACH transporting BCCH 1,355 kbps	PCH 13,5kbps	PICH 2,71 kbps	FACH 28,5 kbps

Figure B.3: Example for a multiframe structure for CCPCHs that is repeated every 72th frame

Frame \#	01	$\underline{23}$	45	67	89	$\underline{10}$	$\underline{12}$	$\frac{14}{15}$	$\frac{16}{17}$	$\underline{18}$	$\underline{20}$	$\underline{22}$	$\underline{\underline{24}} \underline{\underline{25}}$	$\begin{array}{\|l} 26 \\ \underline{27} \\ \hline \end{array}$	$\begin{array}{\|l} \frac{28}{29} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{30}{31} \\ \hline 1 \end{array}$	$\begin{array}{\|l\|} \hline \frac{32}{33} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{34}{35} \\ \underline{2} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{36}{37} \\ \hline \underline{37} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{38}{39} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{40}{41} \\ \hline \end{array}$	$\underline{42}$	$\begin{array}{\|l\|} \hline \frac{44}{45} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{46}{47} \\ \hline \end{array}$	$\frac{48}{49}$	$\frac{50}{41}$	$\begin{array}{\|l\|} \hline \frac{52}{53} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{54}{55} \\ \hline \end{array}$	$\underline{\underline{56}}$	$\underline{\underline{58}}$	$\underline{\frac{60}{61}}$	$\frac{62}{63}$
CCPCHs in TS k, Code 0																																
CCPCHs in TS k+8, Code 0																																
	BCH	12,2	2 kb				CH	25	,93	kbp			PC	9,	15	bpp			CH	1,53	3 kb											

Figure B.1: Example for a multiframe structure for CCPCHs and PICH that is repeated every 64th frame

Frame \#	$\underline{01}$	$\underline{23}$	45	67	89	$\frac{10}{11}$	$\underline{12}$	$\frac{14}{15}$	$\frac{16}{17}$	$\frac{18}{19}$	$\frac{20}{21}$	$\frac{22}{23}$	$\frac{24}{25}$	$\begin{array}{\|l\|} \hline \frac{26}{27} \\ \hline \end{array}$	$\begin{array}{\|l} \hline \frac{28}{29} \\ \hline \end{array}$	$\frac{30}{31}$	$\frac{32}{33}$	$\frac{34}{35}$	$\begin{array}{\|l\|} \hline \frac{36}{37} \\ \hline \end{array}$	$\begin{array}{\|l\|} \hline \frac{38}{39} \\ \hline \end{array}$	$\frac{40}{41}$	$\frac{42}{43}$	$\frac{44}{45}$	$\frac{46}{47}$	$\underline{\underline{48}}$	$\frac{50}{41}$	$\frac{52}{53}$	$\begin{array}{\|l\|} \hline \frac{54}{55} \\ \hline \end{array}$	$\frac{56}{57}$	$\frac{58}{59}$	$\underline{\frac{60}{61}}$	$\underline{62}$
CCPCHs in TS k, Code 0																																
CCPCHs in TS k+8, Code 0																																
CCPCHs in TS k+8, Code n																																

| BCH $22,88 \mathrm{kbps}$ | $\underline{\text { FACH } 36,6 \mathrm{kbps}}$ | $\underline{\text { PCH } 12,2 \mathrm{kbps}}$ | $\underline{\text { PICH } 1,53 \mathrm{kbps}}$ |
| :--- | :--- | :--- | :--- | :--- |

Figure B.2: Example for a multiframe structure for CCPCH and PICH that is repeated every 64th frame, n=1... 7

CHANGE REQUEST
25.221 CR 028

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

Current Version: 3.3.0

GSM (AA.BB) or 3G (AA.BBB) specification number $\uparrow \quad \uparrow C R$ number as allocated by MCC support team
For submission to: RAN\#9
list expected approval meeting \# here

(for SMG
\square use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME
\mathbf{X}
UTRAN / Radio \qquad Core Network \qquad
(at least one should be marked with an X)

Source:

TSG RAN WG1
Date: 00-07-04
Subject: Terminology regarding the beacon function

Work item:

Category:	F	Correction
	A	Corresponds to a correction in an earlier release
(only one category	B	
shall be marked	C	Function of feature
with an X)	D	

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for \quad Currently, there are different terms in connection with the beacon function that may
change: \quad lead to some misunderstanding:

- ,Physical Channels providing the Beacon Function‘
- ,Physical Channels with Beacon Function'
- ,Beacon Channels‘

This CR tries to make the terminology more consistent in such a sense that

- Physical Channels have Beacon Characteristics
- Physical Channels with Beacon Characteristics are called Beacon Channels
- The ensemble of Beacon Channels provide the Beacon Function

Clauses affected: $\quad 5.5 ; 5.6 .1$

Other specs	Other 3G core specifications	X	\rightarrow List of CRs:	CR224-025, CR225-015
affected:	Other GSM core specifications		\rightarrow List of CRs:	
	MS test specifications		\rightarrow List of CRs:	
	BSS test specifications		\rightarrow List of CRs:	
	O\&M specifications		\rightarrow List of CRs:	

Other
 comments:

<--------- double-click here for help and instructions on how to create a CR.

5.5 Beacon characteristicsfunction of physical channels

For the purpose of measurements, a beacon function shall be provided by particular-physical channels at particular locations (time slot, code) shall have particular physical characteristics, called beacon characteristics. Physical channels with beacon characteristics are called beacon channels. The locations of the beacon channels are called beacon locations. The ensemble of beacon channels shall provide the beacon function, i.e. a reference power level at the beacon locations, regularly existing in each radio frame. Thus, beacon channels must be present in each radio frame.

5.5.1 Location of beacon physical channels with beacon function

The beacon locations of the physical channels with beacon function isare determined by the SCH and depends on the SCH allocation case, see 5.3.4:

Case 1) The beacon function shall be provided by the All physical channels that are allocated to channelisation code $c_{Q=16}^{(k=1)}$ and to in $\mathrm{TS} \# \mathrm{k}, \mathrm{k}=0 \ldots .14$. shall provide the beacon function.

Case 2) The beacon function shall be provided by the All-physical channels that are allocated to channelisation code $c_{Q=16}^{(k=1)}$ and to in $\mathrm{TS} \# \mathrm{k}$ and $\mathrm{TS} \# \mathrm{k}+8, \mathrm{k}=0 \ldots 6$,shall provide the beacon function.

Note that by this definition the P-CCPCH always has provides the beacon characteristicsfunction.

5.5.2 Physical characteristics of the beacon channelsfunction

The beacon physical-channels shall have the following physical characteristics. Theyproviding the beacon function:

- are transmitted with reference power;
- are transmitted without beamforming;
- use burst type 1 ;
- use midamble $m^{(1)}$ and $\mathrm{m}^{(2)}$ exclusively in this time slot; and
- midambles $m^{(9)}$ and $\mathrm{m}^{(10)}$ are always left unused in this time slot, if 16 midambles are allowed in that cell.

The reference power corresponds to the sum of the power allocated to both midambles $m^{(1)}$ and $\mathrm{m}^{(2)}$. Two possibilities exist:

- If no Block STTD antenna diversity is applied to P-CCPCH, all the reference power of any beacon physieat channel providing the beacon function is allocated to $\mathrm{m}^{(1)}$.
- If Block STTD antenna diversity is applied to P-CCPCH, for any beaconphysical channel providing the beacon function midambles $\mathrm{m}^{(1)}$ and $\mathrm{m}^{(2)}$ are each allocated half of the reference power. Midamble $\mathrm{m}^{(1)}$ is used for the first antenna and $\mathrm{m}^{(2)}$ is used for the diversity antenna. Block STTD encoding is used for the data in P-CCPCH, see [9]; for all other beacon physicalchannels identical data sequences are transmitted on both antennas.

5.6 Midamble Allocation for Physical Channels

In general, midambles are part of the physical channel configuration which is performed by higher layers.
Optionally, if no midamble is allocated by higher layers, a default midamble allocation shall be used. This default midamble allocation is given by a fixed association between midambles and channelisation codes, see clause A.3, and shall be applied individually to all channelisation codes within one time slot. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles.

5.6.1 Midamble Allocation for DL Physical Channels

BeaconPhysical channels providing the beacon function shall always use the reserved midambles, see 5.4. For all other DL physical channels the midamble allocation is signalled or given by default.

Form: CR cover sheet, version 2 for 3GPP and SMG
The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \mathbf{X}
UTRAN / Radio \qquad Core Network \square
(at least one should be marked with an X)

Source: TSG RAN WG1

Date: 2000-08-23
Subject: \quad TDD Access Bursts for HOV

Work item:

Category:	F	Correction
	A	Corresponds to a correction in an earlier release
(only one category	B	Addition of feature
shall be marked	C	Functional modification of feature
with an X)	D	

Release: Phase 2

Release 96
Release 97
Release 98
Release 99
Release 00

Reason for This CR enables the usage of access bursts (burst type 3) for HOV purposes in case change:

Clauses affected: $\quad 5.2 .2,5.2 .3,5.3 .3$, annex A

Other specs Other 3G core specifications affected:

Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

\square	\rightarrow List of CRs:
	\rightarrow List of CRs:
	\rightarrow List of CRs:
\square	\rightarrow List of CRs:
	\rightarrow List of CRs:

Other

comments:
<--------- double-click here for help and instructions on how to create a CR.

5.2.2 Burst Types

Three types of bursts for dedicated physical channels are defined. $:$ The burst type 1 and the burst type 2. Both-All of them consist of two data symbol fields, a midamble and a guard period-, the lengths of which are different for the individual burst types. Thus, the number of data symbols in a burst depends on the SF and the burst type, as depicted in table 1.

Table 1: Number of data symbols (N) for burst type 1, 2, and 3

Spreading factor (SF)	Burst Type 1	Burst Type 2	Burst Type 3
$\underline{1}$	$\underline{1952}$	$\underline{2208}$	$\underline{1856}$
$\underline{2}$	$\underline{976}$	$\underline{1104}$	$\underline{928}$
$\underline{4}$	$\underline{488}$	$\underline{552}$	$\underline{464}$
$\underline{8}$	$\underline{244}$	$\underline{276}$	$\underline{232}$
$\underline{16}$	$\underline{122}$	$\underline{138}$	$\underline{116}$

The support of all three burst types is mandatory for the UE. The three different bursts defined here are well suited for different applications, as described in the following sections.

The bursts type 1 has a longer midamble of 512 chips than the burst type 2 with a midamble of 256 chips. Sample sets of midambles are given in subclause 5.2.3.1.

Because of the longer midamble, the burst type 1 is suited for the uplink, where up to 16 different channel impulse responses can be estimated. The burst type 2 can be used for the downlink and, if the bursts within a time slot are allocated to less than four users, also for the uplink.

5.2.2. 1 Burst Type 1

Thus t The burst type 1 can be used for uplink and downlink. Due to its longer midamble field this burst type supports the construction of a larger number of training sequences, see 5.2.3, which shall be used to estimate the different channels for different UEs in UL and, in case of TxDiversity or Beamforming, also in DL. The maximum number of training sequences depend on the cell configuration, see annex A. For the burst type 1 this number may be 4,8 , or 16 .
-uplink, independent of the number of active users in one time slot;
downlink, independent of the number of active users in one time slot.
The data fields of the burst type 1 are 976 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 above. The midamble of burst type 1 has a length of 512 chips. The guard period for the burst type 1 is 96 chip periods long. The burst type 1 is shown in Figure 4. The contents of the burst fields are described in table 2.

Table 2: The contents of the burst type 1 fields

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field
0-975	976	Cf table 1	Data symbols
976-1487	512		Midamble
1488-2463	976	Cf table 1	Data symbols
2464-2559	96		Guard period

Data symbols 976 chips	Midamble 512 chips	Data symbols 976 chips	GP CP

Figure 4: Burst structure of the burst type 1. GP denotes the guard period and CP the chip periods

5.2.2.2 Burst Type 2

The burst type 2 offers a longer data field than burst type 1 on the cost of a shorter midamble. Due to the shorter midamble field the burst type 2 supports a maximum number of training sequences of 3 or 6 only, depending on the cell configuration, see annex A.ean be used for
-uplink, if the bursts within a time slot are allocated to less than four users;

- downlink, independent of the number of active users in one time slot.

The data fields of the burst type 1 are 976 chips long, whereas the data fields length of the burst type 2 are 1104 chips long. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 abovebelow. The guard period for the burst type 1and-type 2 is 96 chip periods long.

The bursts type 1 and type 2 isare shown in Figure 4 and Figure 5. The contents of the burst fields are described in table 2 and table 3.

Table 1: number of symbols per data field in bursts-1 and 2

Spreading factor (Q)	Number of symbols (N) per data field in Burst 1	Number of symbols (N) per data field in Burst 2
7	976	1104
2	488	552
4	244	276
8	122	138
16	64	69

Table 2: The contents of the burst type 1 fields

Chip number (CN)	Length of field in chips	Length of field in symbols		Contents of field
$0-975$	976	ef tablo-1		Data symbols
$976-1487$	512	$=$	Aidamble	
$1488-2463$	976	ef table-1	Aata symbols	
$2464-2559$	96	$=$	Buard period	

Figure 4: Burst structure of the burst type 1. GP denotes the guard period and CP the chip periods

Table 3: The contents of the burst type 2 fields

Chip number (CN)	Length of field in chips	Length of field in symbols	Contents of field			
$0-1103$	1104	cf table 1	Data symbols Midamble $1104-1359$ $1360-2463$ $2464-2559$	-		
Data symbols						
Guard period						
:---:						

Data symbols 1104 chips	Midamble 256 chips	Data symbols 1104 chips	GP 96 CP

Figure 5: Burst structure of the burst type 2. GP denotes the guard period and CP the chip periods

5.2.2.1 Burst Type 3

The burst type 3 is used for uplink only. Due to the longer guard period it is suitable for initial access or access to a new cell after handover. It offers the same number of training sequences as burst type 1.

The data fields of the burst type 3 have a length of 976 chips and 880 chips, respectively. The corresponding number of symbols depends on the spreading factor, as indicated in table 1 above. The midamble of burst type 3 has a length of 512 chips. The guard period for the burst type 3 is 192 chip periods long. The burst type 3 is shown in Figure 6. The contents of the burst fields are described in table 4.

Table 4: The contents of the burst type 3 fields

Chip number (CN)	Length of field in chips	Length of field in symbols		Contents of field
$\underline{0-975}$	$\underline{976}$	$\underline{\text { Cf table 1 }}$	$\overline{-}$	$\frac{\text { Data symbols }}{\text { Midamble }}$
$\frac{976-1487}{1488-2367}$	$\underline{512}$	$\underline{\text { Cf table 1 }}$	-	$\frac{\text { Data symbols }}{2368-2559}$

Figure 6: Burst structure of the burst type 3. GP denotes the guard period and CP the chip periods
The two different bursts defined here are well suited for the different applications mentioned above. It may be possible to further optimise the burst structure for specific applications, for instance for unlicensed operation.

5.2.2.1 Transmission of TFCI

AllBoth burst types 12 and 2 and 3 provide the possibility for transmission of TFCI both in up-and downlink.
The transmission of TFCI is negotiated at call setup and can be re-negotiated during the call. For each CCTrCH it is indicated by higher layer signalling, which TFCI format is applied. Additionally for each allocated timeslot it is signalled individually whether that timeslot carries the TFCI or not. If a time slot contains the TFCI, then it is always transmitted using the first allocated channelisation code in the timeslot, according to the order in the higher layer allocation message.

The transmission of TFCI is done in the data parts of the respective physical channel, this means TFCI and data bits are subject to the same spreading procedure as depicted in [8]. Hence the midamble structure and length is not changed. The TFCI information is to be transmitted directly adjacent to the midamble, possibly after the TPC. Figure 6 shows the position of the TFCI in a traffic burst in downlink. Figure 7 shows the position of the TFCI in a traffic burst in uplink.

Figure 67: Position of TFCI information in the traffic burst in case of downlink

Figure 78: Position of TFCI information in the traffic burst in case of uplink

Two examples of TFCI transmission in the case of multiple DPCHs used for a connection are given in the Figure 8 and Figure 9 below. Combinations of the two schemes shown are also applicable. It should be noted that the SF can vary for the DPCHs not carrying TFCI information.

Figure 89: Example of TFCI transmission with physical channels multiplexed in code domain

Figure 109: Example of TFCI transmission with physical channels multiplexed in time domain

5.2.2.2 Transmission of TPC

All Both burst types 12 and 2 and 3 for dedicated channels provide the possibility for transmission of TPC in uplink.
The transmission of TPC is done in the data parts of the traffic burst. Hence the midamble structure and length is not changed. The TPC information is to be transmitted directly after the midamble. Figure 10 shows the position of the TPC in a traffic burst.

For every user the TPC information shall be transmitted at least once per transmitted frame. If TFCI is applied for a $\mathrm{CCTrCH}, \mathrm{TPC}$ shall be transmitted with the same channelization codes and in the same timeslots as TFCI. If no TFCI is applied for a CCTrCH, TPC shall be transmitted using the first allocated channelisation code and the first allocated timeslot, according to the order in the higher layer allocation message. The TPC is spread with the same spreading factor (SF) and spreading code as the data parts of the respective physical channel.

Figure 110: Position of TPC information in the traffic burst

5.2.2.3 Timeslot formats

5.2.2.3.1 Downlink timeslot formats

The downlink timeslot format depends on the spreading factor, midamble length and on the number of the TFCI bits, as depicted in the table 4 a .

Table 45ㅁ: Time slot formats for the Downlink

Slot Format $\#$	Spreading Factor	Midamble length (chips)	$\mathbf{N}_{\text {TFCI }}$ (bits)	Bits/slot	$\mathbf{N}_{\text {Data/Slot }}$ (bits)	$\mathbf{N}_{\text {data/data field }}$ (bits)
0	16	512	0	244	244	122
1	16	512	4	244	240	120
2	16	512	8	244	236	118
3	16	512	16	244	228	114
4	16	512	32	244	212	106
5	16	256	0	276	276	138
6	16	256	4	276	272	136
7	16	256	8	276	268	134
8	16	256	16	276	260	130
9	16	256	32	276	244	122
10	1	512	0	3904	3904	1952
12	1	512	4	3904	3900	1950
13	1	512	8	3904	3896	1948
14	1	512	16	3904	3888	1944
15	1	256	32	3904	3872	1936
16	1	256	0	4416	4416	2208
17	1	256	8	4416	4412	2206
18	1	256	16	4416	4408	2204
19	1	256	32	4416	4400	2200

5.2.2.3.2 Uplink timeslot formats

The uplink timeslot format depends on the spreading factor, midamble length, guard period length and on the number of the TFCI bits. Due to TPC, different amount of bits are mapped to the two data fields. The timeslot formats are depicted in the table 4 b .

Table $\underline{5} 4 \mathrm{~b}$: Timeslot formats for the Uplink

$\begin{gathered} \hline \text { Slot } \\ \text { Format } \\ \# \\ \hline \end{gathered}$	Spreadin g Factor	Midambl e length (chips)	Guard Period (chips)	$\mathrm{N}_{\mathrm{TFCI}}$ (bits)	$\mathrm{N}_{\mathrm{TPC}}$ (bits)	$\begin{gathered} \hline \begin{array}{c} \text { Bits/sl } \\ \text { ot } \end{array} \end{gathered}$	$\mathrm{N}_{\text {Data/SIo }}$ t (bits)	$\mathrm{N}_{\text {data/data }}$ field(1) (bits)	$\mathbf{N}_{\text {data/data }}$ field(2) (bits)
0	16	512	96	0	0	244	244	122	122
5	16	512	96	0	2	244	242	122	120
6	16	512	96	4	2	244	238	120	118
7	16	512	96	8	2	244	234	118	116
8	16	512	96	16	2	244	226	114	112
9	16	512	96	32	2	244	210	106	104
10	16	256	96	0	0	276	276	138	138
15	16	256	96	0	2	276	274	138	136
16	16	256	96	4	2	276	270	136	134
17	16	256	96	8	2	276	266	134	132
18	16	256	96	16	2	276	258	130	128
19	16	256	96	32	2	276	242	122	120
20	8	512	96	0	0	488	488	244	244
25	8	512	96	0	2	488	486	244	242
26	8	512	96	4	2	488	482	242	240
27	8	512	96	8	2	488	478	240	238
28	8	512	96	16	2	488	470	236	234
29	8	512	96	32	2	488	454	228	226
30	8	256	96	0	0	552	552	276	276
35	8	256	96	0	2	552	550	276	274
36	8	256	96	4	2	552	546	274	272
37	8	256	96	8	2	552	542	272	270
38	8	256	96	16	2	552	534	268	266
39	8	256	96	32	2	552	518	260	258
40	4	512	96	0	0	976	976	488	488
45	4	512	96	0	2	976	974	488	486
46	4	512	96	4	2	976	970	486	484
47	4	512	96	8	2	976	966	484	482
48	4	512	96	16	2	976	958	480	478
49	4	512	96	32	2	976	942	472	470
50	4	256	96	0	0	1104	1104	552	552
55	4	256	96	0	2	1104	1102	552	550
56	4	256	96	4	2	1104	1098	550	548
57	4	256	96	8	2	1104	1094	548	546
58	4	256	96	16	2	1104	1086	544	542
59	4	256	96	32	2	1104	1070	536	534
60	2	512	96	0	0	1952	1952	976	976
65	2	512	96	0	2	1952	1950	976	974
66	2	512	96	4	2	1952	1946	974	972
67	2	512	96	8	2	1952	1942	972	970
68	2	512	96	16	2	1952	1934	968	966
69	2	512	96	32	2	1952	1918	960	958
70	2	256	96	0	0	2208	2208	1104	1104
75	2	256	96	0	2	2208	2206	1104	1102
76	2	256	96	4	2	2208	2202	1102	1100
77	2	256	96	8	2	2208	2198	1100	1098
78	2	256	96	16	2	2208	2190	1096	1094
79	2	256	96	32	2	2208	2174	1088	1086

$\begin{gathered} \hline \text { Slot } \\ \text { Format } \\ \# \end{gathered}$	Spreadin g Factor	Midambl e length (chips)	$\begin{aligned} & \hline \text { Guard } \\ & \hline \text { Period } \end{aligned}$ (chips)	$\mathrm{N}_{\mathrm{TFCI}}$ (bits)	$\mathrm{N}_{\mathrm{TPC}}$ (bits)	Bits/sl ot	$\mathrm{N}_{\text {Data/SIo }}$ t (bits)	$\mathbf{N}_{\text {data/data }}$ field(1) (bits)	$\mathbf{N}_{\text {data/data }}$ field(2) (bits)
80	1	512	96	0	0	3904	3904	1952	1952
85	1	512	96	0	2	3904	3902	1952	1950
86	1	512	96	4	2	3904	3898	1950	1948
87	1	512	96	8	2	3904	3894	1948	1946
88	1	512	96	16	2	3904	3886	1944	1942
89	1	512	96	32	2	3904	3870	1936	1934
90	1	256	96	0	0	4416	4416	2208	2208
95	1	256	96	0	2	4416	4414	2208	2206
96	1	256	96	4	2	4416	4410	2206	2204
97	1	256	96	8	2	4416	4406	2204	2202
98	1	256	96	16	2	4416	4398	2200	2198
99	1	256	96	32	2	4416	4282	2192	2190
60	16	512	192	0	0	232	232	122	110
61	16	512	192	0	2	232	230	122	108
62	16	512	192	4	2	232	226	120	106
63	16	512	192	8	$\underline{2}$	232	222	118	104
64	16	512	192	16	$\underline{2}$	232	214	114	100
65	16	512	$\underline{\underline{192}}$	32	$\underline{\underline{2}}$	$\underline{\underline{2} 2}$	198	106	92
66	8	512	192	0	0	464	464	244	220
67	8	512	192	0	2	464	462	244	218
68	8	512	192	4	2	464	458	242	216
69	8	512	192	8	2	464	454	240	214
70	8	512	192	16	$\underline{2}$	464	446	236	210
71	8	512	192	32	2	464	430	$\underline{228}$	202
72	4	512	192	0	0	928	928	488	440
73	4	512	192	0	$\underline{\underline{2}}$	928	926	488	438
74	4	512	192	4	2	928	922	486	436
75	4	512	192	8	2	928	918	484	434
76	4	512	192	16	2	928	910	480	430
$\underline{\underline{77}}$	4	512	192	32	$\underline{\underline{2}}$	$\underline{\underline{928}}$	894	472	422
78	$\underline{\underline{2}}$	512	192	0	$\underline{0}$	1856	1856	976	880
79	2	512	192	0	2	1856	1854	976	878
80	2	512	192	4	2	1856	1850	974	876
81	$\underline{\underline{2}}$	512	192	8	$\underline{2}$	1856	1846	972	874
82	$\underline{\underline{2}}$	512	192	16	$\underline{\underline{2}}$	$\underline{1856}$	1838	968	870
83	$\underline{\underline{2}}$	512	$\underline{192}$	32	$\underline{\underline{2}}$	1856	1822	960	862
84	1	512	192	0	0	3712	3712	1952	1760
85	1	512	192	0	2	3712	3710	1952	1758
86	1	512	192	4	2	3712	3706	1950	1756
87	1	512	192	8	2	3712	3702	1948	1754
88	1	512	192	16	2	3712	3694	1944	1750
89	1	512	192	32	$\underline{\underline{2}}$	3712	3678	1936	1742

5.2.3 Training sequences for spread bursts

In this subclause, the training sequences for usage as midambles in burst type 1,2 and 3 and burst type 2 (see subclause 5.2.2) are defined. The training sequences, i.e. midambles, of different users active in the same cell and same time slot are cyclically shifted versions of one single basic midamble code. The applicable basic midamble codes are given in

Annex A. 1 and A.2. As different basic midamble codes are required for different burst formats, the Annex A. 1 shows the basic midamble codes \mathbf{m}_{PL} for burst type 1 and 3, and Annex and A. 2 shows \mathbf{m}_{PS} for burst type 2. It should be noted that burst type 2 the different burst types-must not be mixed with burst type 1 or 3 in the same timeslot of one cell.

The basic midamble codes in Annex A. 1 and A. 2 are listed in hexadecimal notation. The binary form of the basic midamble code shall be derived according to table 5 below.

Table 65: Mapping of 4 binary elements m_{i} on a single hexadecimal digit

4 binary elements m_{i}	Mapped on hexadecimal digit
-1-1-1-1	0
-1-1-1 1	1
-1-1 1 -1	2
-1-1 1111	3
-1 1-1-1	4
-1 1-1 11	5
-1 1 1 1-1	6
-1 1111	7
1-1-1-1	8
1-1-1 1	9
1-1 1-1	A
1-111	B
1-1-1	C
1 1-11	D
11^{1-1}	E
1111	F

For each particular basic midamble code, its binary representation can be written as a vector \mathbf{m}_{P} :

$$
\begin{equation*}
\mathbf{m}_{\mathrm{P}}=\left(m_{1}, m_{2}, \ldots, m_{P}\right) \tag{1}
\end{equation*}
$$

According to Annex A.1, the size of this vector \mathbf{m}_{P} is $\mathrm{P}=456$ for burst type 1 and 3. Annex A. 2 is setting $\mathrm{P}=192$ for burst type 2. As QPSK modulation is used, the training sequences are transformed into a complex form, denoted as the complex vector $\underline{\mathbf{m}}_{P}$:

$$
\begin{equation*}
\underline{\mathbf{m}}_{\mathrm{P}}=\left(\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{P}\right) \tag{2}
\end{equation*}
$$

The elements \underline{m}_{i} of $\underline{\mathbf{m}}_{\mathrm{P}}$ are derived from elements m_{i} of \mathbf{m}_{P} using equation (3):

$$
\begin{equation*}
\underline{m}_{i}=(\mathrm{j})^{i} \cdot m_{i} \text { for all } i=1, \ldots, P \tag{3}
\end{equation*}
$$

Hence, the elements \underline{m}_{i} of the complex basic midamble code are alternating real and imaginary.
To derive the required training sequences, this vector $\underline{\mathbf{m}}_{P}$ is periodically extended to the size:

$$
\begin{equation*}
i_{\max }=L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor \tag{4}
\end{equation*}
$$

Notes on equation (4):

- K', W and P taken from Annex A. 1 or A. 2 according to burst type and thus to length of midamble L_{m}
- $\mathrm{K}=2 \mathrm{~K}^{\prime}$
- $\lfloor x\rfloor$ denotes the largest integer smaller or equal to x

So we obtain a new vector $\underline{\mathbf{m}}$ containing the periodic basic midamble sequence:

$$
\begin{equation*}
\underline{\mathbf{m}}=\left(\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{i_{\max }}\right)=\left(\underline{m}_{1}, \underline{m}_{2}, \ldots, \underline{m}_{L_{m}+\left(K^{\prime}-1\right) W+\lfloor P / K\rfloor}\right) \tag{5}
\end{equation*}
$$

The first P elements of this vector $\underline{\mathbf{m}}$ are the same ones as in vector $\underline{\mathbf{m}}_{\mathrm{P}}$, the following elements repeat the beginning:

$$
\begin{equation*}
\underline{m}_{i}=\underline{m}_{i-P} \text { for the subset } i=(P+1), \ldots, i_{\max } \tag{6}
\end{equation*}
$$

Using this periodic basic midamble sequence $\underline{\mathbf{m}}$ for each user k a midamble $\underline{\mathbf{m}}^{(k)}$ of length L_{m} is derived, which can be written as a user specific vector:

$$
\begin{equation*}
\underline{\mathbf{m}}^{(k)}=\left(\underline{m}_{1}^{(k)}, \underline{m}_{2}^{(k)}, \ldots, \underline{m}_{L_{m}}^{(k)}\right) \tag{7}
\end{equation*}
$$

The L_{m} midamble elements $\underline{m}_{i}^{(k)}$ are generated for each midamble of the first K^{\prime} users $\left(\mathrm{k}=1, \ldots, \mathrm{~K}^{\prime}\right)$ based on:

$$
\begin{equation*}
\underline{m}_{i}^{(k)}=\underline{m}_{i+\left(K^{\prime}-k\right) W} \text { with } i=1, \ldots, L_{m} \text { and } k=1, \ldots, K^{\prime} \tag{8}
\end{equation*}
$$

The elements of midambles for the second K^{\prime} users $\left(\mathrm{k}=\left(\mathrm{K}^{\prime}+1\right), \ldots, \mathrm{K}=\left(\mathrm{K}^{\prime}+1\right), \ldots, 2 \mathrm{~K}^{\prime}\right)$ are generated based on a slight modification of this formula introducing intermediate shifts:

$$
\begin{equation*}
\underline{m}_{i}^{(k)}=\underline{m}_{i+(K-k) W+\lfloor P / K\rfloor} \text { with } i=1, \ldots, L_{m} \text { and } k=K^{\prime}+1, \ldots, K \tag{9}
\end{equation*}
$$

Whether intermediate shifts are allowed in a cell is broadcast on the BCH.
The midamble sequences derived according to equations (7) to (9) have complex values and are not subject to channelisation or scrambling process, i.e. the elements $\underline{m}_{i}^{(k)}$ represent complex chips for usage in the pulse shaping process at modulation.

The term 'a midamble code set' or 'a midamble code family' denotes K specific midamble codes $\underline{\mathbf{m}}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K}$, based on a single basic midamble code \mathbf{m}_{P} according to (1).

5.3.3 The physical random access channel (PRACH)

The RACH as described in subclause 4.1.2 is mapped onto one or more uplink physical random access channels (PRACH). In such a way the capacity of RACH can be flexibly scaled depending on the operators need.

This description of the physical properties of the PRACH also applies to bursts carrying other signaling or user traffic if they are scheduled on a time slot which is (partly) allocated to the RACH.

5.3.3.1 PRACH Spreading

The uplink PRACH uses either spreading factor $\mathrm{SF}=16$ or $\mathrm{SF}=8$ as described in subclause 5.2.1.1. The set of admissible spreading codes for use on the PRACH and the associated spreading factors are broadcast on the BCH (within the RACH configuration parameters on the BCH).

5.3.3.2 PRACH Burst Types

The mobile stationUEs send the uplink access bursts of type 3 randomly in the PRACH. TFCI and TPC are not applied for the PRACH. The PRACH burst consists of two data symbol fields, a midamble and a guard period. The second data symbol field is shorter than the first symbol data field by 96 chips in order to provide additional guard time at the end of the PRACH time slot.

The precise number of collision groups depends on the spreading codes (i.e. the selected RACH configuration. The access burst is depicted in figure 11, the contents of the access burst fields are listed in table 6 and table 7 .

Figure 11: PRACH burst, GP denotes the guard period

Table 6: number of symbols per data field in PRACH burst

Spreading factor (Q)	Number of symbols in-data field 1	Number of symbols in-data-field 2
8	122	110
16	61	55

Table 7: The contents of the PRACH burst field

Chip-number (CN)	Length-of-field-in-chips	Length-of-field-in-symbols	Contents-of field
$0-975$	976	ef table-1	Data symbols
$976-1487$	512	-	Aidamble
$1488-2367$	880	ef table-1	Data symbols
$2368-2559$	192	-	Guard period

5.3.3.3 PRACH Training sequences

The training sequences, i.e. midambles, of different users active in the same time slot are time shifted versions of a single periodic basic code. The basic midamble codes used for PRACH bursts are the same as for burst type $\underline{3} 1$ and are shown in Annex A. The necessary time shifts are obtained by choosing either all $\mathrm{k}=1,2,3 \ldots, \mathrm{~K}$ ' (for cells with small radius) or uneven $\mathrm{k}=1,3,5, \ldots \leq \mathrm{K}$ ' (for cells with large radius). Different cells use different periodic basic codes, i.e. different midamble sets.

For cells with large radius additional midambles may be derived from the time-inverted Basic Midamble Sequence. Thus, the second Basic Midamble Code m_{2} is the time inverted version of Basic Midamble Code m_{1}.

In this way, a joint channel estimation for the channel impulse responses of all active users within one time slot can be performed by a maximum of two cyclic correlations (in cells with small radius, a single cyclic correlator suffices). The different user specific channel impulse response estimates are obtained sequentially in time at the output of the cyclic correlators.

5.3.3.4 PRACH timeslot formats

For the PRACH the timeslot format is only spreading factor dependent. The timeslot formats 60 and 66 of table 5 b are applicable for the PRACH. Burst type 1 midamble is always used. The two data fields contain a different number of bits.

Fable 4c: Timestot formats for the RACH

Slot Format \#	Spreading Factor	Midamble length (chips)	Bits/slot	$\mathbf{N}_{\text {Data/Slot }}$ (bits)	$\mathbf{N}_{\text {datadata }}$ field(1) (bits)	$\mathbf{N}_{\text {datadata }}$ field(2) (bits)
0	16	512	232	232	122	110
4	8	512	464	464	244	220

5.3.3.5 Association between Training Sequences and Channelisation Codes

For the PRACH there exists a fixed association between the training sequence and the channelisation code. The generic rule to define this association is based on the order of the channelisation codes $\mathbf{c}_{Q}{ }^{(k)}$ given by k and the order of the midambles $\mathbf{m}_{j}^{(k)}$ given by k, firstly, and j, secondly, with the constraint that the midamble for a spreading factor Q is the same as in the upper branch for the spreading factor $2 Q$. The index $j=1$ or 2 indicates whether the original Basic Midamble Sequence $(\mathrm{j}=1)$ or the time-inverted Basic Midamble Sequence is used $(\mathrm{j}=2)$.

- For the case that all k are allowed and only one periodic basic code m_{1} is available for the RACH, the association depicted in figure 12 is straightforward.
- For the case that only odd k are allowed the principle of the association is shown in figure 13 . This association is applied for one and two basic periodic codes.

Figure 123: Association of Midambles to Channelisation Codes in the OVSF tree for all k

Figure 134: Association of Midambles to Channelisation Codes in the OVSF tree for odd \boldsymbol{k}

Annex A (normative): Basic Midamble Codes

A. 1 Basic Midamble Codes for Burst Type 1 and 3PRACH Burst Type

In the case of burst type 1 or 3 (see subclause 5.2.2)-or in the case of PRACH burst the midamble has a length of $\mathrm{Lm}=512$, which is corresponding to:
$\mathrm{K}^{\prime}=8 ; \mathrm{W}=57 ; \mathrm{P}=456$.
Depending on the possible delay spread cells are configured to use midambles which are generated from the Basic Midamble Codes (see table A-1)

- for all $\mathrm{k}=1,2, \ldots, \mathrm{~K} ; \mathrm{K}=2 \mathrm{~K}^{\prime}$ or
- for $\mathrm{k}=1,2, \ldots, \mathrm{~K}^{\prime}$, only, or
- for odd $\mathrm{k}=1,3,5, \ldots, \leq \mathrm{K}^{\prime}$, only.

Depending on the cell size midambles for PRACH are generated from the Basic Midamble Codes (see table A-1)

- for $\mathrm{k}=1,2, \ldots, \mathrm{~K}^{\prime}$ or
- for odd $\mathrm{k}=1,3,5, \ldots, \leq \mathrm{K}^{\prime}$, only.

The cell configuration is broadcast on BCH .
The mapping of these Basic Midamble Codes to Cell Parameters is shown in TS 25.223.

Table A-1: Basic Midamble Codes \mathbf{m}_{P} according to equation (5) from subclause 5.2 .3 for case of burst type 1 and 3

Code ID	Basic Midamble Codes m_{PL} of length $P=456$
mpLo	8DF65B01E4650910A4BF89992E48F43860B07FE55FA0028E454EDCD1F0A09A6F029668F55427 253FB8A71E5EF2EF360E539C489584413C6DC4
mpL1	4C63F9BC3FD7B655D5401653BE75E1018DC26D271AADA1CF13FD348386759506270F2F953E9 3A44468E0A76605EAE8526225903B1201077602
mpL2	8522611FFCAEB55A5F07D966036C852E7B15B893B3ABA9672C327380283D168564B8E1200F0E 2205AF1BB23A58679899785CFA2A6C131CFDC4
mpL3	F58107E6B777C221999BDE9340E192DC6C31AB8AE85E70AA9BBEB39727435412A5A27C0EF7 3AB453ED0D28E5B032B94306EC1304736C91E922
mpL4	89670985013DFD2223164B68A63BD58C7867E97316742D3ABD6CBDA4FC4E08C0B0CBE44451 575C72F887507956BD1F27C466681800B4B016EE
mpL5	FCDEF63500D6745CDB962594AF171740241E982E9210FC238C4DD85541F08C1A010F7B3161A 7F4DF19BAD916FD308AB1CED2A32538C184E92C
mpL6	DB04CE77A5BA7C0E09B6D3551072B11A7A43B6A355C1D6FDCF725D587874999895748DD098 32ABC35CEC3008338249612E6FE5005E13B03103
mpL7	D2F61A622D0BA9E448CD29587D398EF8CDC3B6582B6CDD50E9E20BF5FE2B3258041E14D608 21DC6725132C22D787CD5D497780D4241E3B420D
$\mathrm{m}_{\text {PL8 }}$	7318524E62D806FA149ECC5435058A2B74111524B84727FE9A7923B4A1F0D8FCD89208F34BE E5CADEB90130F9954BB30605A98C11045FF173D
mpL9	8E832B4FA1A11E0BF318E84F54725C8052E0D099EF0AF54BC342BEE44976C9F38DE701623C7 BF6474DF90D2E2222A4915C8080E7CD3EC84DAC
$\mathrm{m}_{\text {PL10 }}$	CFA5BAC90780876C417933C43103B55699A8AD51164E590AF9DA6AF0C18804E1F74862F00CE 7ECC899C85B6ABB0CAD5E50836AD7A39878FE2F
$\mathrm{m}_{\mathrm{PL} 11}$	AD539094A19858A75458F1B98E286A4F7DC3A117083D04724CBE83F34102817C5531329CDB43 7FFF712241B644BDF0C1FEC8598A63C2F21BD7
$\mathrm{m}_{\mathrm{PL} 12}$	BEB8483139529BDE23E42DA6AB8170DD0BFBB30CE28A4502FAF3C8EDA219B9A6D5B849D9C 9E4451F74E2408EA046061201E0C1D69CF48F3A94
$\mathrm{m}_{\text {PL13 }}$	C482462CA7846266060D21688BA00B72E1EC84A3D5B7194C8DA39E21A3CE12BF512C8AAB6A 7079F73C0D3E4F40AC555A4BCC453F1DFE3F6C82
$\mathrm{m}_{\mathrm{PL} 14}$	9663373935FD5C213AC58C0670206683D579D2526C05B0A81030DDF61A221D8A68EAD8D6F7A A0D662C07C6DCD0115A54D39F03F7122B0675AC
$\mathrm{m}_{\mathrm{PL} 15}$	387397AE5CD3F2B3912C26B8F87CE82CEFEC55507DB08FB0C4CF2FD6858896201ACA726428 1D0298440DD3481E5E9DDB24C16F30EB7A22948A
mPL16	AFE9266843C892571B6230D808788C63B9065EA3BDFF687B92B8734A8D7099559FEA22C94165 76D0C087EB4503E87E356471B330182A24A3E6
$\mathrm{m}_{\mathrm{PL17}}$	6E6C550A4CB74010F6C3E0328651DF421C456D9A5E8AE9D3946C10189D72B579184552EE3E7 99970969C870FE8A37B6C4BA890992103486DC0
$\mathrm{m}_{\mathrm{PL} 18}$	D803CA71B6F99CFB3105D40F4695D61EB0B62E803F79302EE3D2A6BF12EA70D304B181E8B3 8B3B74F5022B67EB8109808C62532688C563D4BE
$\mathrm{m}_{\mathrm{PL} 19}$	E599ED48D01772055DBE9D343A4EA5EABE643DA38F06904FC7523B08C4101F021B199AF759A 00D9AC298881D79413A77470992A75C771492D0
mpL20	9F30AC4162CE5D185953705F3D45F026F38E9B5721AEFE07370214D526A2C4B344B508B57BF B2492320C05903C79CBEE08C6E7F218B57E14D6
$\mathrm{m}_{\mathrm{PL} 21}$	B5971060DA84685B4D042ED0189FAF13C961B2EF61CC164E363B22AAB14AC8AF607906C1C6 E04F2054C687AA6741A9E70639857DA02B6FFFFA
$\mathrm{m}_{\text {PL22 }}$	97135FC2226C4B4A5CBA5FCA3732763B87455F73A1148006F3DF214BD4C936D061E04045160 E2CE33B9CD09D08FDE2A37F4E998322B4401D27
$\mathrm{m}_{\text {PL23 }}$	4D256D57C861B9791151A78D5299C56D116B6178B2A2D04BB95FB76540AF28341DC6EC4E7E D3BF9E508478D9C8F44914805DA82429E1CF320E
$\mathrm{m}_{\mathrm{PL} 24}$	858EF5C84CE32D18D9ABA110EEA7474CF0CD70254D2928C3F4DFF6BB3A518587CADA190290 78AC90A8336C8178203BE3289E601F07D089CB64
mpL25	920A8796A511650AEF32F93DD3C39C624E07AE03CE8C96139973F54DCB9803C5164ADB502D 4FF561564D607037FCD172921F1982B102C3312C
$\mathrm{m}_{\text {PL26 }}$	485C5DAE76B360A9C56E20B8422EA3E6ACF07CB093B5587CB0E6A5498A4714081EA98DBCD B0482B26E0D097C03444473D233BEF3C8E440DEBF
mpL27	565A9D54EA789892B024F97E728E8EE112411942C48BD0C5BC8AA457D8DC9941F0F7424B386 43FFE6521CD306FBC56FE10F1428D4C245B5606
$\mathrm{m}_{\text {PL28 }}$	5AEF2C0C2C378179A1AC36242E6B3EDB72C42D3624437674F8D51260C0898C201837CBA14E9 E23D1EF6451C4ACF27AB031F457A8A1BFD148AE
mpL29	87D8FE685417822A23D925307E6C11081ADAC4702BCCD9BE448E78984D109B50DEF5B7C58B C71EA1F0A6826BA8AD1978843E7697F3E416AADA

Code ID	Basic Midamble Codes mpl of length P=456
mpL30	84802B72AF27B5BE724D1FB629E0E627BDB0D9061292562F98350C1D0C9D4B9D8E2BF71123C 82EBB161003AE9829E07244D78F19926F8847A2
mpL31	8CCB5128238BCB088E30972D62792AEF02B9BBDDCAD68C9916C00BF91CBE788B0F03851FA AF88605534FD73436C259D270B1013CB14226F658
mpL32	62F4E6FAC2BF1979CE6854AA2D33534BFB2F946519101A6589131C3640707D40E67ED804AF8 736AD213CAF5935741900061967E8285C27E34C
MPL33	4095E5B4EEAFCDF68A34B267EEA28D8444FA533900F41499E260D2E65C256A52E1DD5861F52 27C98E00687D107233F51A1167BCF72FB184654
mpL34	5630E9A79FCAD303404D9E5A802299162657AAC734761C6E90DA8BCE4F61A763E0BB48D3FE B3F78468C828ABA4828DAD06E0F904CFD40421DC
mpL35	CD12B24C0BCA8AAC1FCBF0500A3BC684A180E863D888F2506B48C68ECF17F76CB285991FB A18EB6397211FAD002F482D57A258CD45DE3FF1A6
mpL36	AFCF2A50877286CD3405442730C45514F082D9EC296B367C0F64F04C4E0007DCA9E50BEED5 C102126E319ACBC64F1729272F2F72C9397029FE
mpL37	18F89EE8589D20882A72A44DCCDF0050F0A3D88DBA6531614973D26905FDF41E3F779FF0648 E8AF1540928511BCF4C25D9C64AF34AC31B8965
mpL38	F890D550F33F032ECDA3A51FED427D634F64EB29AF1332A23CD961258E4BAED040E7B33691 8E250EC272A12816B9EBFFA1E0AE401185F08C10
MPL39	ACE5DD61506047E80FB7D41BD3992DF4D7F18EB46CC145C0E9105428C2F8F299141F5D6669 1904A7DC2513A3B83994ACB1292246B32818FE9D
mpL40	150680FF900C9B46E1E24D54BE2238CB950A934E5CCDE9BC3939EB51CB0AE202B7D339EEC 2018B33A0AB9B63DA5D512D64FB58C0E51A1C82C2
mpL41	51A579EED2663A002D32D10A0753173612F4D5BA167D1807C61F25C4D42C063682E8E9DD019 F79D446A046EB3F75E50FEB228DC52F08E694B6
mpL42	CDC644FE4C0C6897604F9D14D714123BF16FFF0E49F35F674908CA60653702FE27BCCA2A470 98453AF8661055C8C549EB6A951A8396AD4B94D
mpL43	750A10366C595373C5001CA3E4239764B1409D602CF6052B39BC6A3255A15FE06C782C4C5F8 47026A7E79838A2933A61C77BB6CBF5915B2DA5
mpL44	B7490686D78E409082C4C48FE18D4C35429C20AADF96076B92FC4E85490664753DB0891A0B2 7FD849BB7FCA99E3B38F22F8C662852C0D35AA6
mpL45	D86E1B575B47D23DA811806A54C231281F03317830E7BD305D3CAA7D6382A5233104CFD54D2 2DF9F34535E5B390D9040CF1375FEA44CEC29E2
mpL46	828655960C026EC67B683480992AC2ED2C43ABC606F5220C2945F373470BE7ED5BCCF7C1AA 0986BBCCC84F11F1658AA568FAA0A60C5F0B5BFA
mpL47	D76230E02C8533653AAB99B288AA2ADE25A1C1BF28516C04239240EAF1EFC0B98974B51F886 861D8A1E9F5D62CFFEC309F071A9716B325101B
MPL48	EA207662865B8A07D69648964DED818EE474A90B94473408871880E63EF0596B9FCFEC3C06B 86EA6AD2B06C91672EFB33C70241A5450B59B8A
mpL49	9CB5459549909835FAB22F0D99298C120ACF479F814CCE749079D40688F28101037762F125C7 76DA9C5FA1FCE0E76E452F8185354FDCDE94E2
mpL50	$\begin{aligned} & \text { 227506304AEC1D6F93569B51FDC3405A0F38194F65BE17163A3CB9827A35AECEA757D020FE2 } \\ & \text { 49377ECD561428A38FEED004EC859C272563185 } \end{aligned}$
mpL51	96B9AEC9938910F0E533422A3977519B05CD4AD3909BC15A7502D48D49C124FA192A8E57027 CFEB11DF542010603CE5C9FDF8E626D4FBF8CF4
MPL52	A6AAD06E095A9BE0BD9F8A2ED40C3CBDBAE91C700CBB778C8696CC06F3A675C16BDB2918 E5F2111005A8727206DC6A9684E05655185C398EEB
mpL53	CD168D384A78DA172991AD333EE2A9880905AFE59E2A2A4AC4414C40F82874F98A3CBE7B44 F4C7F4710B35FD88AFC0399FAEB070EB9CA4D30A
mpL54	$\begin{aligned} & \text { 22016CA87AD1549174A8699DD65599697871091457E83E0912E7E77A06531C209394D283D18A } \\ & \text { 38662B73681DD9C5BF330FED978BDA7D487CA8 } \end{aligned}$
mpL55	B9401B0843AA6F7827A13BD66C922287E8886C31EB5B90B82B472CCD6DA3D8D4FBF78B8F84 96DFA8252B06429D5DD17142F1C908ACCD70EA0C
mpL56	E42B9EFDC5D09AC27B3C7DA28D02493A70521223B9D7A76A9D13E9C171017964D16A70C08E AD02C3DC948889C23E365AFCF01BF20B89B0BF5C
mpL57	9DA0180168DB915E9F3597B59312198E1B5CC00D743C2ECB0DBAADA3E35A2465ED1EAA9D7 4734D49A313CE4DFF020D0760E3153DC485603943
MPL58	B6C966619ECB98191D719C187C07BD503425650CAA3A2D1F2DF5212B1441D7A0C1D36A4C9C 2550240AD17CA43BB3943DFFFBF1E283D81299CC
mpL59	DB0E8C41F08A03D477C1AA548799274C4BF3EB68F2636166FDC8D4B1E7132539930297E228B A232BB5C279FA5ECA3AC10E24361AF050A453B8
mpL60	89BCE2DE2974EEBA833CF32F224C85A2891484478527DB48FA6ECEA84C5E288CC3914CB54A DA0476278750187F68FBEA41017E1E58DF1A5A3D
MPL61	70A457D1314A278625443EEB52520815EC92CEF17417B97440DCB531BC1CE83212F63270418 D0FBDE71F6DB9E0EA88772E1E4535B6633E4425

Code ID	Basic Midamble Codes mpL of length P=456
mpL62	C388460AD54B36C4452CF0433BD347100ACCC24C79C535AD3E1F23FE0425E93A044C553BFA 116E09AA4BB32F13CFA76FBA1BC17520F45EFD44
mPL63	0BAFCADCDF9AA2846681782CD3B90CA036A863C78EE1507620BC394D0C6804B4C97A15BC9 C0D7B79E6892EA1BFF1A0DD9573A9213AB140D0D2
mpL64	833B0226789A62882FCD27A30885E67872B1A1C2FA484AD498011599DD57E8E2A07A560B4716 7AA5F60EF47177DBB1632D5387A2896348640B
MPL65	8F52820323ABA5E6C6B465821B621600B980E59F53A599DA5646BA103214336836CF17E3386C E4FB2BC5F25CCB30CF7F500546828EC8786B8E
mpL66	$\begin{aligned} & \text { E2E9A29C3C8207B9A4508FD2F667A159F068EEE8D00686F46EA904C3692C1D79DFF1B32E510 } \\ & \text { 3720D47B4B58AC35384A26087027E141B3126A8 } \\ & \hline \end{aligned}$
mpL67	70E7C39FD2D3AE1DCE341699A544D801A8688A6EE47C5CB3630022147DDC06241FC5337A34 8A462B2472DEC5E104DD520ADA5114DB065D4B0D
mpL68	```9E3483CAB164BD053C4971D4D87494CC689033D589EF80E5453376E4A8DCC02183B98C36B0 FF7DDC0AD07FCE8B4D5164371BD03A2110AD1247```
mpL69	04DA1C649B0608938DAADD3FE920A4F681690C54505429DBDCDCF10067AB5714BCDDFE1F2 8692710F794765781C1D233344E119BEE8A8416DC
mpl70	7A18D6D30BDF44410714C3DCA27D8F9EA8A542D87122205640B98313C91AD9A0B993A5A7BC 3E035F93B88BBE6D4204BC82A9FA8D4C1A7618CF
MPL71	EB9525E10265A48733C8E0E77E459310112A71DCA680F68AC044B64BC0A31D02EEA0F7ACAA AB7F1E574E94FEA2D1301CB14B03263DA8122B76
mpl72	E706C6ED2D6F89153835079BE0C6D45310845EF2F9F6C6AE91B7419810508BA501C0148BF09 955BAD90D6391BA8EBA5CEFBD23221CC75143D7
mpL73	DF071A10AC4120CD1431590BEDCFF9483CA7047B19590D035D309240BDB4264E9A3A2761402 EC97FD8BC51B4AF32E37FBC47162A2357D18751
mpL74	F0F952B2238139F46D8254D1A2C1C22A16BA71EC0C0C900ED1442452D7F44C798BC65FF4067 1B88074BA0B74C6510996EEAC495C5B49C37DEB
MPL75	1C86BD82EDA81FD65418D3837B5552A853791456D93B06C62C650D86CFBEC269AFFD772763 064062C03751B9428C6DA2E60383025F9E404B70
mpL76	$\begin{aligned} & \text { B390978DD2552C88AABA7838489A6F5A8E9C41E95FFA2215819BF8A5BFE39C8A706CC658E5 } \\ & \text { 49E966611B843A1468406C41C09D1560BEDA4F1B } \end{aligned}$
$\mathrm{m}_{\text {PL77 }}$	1A69EC9D053C7E84BAE7A48CCC71857D0C6B06D1065E3EA4633B133AA022B8104F6EE7C69B 6184B746C8822958B0A16686F27C8A0E3B4EFEAD
mpL78	C95B2070816DC97C6D8DD2583263E73F9AAAFD13F0548D2EBD835824418F11E54111005FB71 3AB234BE412347358281C7DE331EDD21B8BEA52
mpL79	56D6408399F23C2ED85EE0F68111D69A91A3AD9A732AC57CA08F86CC28B3CF4E4B02EBBA0 BCE5CAE5BACC4D52004070797C04093A84BB18DBA
MPL80	E662E7043867BE250764DA0596D34A582A619B408B505E6211DD6286E93A37F95B1EA680C0C 5F3E777E3F71E8D75495D59043217FC0E222E16
mpL81	27D5E681C222297AD478A079EF12F1A98F744B66335303322EF8880B931FEBF8322F4302944E 80BED468A0A516D410B183D863795992DA7DDB
mpL82	5100336C05F9E5BF35201906C1C588858E0DAF56130DF5554B9AB21CA15311A90290624CD63 E03F5EDA49DB7A0C32AB5F1CA427A2D5635FDA5
mpL83	C696DC993BFAEA9A61B781B9C5C3F5CFAA4C8339D8B03A9B0387883D0482A41AC78D652242 5959846E561D26A30FF79A205C801A85889736B2
MPL84	D562297561AFF42D3168296C1153E4E39BE7B2EB0348BC704625AA08391235075EE0DE0A79A B03222FEDB27218C56F96EAC2F91CC8FCE64B12
mpL85	DD0B6768FC01CC0A551F8ACC36907129623E975AB8B3FF58037F1859E2FA8C62C2D9D1E850 6916029A2C3F8CAD9A26AE2CC652F48800859F5C
mpL86	$\begin{aligned} & \text { 923920696EB3AB413786C41854822282BB83F6900D33A232D470BE198BBF086067B72613300C } \\ & \text { 593B74251E2F079857ADBBCD86583A9DCAA6DC } \end{aligned}$
mpL87	$\begin{aligned} & \text { B8EF30C797D8D2C4EF11244F137D806E556A436626D0115A621C92C34D166A68BCEDFA0040 } \\ & \text { DA8FD6F987B1CD5C2AA1C1B045E64475F0F8DABD } \\ & \hline \end{aligned}$
$\mathrm{m}_{\text {PL88 }}$	E1887001D414405ED6419E9EE1D1D346D924ED57ADF04B31B7948099976B2D1501A60DFFB28 7AD44C8783DF0C1EA5AA5D273D1389C8EA22DCC
MPL89	8C2E379A58AA96748141CA84C35987905F984A49D3AD9BFF7807AC244C16C1DF74343C2E1F2 5514F5A0954CFBB3C92E25EF783136844998AC5
MPL90	78F8A99E0A54E27F51C0726FE7A11EB26B1E29FE65F55AC8AC58011465900B958488A90F6DF 614A58431DC8B6C6B9A6F032EE0E0B1306EC4B4
MPL91	88F7A31B7B20E0F05CA26E729B4F8A1933962D7BD7BE3E1EB130B28C794C0B4D01CADE0900 6FF97E80117509733F3A9DC225413A0AE08CA662
mpL92	BE4DFCEAC18905AC8D5DA27A794F88A4D3058D2EFA3B075A819DEAE688EAF8940A653ED71 04E7B403D490F0A9030264E1F12B8922C75775E61
MPL93	5BA4B79FC4550234D8922963BF3537485E3C8745A5DB90D3E2E454B30FF61112F508155B7C2B 3C4C628AF846240C2021ACDE547E5A41F666B8

Code ID	Basic Midamble Codes mPL of length P=456
MPL94	00556D35649F7610AB24A43C4F16D6AC0571FD126F11880C5CD72100D730E4E4D6BB73C33F8 37FAF1072743B249ADA2E09598B1EB23F1180A7
mpL95	7A0CC9F21BD69CF3023E944545C2176EF0D4F450B765C28359FB8A32137D043D0E5713E67B3 F61320985D2C6106605081F87D2296321468A2F
mpL96	DA669880995B0671201172BABFF141D5854A245E211879EF3038A7C84170DADBD368455F2465 3161E7886E15B253F93E3A3C568EFB17CDEB1A
MPL97	$\begin{aligned} & \text { 4E294E53D1661C1F6F748302A7723DA951C00FDB8BEBBF67A68710BA0F1A255DFB1627059D4 } \\ & \text { 1A23D3961726DE6FEB10E5D209CC4505B209812 } \\ & \hline \end{aligned}$
MPL98	73385DF701414E144768A67EF72924B1653479E962FB1554B7E54BC5284D9B3E41C0C133F878 972230721918AA425501B920B204FECE0C7F8A
MPL99	F4492160805F258CE592DF4D1200566F81D173458D78EA3ABED79A14AF88170DB1D4A9A5931 D2B80C58C27FE17D806E3E6A66CDAAD09F118D4
mpL100	44D562D9012D8B07B8F44596467C11A163982BB7EAEAC184078B6B8CE46B5D7E17C39CEF57 6A025491183017FA09931D070B307B86524B03FF
mpL101	$\begin{aligned} & \text { FCAEEFCC49A13B4FFA12C0CC6A2B90CF4F57D78B1E98294B04675C2F0991661FDC61A452A2 } \\ & \text { 47F8C29E0284AA21026F368307375AA2C3F1E12C } \\ & \hline \end{aligned}$
MPL102	C486DF0510DCAD5AB86E178A686D398E11A0ECFAC5A326C10129257E5456B22FB8E147E919 0D9929A5DFFE44715FA47D62F04CFC9B1C201414
MPL103	C10AF383DC708E257E15A8AB337BCE684A2F4AC7A22DC2C25C277F8E8D0858E79317CDDD9 AA2EA6CBE604D24AC0945026103E7B4126FD361A4
MPL104	A5C60A181148D9A931B2DDDB9D169648BA54F366B4EFAE88F6861909EE0F07C037EE349D0E C59A823286E366CA3943589EEA7F828C3728085F
MPL105	96136AEBD5E28462B0421DF292BA899FFA660D80EA01620D2C7490E5347127884AA3C3D1FF4 4BCEEF6C29EC589CDEF200C5742C5964F8B2B52
mpL106	$\begin{aligned} & \text { 40F63C04ACAD986255D1E16B769A6D4C11A1D075E804BDC0AC61923E9A67F5D741775632807 } \\ & \text { 2455F6E22B1C64E06F367D1B0808295C2D90E22 } \\ & \hline \end{aligned}$
MPL107	$\begin{aligned} & \text { F4B82D413578C4888C5F002CF6D0E03778134A860436551FD57537E4CED334B3C9CEBACE615 } \\ & \text { 238271717AA762448B86FA53D2074BCE35658A7 } \\ & \hline \end{aligned}$
MPL108	BCCC92D72C920E685530591FC351743D1E23DE044BF81D32650406113E23ECC757FDE4E386 B6E2E7195EE4969717A7BD0812AC312B33A54308
mpL109	6ED59DE0D44370A861CE2B42CF5E578E764A682AB5777905EE027D7160490EDC6C28989B238 05AA697FCD215CB401BC5E4D430624C01B16192
mpL110	DE80C0E273B92CC3C5034F7A20DB3914643C430B425C8B9249EAF73ACE8C3BCF17957242CF 534D87A67D4DC0252275262E737F4095450CFA14
mpL111	9505C4FEF2A397D5059F4729D013292A8321FFFA929ACB0A210D0A13E13061227C44A68FBD8 CE6B66CE3D783363CD039AB35EE52603E09B758
MPL112	$\begin{aligned} & \text { E8BE90D7F954B14D8002A4CAC20765ABEED80634498C836D79B0F9338DBC17B28F05CF4E79 } \\ & \text { 136779E1C55AA30B6215F890882887B3B53C23E2 } \\ & \hline \end{aligned}$
mpL113	$\begin{aligned} & \text { 9F4B622C1358AE5468DC31E4B2CA320E5E20458C1DE5405BF4F9AD7D45A5BCAA39EC0626FF } \\ & \text { FC698C16A009CCCB7A18A64E85E70BA71731BA24 } \end{aligned}$
mpL114	B91B2624843CF48299AFC2B1442570B41F28F578530D1E322E0B54282372131C71ACB924E707 68A243EEC3200E7A5EBFA77111D9FB07FEA8AE
mpL115	965F42DDA3A4650FE2F5103932B68F166FA424B9F0F7045311D962C2A9F66B9BC6C66FB480F 9800354E0C54A72251071422CF1DFC44F94C00C
MPL116	08ADCE48699FC30FA0788073BDAADB9177BBB4C1CED41F93085218364B8BAD8488561EF0FE 1B0DDAA403C602494CB35697D62AA0A2B93A64CF
mpL117	9A313BED80B1220D77C8ADA4B2E0B3D284A5120A94B741380923C78D3AD32BC3E71EC6EEA 520E9D447D8727697598BB987F17506F482003ABD
mpL118	24C9AD4C14EFEC002A3473FCAB04E492F2E269161A2960BA8AF09FD710B444A40C4E8B1384 18E62301E91FBA97AFDC58759A76D00F676736C7
mpL119	6514C7733711CE4942CD2123AB37186EB7FECB7E78ABB28744864942FCF4C0F810054AF55B1 042EB53064F0857C61D85B2CF0D2DC5826AF22F
mpL120	B2C80CDC83E48C36BC6FDAB8661208EAD392F3A0571BE41DFAD765E744932ADEA50061E66 C05498A5381B2A1F1B446587089DC4E4A2DF03D82
MPL121	639368BA75CC709A3D9F28EDA237E32C2017A9BF1E382045B9426AEE0A4049DCB4E1D7EBE4 647B855212824557497CFA039885A3BA42F98F63
MPL122	6A70DDC17D0C8024B1C853F0C1948561EF32510151BE0C63BCA9171F20217891D1021EE7258 6CAFF557F8973336913A94A2A699B8740B054B8
mpL123	2E32E3A35CCD001172CE310B63B4E406126045A0FA3795BE3E3D9B56F72405FC94FD8994681 8BAECD24A61BABBBE2D23052AB01EF73CA0CF4A
mpL124	829395C35205A480AC1351C25E234BF52D384A3DE1C5138A650A6F82F739757D812D9C38231 AB9FD81AA0648B11F6F6113F9312C57624FC746
MPL125	D98FFE19C0AAAAB0571A9075ECDFD3E7373F5255DC669116A8C6913F0123E598F930934C5F6 A601C37C529C371A0C391B59AC5A9E286D04011

Code ID	Basic Midamble Codes m $_{\text {PL }}$ of length $\boldsymbol{P}=456$
$m_{\text {PL126 }}$	C1A108192BCE96C2430A63C189BB33856BE6B8B524703FCB205DAEF37EF544CD43CA09B618 1B417398083FF2F781BA4AE89A5CA291DB928D71
$m_{\text {PL127 }}$	42568DF9F61849BF9E7DEE750604BE2E0BC16CC464B1CDE15015E01D6498E9F3E6D6950E58 24651F212BA0057CE9529B9CCAB88D8136B8545E

A. 3 Association between Midambles and Channelisation Codes

The following mapping schemes apply for the association between midambles and channelisation codes if no midamble is allocated by higher layers. Secondary channelisation codes are marked with a (*). These associations apply both for UL and DL.

A.3.1 Association for Burst Type 1/3-and $\mathrm{K}=16$ Midambles

Figure A-1: Association of Midambles to Spreading Codes for Burst Type 1/주 and K=16

A.3.2 Association for Burst Type 1/3 and K=8 Midambles

Figure A-2: Association of Midambles to Spreading Codes for Burst Type 1/3 and K=8

A.3.3 Association for Burst Type 1/3 and $\mathrm{K}=4$ Midambles

Figure A-3: Association of Midambles to Spreading Codes for Burst Type 1/3 and K=4

A.3.4 Association for Burst Type 2 and $\mathrm{K}=6$ Midambles

Figure A-4: Association of Midambles to Spreading Codes for Burst Type 2 and K=6

A.3.5 Association for Burst Type 2 and $\mathrm{K}=3$ Midambles

Figure A-5: Association of Midambles to Spreading Codes for Burst Type 2 and K=3
| Note that the association for burst type 2 can be derived from the association for burst type 1 and 3 , using the following table:

Burst Type 1/3	$\mathrm{m}(1)$	$\mathrm{m}(2)$	$\mathrm{m}(3)$	$\mathrm{m}(4)$	$\mathrm{m}(5)$	$\mathrm{m}(6)$	$\mathrm{m}(7)$	$\mathrm{m}(8)$
Burst Type 2	$\mathrm{m}(1)$	$\mathrm{m}(5)$	$\mathrm{m}(3)$	$\mathrm{m}(6)$	$\mathrm{m}(2)$	$\mathrm{m}(4)$	-	-

5.6 Midamble Allocation for Physical Channels

In general, mMidambles are part of the physical channel configuration which is performed by higher layers. Three different midamble allocation schemes exist:

- UE specific midamble allocation: A UE specific midamble for DL or UL is explicitly assigned by higher layers.
- Default midamble allocation: The midamble for DL or UL is allocated by layer 1 depending on the associated channelisation code.
- Common midamble allocation: The midamble for the DL is allocated by layer 1 depending on the number of channelisation codes currently being present in the DL time slot.

Optionally, iIf no-a midamble is not explicitly allocatedassigned by higher layersand the use of the common midamble allocation scheme is not signalled by higher layers, a default the midamble allocation shall be usedallocated by layer 1 , based on the default midamble allocation scheme. This default midamble allocation scheme is given by a fixed association between midambles and channelisation codes, see clause A.3, and shall be applied individually to all channelisation codes within one time slot. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles.

5.6.1 Midamble Allocation for DL Physical Channels

Physical channels providing the beacon function shall always use the reserved midambles, see 5.45 . For DL physical channels that are located in the same time slot as the P-CCPCH, midambles shall be allocated based on the default midamble allocation scheme, using the association for burst type 1 and $\mathrm{K}=8$ midambles. For all other DL physical channels, the midamble allocation is explicitly signalled assigned by higher layers or given by default allocated by layer 1 .

5.6.1.1 Midamble Allocation by signalling from higher layers

Either a common or a UE specific midambles shall-may be signalled by higher layers to the UE's as a part of the physical channel configuration=, Common or UE specific midambles may be applied only if the conditions in subelauses 5.6.1.1.1 and subclause 5.6.1.1.2 hold respectively. If the midamble is not signalled as a part of the physical channel configuration, midamble allocation by default shall be used.

5.6.1.1.1 Common Midamble

A common midamble may be assigned to all physieal channels in one time slot, if:
a single UE uses all physical channels in one time slot (as in the case of high rate service);
өf

- multiple UEs use the physical channels in one time slot; and
no beamforming is applied to any of these DL physical channels; and
no closed loop TxDiversity is applied to any of these DL physical channels; and
midambles are net used for PDSCH physical layer signalling.

5.6.1.1.2 UE specific Midamble

An individual midamble may be assigned to each of the UEs in one time slot, if:

- multiple UEs use the physical channels in one DL time slot; and
- beamforming is applied to all of these DL physical channels; and
- no closed loop TxDiversity is applied to any of these DL physical channels;
- PDSCH physical layer signalling based on the midamble is used.

5.6.1.2 Midamble Allocation by defaullayer 1

5.6.1.2.1 Default midamble

If noa midamble is not explicitly allocatedassigned and the use of the common midamble allocation scheme is not signalled by higher layersby signalling, the UE shall derive the midamble from the associated channelisation code and shall use an individual midamble for each channelisation code. For each association between midambles and channelisation codes in annex A.3, there is one primary channelisation code associated to each midamble. A set of secondary channelisation codes is associated to each primary channelisation code. All the secondary channelisation codes within a set use the same midamble as the primary channelisation code to which they are associated.

Higher layers shall allocate the channelisation codes in a particular order. Primary channelisation codes shall be allocated prior to associated secondary channelisation codes. If midambles are reserved for the beacon functionchannels, all primary and secondary channelisation codes that are associated with the reserved midambles shall not be used.

Primary and its associated secondary channelisation codes shall not be allocated to different UE's.
In the case that secondary channelisation codes are used, secondary channelisation codes of one set shall be allocated in ascending order, with respect to their numbering.

5.6.1.2.2 Common Midamble

The use of the common midamble allocation scheme is signalled to the UE by higher layers as a part of the physical channel configuration. A common midamble may be assigned by layer 1 to all physical channels in one DL time slot, if:

- a single UE uses all physical channels in one DL time slot (as in the case of high rate service);
or
- multiple UEs use the physical channels in one DL time slot; and
- no beamforming is applied to any of these DL physical channels; and
- no closed loop TxDiversity is applied to any of these DL physical channels; and
- midambles are not used for PDSCH physical layer signalling.

The number of channelisation codes currently employed in the DL time slot is associated with the use of a particular common midamble. Different associations apply for different burst types and cell configurations with respect to the maximum number of midambles, see annex B.

5.6.2 Midamble Allocation for UL Physical Channels

If the midamble is part of the physical channel configurationexplicitly assigned by higher layers, an individual midamble shall be assigned to all UE's in one UL time slot.

If no midamble is explicitly allocated-assigned by higher layers, the UE shall derive the midamble from the assigned channelisation code as for DL physical channels. If the UE changes the SF according to the data rate, it shall always vary the channelisation code along the lower branch of the OVSF tree.

Annex B (normative) Signalling of the number of channelisation codes for the DL common midamble case

The following mapping schemes shall apply for the association between the number of channelisation codes employed in a timeslot and the use of a particular midamble shift in the DL common midamble case. In the following tables the presence of a particular midamble shift is indicated by ' 1 '. Midamble shifts marked with ' 0 ' are left unused. Mapping schemes B. 3 and B. 4 are not applicable to beacon timeslots where a P-CCPCH is present, because the default midamble allocation scheme is applied to these timeslots. Note that in mapping schemes B. 3 and B.4, the fixed and pre-allocated channelisation code for the beacon channel is included into the number of indicated channelisation codes.
B. 1 Mapping scheme for Burst Type 1 and $\mathrm{K}=16$ Midambles.

m1	m2	m3	m4	m5	m6	m7	M8	m9	m10	m11	m12	$\underline{\text { m13 }}$	m14	m15	m16	
1	0	0	0	0	0	0	0	0	$\underline{0}$	$\underline{0}$	0	0	0	$\underline{0}$	0	1 code
0	1	0	0	0	0	$\underline{0}$	0	0	0	0	0	0	0	0	0	2 codes
$\underline{0}$	0	1	0	0	0	0	0	0	$\underline{0}$	3 codes						
$\underline{0}$	0	0	1	0	0	$\underline{0}$	0	0	$\underline{0}$	4 codes						
0	0	0	0	1	0	$\underline{0}$	0	0	0	0	0	0	0	0	0	5 codes
$\underline{0}$	0	0	0	0	1	0	0	0	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	6 codes
0	0	0	0	0	0	1	0	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	7 codes
0	0	$\underline{0}$	0	0	0	0	1	0	$\underline{0}$	8 codes						
$\underline{0}$	$\underline{0}$	$\underline{0}$	0	0	0	$\underline{0}$	0	1	$\underline{0}$	9 codes						
0	$\underline{0}$	$\underline{0}$	0	0	0	0	0	0	1	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	10 codes
$\underline{0}$	$\underline{0}$	0	$\underline{0}$	0	0	$\underline{0}$	0	0	$\underline{0}$	1	0	$\underline{0}$	0	$\underline{0}$	0	11 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	0	-	0	0	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	12 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	0	0	0	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	13 codes
0	0	0	0	0	0	$\underline{0}$	0	0	0	0	0	0	1	$\underline{0}$	0	14 codes
0	0	0	$\underline{0}$	0	0	-	0	0	$\underline{0}$	$\underline{0}$	0	0	0	1	$\underline{0}$	15 codes
0	0	0	0	0	0	$\underline{0}$	0	0	0	$\underline{0}$	0	0	0	0	1	16 codes

B. 2 Mapping scheme for Burst Type 1 and $\mathrm{K}=8$ Midambles.

$\underline{\mathrm{M} 1}$	$\underline{\mathrm{~m} 2}$	$\underline{\mathrm{~m} 3}$	$\underline{\mathrm{~m} 4}$	$\underline{\mathrm{~m}} \mathbf{n}$	$\underline{\mathrm{~m}}$	$\underline{\mathrm{~m}}$	$\underline{\mathrm{~m} 8}$	
$\underline{1}$	$\underline{0}$	$\underline{1}$ code or 9 codes						
$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{2}$ codes or 10 codes

$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{3}$ codes or 11 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{\mathbf{1}}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{4 \operatorname{codes} \text { or } 12 \text { codes }}$
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{5}$ codes or 13 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{6 \text { codes or } 14 \text { codes }}$
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{7 \operatorname{codes} \text { or } 15 \text { codes }}$
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{\mathbf{1}}$	$\underline{8}$ codes or 16 codes

B. 3 Mapping scheme for beacon timeslots and $\mathrm{K}=16$ Midambles.

m1	m2	m3	M4	m5	m6	m7	M8	m9	m10	$\underline{m 11}$	M12	m13	m14	m15	$\underline{\text { m16 }}$	
1	$\underline{x^{(1)}}$	1	0	0	$\underline{0}$	0	0	0	0	0	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	1 codes or 13 codes
1	$\underline{x^{(1)}}$	0	1	0	0	0	0	$\underline{0}$	0	0	0	0	0	0	0	2 codes or 14 codes
1	$\underline{\underline{x}}$	0	0	1	0	0	0	0	0	0	0	$\underline{0}$	0	0	0	3 codes or 15 codes
1	$\underline{\underline{x}}$	0	$\underline{0}$	0	1	$\underline{0}$	$\underline{0}$	0	0	0	0	0	0	0	0	4 codes or 16 codes
1	$\underline{\underline{x}}$	0	$\underline{0}$	$\underline{0}$	0	1	$\underline{0}$	0	$\underline{0}$	0	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	5 codes
1	$\underline{\underline{x^{(1)}}}$	0	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	1	0	0	0	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	6 codes
1	$\underline{x^{(1)}}$	0	0	0	0	0	$\underline{0}$	0	0	1	0	0	0	0	0	7 codes
1	$\underline{\underline{x^{(1)}}}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	0	$\underline{0}$	0	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	8 codes
1	$\underline{x^{(1)}}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	0	$\underline{0}$	0	0	1	$\underline{0}$	$\underline{0}$	$\underline{0}$	9 codes
1	$\underline{x^{(1)}}$	0	$\underline{0}$	0	0	0	$\underline{0}$	0	0	0	0	0	1	0	0	10 codes
1	$\underline{x^{(1)}}$	0	$\underline{0}$	$\underline{0}$	0	0	$\underline{0}$	0	0	0	0	$\underline{0}$	0	1	0	11 codes
1	$\underline{x^{(7)}}$	0	0	0	0	$\underline{0}$	$\underline{0}$	0	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	0	0	1	12 codes

${ }^{(4)}$ In case of Block-STTD encoding for the P-CCPCH, midamble shift 2 is used by the diversity antenna
B. 4 Mapping scheme for beacon timeslots and $\mathrm{K}=8$ Midambles.

m1	m2	m3	m4	m5	m6	m7	M8	
1	$\underline{x^{(1)}}$	1	$\underline{0}$	$\underline{0}$	0	0	$\underline{0}$	1 or 7 or 13 codes
1	$\underline{x^{(1)}}$	0	1	$\underline{0}$	0	0	0	2 or 8 or 14 codes
1	$\underline{x^{(1)}}$	$\underline{0}$	0	1	0	0	0	3 or 9 or 15 codes
1	$\underline{x^{(1)}}$	0	0	0	1	0	0	4 or 10 or 16 codes
1	$\underline{x^{(1)}}$	0	0	0	0	1	0	5 codes or 11 codes
1	$\underline{x^{(1)}}$	$\underline{0}$	$\underline{0}$	O	-	$\underline{0}$	1	6 codes or 12 codes

${ }^{(4)}$ In case of Block-STTD encoding for the P-CCPCH, midamble shift 2 is used by the diversity antenna
B. 5 Mapping scheme for Burst Type 2 and K=6 Midambles.

$\underline{\mathrm{m} 1}$	$\underline{\mathrm{~m} 2}$	$\underline{\mathrm{~m} 3}$	$\underline{\mathrm{~m} 4}$	$\underline{\mathrm{~m} 5}$	$\underline{\mathrm{~m} 6}$	
$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$ or 7 or 13 codes
$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{2}$ or 8 or 14 codes
$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{3}$ or 9 or 15 codes
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{4 \text { or } 10 \text { or } 16 \text { codes }}$
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{5 \text { or } 11 \text { codes }}$
$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{6}$ or 12 codes

B. 6 Mapping scheme for Burst Type 2 and $K=3$ Midambles.

$\underline{\mathrm{m} 1}$	$\underline{\mathrm{~m} 2}$	$\underline{\mathrm{~m} 3}$	
$\underline{1}$	$\underline{0}$	$\underline{0}$	$\underline{1}$ or 4 or 7 or 10 or 13 or 16 codes
$\underline{0}$	$\underline{1}$	$\underline{0}$	$\underline{2}$ or 5 or 8 or 11 or 14 codes
$\underline{0}$	$\underline{0}$	$\underline{1}$	$\underline{3}$ or 6 or 9 or 12 or 15 codes

Annex BㅡC (Informative): CCPCH Multiframe Structure

In the following figures B. 1 to B. 3 some examples for Multiframe Structures on Primary and Secondary CCPCH are given. The figures show the placement of Common Transport Channels on the Common Control Physical Channels. Additional S-CCPCH capacity can be allocated on other codes and timeslots of course, e.g. FACH capacity is related to overall cell capacity and can be configured according to the actual needs. Channel capacities in the annex are derived using bursts with long midambles (Burst format 1). Every TrCH-box in the figures is assumed to be valid for two frames (see row 'Frame \#'), i.e. the transport channels in CCPCHs have an interleaving time of 20 msec .

The actual CCPCH Multiframe Scheme used in the cell is described and broadcast on BCH. Thus the system information structure has its roots in this particular transport channel and allocations of other Common Channels can be handled this way, i.e. by pointing from BCH.

Frame \#	01	23	45	67	89	$\begin{aligned} & \hline 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & \hline 14 \\ & 15 \end{aligned}$	$\begin{aligned} & 16 \\ & 17 \end{aligned}$	$\begin{array}{\|l\|} \hline 18 \\ 19 \end{array}$	$\begin{aligned} & \hline 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{array}{\|l\|} \hline 24 \\ 25 \end{array}$	$\begin{aligned} & \hline 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\begin{array}{\|l\|} \hline 30 \\ 31 \end{array}$	$\begin{aligned} & \hline 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{array}{\|l\|} \hline 36 \\ 37 \end{array}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{array}{\|l\|} \hline 40 \\ 41 \end{array}$	$\begin{array}{\|l\|} \hline 42 \\ 43 \end{array}$	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	$\begin{array}{\|l\|} \hline 46 \\ 47 \end{array}$	$\begin{array}{\|l\|} \hline 48 \\ 49 \end{array}$	$\begin{aligned} & 50 \\ & 41 \end{aligned}$	$\begin{aligned} & \hline 52 \\ & 53 \end{aligned}$	$\begin{array}{\|c\|} \hline 54 \\ 55 \end{array}$	$\begin{aligned} & 56 \\ & 57 \end{aligned}$	$\begin{array}{\|l\|} \hline 58 \\ 59 \end{array}$	$\begin{array}{\|l\|} \hline 60 \\ 61 \end{array}$	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	$\begin{array}{\|l\|} \hline 64 \\ 65 \end{array}$	$\begin{aligned} & 66 \\ & 67 \end{aligned}$	$\begin{array}{\|l\|} \hline 68 \\ 69 \end{array}$	$\begin{aligned} & 70 \\ & 71 \end{aligned}$
CCPCHs in TS k, Code 0																																				
CCPCHs in TS k +8 , Co 0																																				

| BCH transporting BCCH 2,71 kbps | FACH transporting BCCH 2,71 kbps | PCH 13,5kbps | PICH 2,71 kbps | FACH 27,1 kbps |
| :--- | :--- | :--- | :--- | :--- | :--- |

Figure B.1: Example for a multiframe structure for CCPCHs that is repeated every 72th frame

Frame \#	01	23	45	67	89	$\begin{aligned} & \hline 10 \\ & 11 \end{aligned}$	$\begin{aligned} & 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{array}{\|l} \hline 28 \\ 29 \end{array}$	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & \hline 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & 40 \\ & 41 \end{aligned}$	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & \hline 44 \\ & 45 \end{aligned}$	$\begin{aligned} & \hline 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & 50 \\ & 41 \end{aligned}$	$\begin{aligned} & \hline 52 \\ & 53 \end{aligned}$	$\begin{aligned} & 54 \\ & 55 \end{aligned}$	$\begin{aligned} & \hline 56 \\ & 57 \end{aligned}$	$\begin{aligned} & 58 \\ & 59 \end{aligned}$	$\begin{array}{\|l\|} \hline 60 \\ 61 \end{array}$	$\begin{aligned} & 62 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 65 \end{aligned}$	$\begin{aligned} & \hline 66 \\ & 67 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 69 \end{aligned}$	$\begin{array}{\|l\|} \hline 70 \\ 71 \end{array}$
CCPCHs in TS k, Code 0																																				
CCPCHs in TS k, Code n																																				
CCPCHs in TS k+8, Co 0																																				

| BCH transporting BCCH 2,71 kbps | FACH transporting BCCH 2,71 kbps | PCH 13,5kbps | PICH 2,71 kbps | FACH 51,5 kbps |
| :--- | :--- | :--- | :--- | :--- | :--- |

Figure B.2: Example for a multiframe structure for CCPCHs that is repeated every 72th frame, $\mathrm{n}=1$... 7

Frame \#	01	23	45	67	89	$\begin{aligned} & \hline 10 \\ & 11 \end{aligned}$	$\begin{aligned} & \hline 12 \\ & 13 \end{aligned}$	$\begin{aligned} & 14 \\ & 15 \end{aligned}$	$\begin{aligned} & \hline 16 \\ & 17 \end{aligned}$	$\begin{aligned} & \hline 18 \\ & 19 \end{aligned}$	$\begin{aligned} & 20 \\ & 21 \end{aligned}$	$\begin{aligned} & 22 \\ & 23 \end{aligned}$	$\begin{aligned} & 24 \\ & 25 \end{aligned}$	$\begin{aligned} & 26 \\ & 27 \end{aligned}$	$\begin{aligned} & 28 \\ & 29 \end{aligned}$	$\begin{aligned} & 30 \\ & 31 \end{aligned}$	$\begin{aligned} & 32 \\ & 33 \end{aligned}$	$\begin{aligned} & 34 \\ & 35 \end{aligned}$	$\begin{aligned} & 36 \\ & 37 \end{aligned}$	$\begin{aligned} & 38 \\ & 39 \end{aligned}$	$\begin{aligned} & \hline 40 \\ & 41 \end{aligned}$	$\begin{aligned} & 42 \\ & 43 \end{aligned}$	$\begin{aligned} & 44 \\ & 45 \end{aligned}$	$\begin{aligned} & 46 \\ & 47 \end{aligned}$	$\begin{aligned} & 48 \\ & 49 \end{aligned}$	$\begin{aligned} & \hline 50 \\ & 41 \end{aligned}$	$\begin{aligned} & 52 \\ & 53 \end{aligned}$	$\begin{array}{r} 54 \\ 55 \end{array}$	$\begin{aligned} & \hline 56 \\ & 57 \end{aligned}$	$\begin{aligned} & \hline 58 \\ & 59 \end{aligned}$	$\begin{aligned} & \hline 60 \\ & 61 \end{aligned}$	$\begin{aligned} & \hline 62 \\ & 63 \end{aligned}$	$\begin{aligned} & \hline 64 \\ & 65 \end{aligned}$	$\begin{aligned} & 66 \\ & 67 \end{aligned}$	$\begin{aligned} & \hline 68 \\ & 69 \end{aligned}$	70
CCPCHs in TS k, Code 0																																				
CCPCHs in TS k+8, Co 0																																				

BCH transporting BCCH 2,71 kbps	FACH transporting BCCH 1,355 kbps	PCH 13,5kbps	PICH 2,71 kbps	FACH 28,5 kbps

Figure B.3: Example for a multiframe structure for CCPCHs that is repeated every 72th frame

Annex GD (informative): Change history

Change history							
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New
14/01/00	RAN_05	RP-99591			Approved at TSG RAN \#5 and placed under Change Control	-	3.0.0
14/01/00	RAN 06	RP-99691	001	02	Primary and Secondary CCPCH in TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99691	002	02	Removal of Superframe for TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99691	006	-	Corrections to TS25.221	3.0.0	3.1.0
14/01/00	RAN 06	RP-99691	007	1	Clarifications for Spreading in UTRA TDD	3.0.0	3.1.0
14/01/00	RAN 06	RP-99691	008	-	Transmission of TFCI bits for TDD	3.0.0	3.1.0
14/01/00	RAN 06	RP-99691	009	-	Midamble Allocation in UTRA TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99690	010	-	Introduction of the timeslot formats to the TDD specifications	3.0.0	3.1.0
14/01/00					Change history was added by the editor	3.1.0	3.1.1
31/03/00	RAN_07	RP-000067	003	2	Cycling of cell parameters	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	011	-	Correction of Midamble Definition for TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	012	-	Introduction of the timeslot formats for RACH to the TDD specifications	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	013	-	Paging Indicator Channel reference power	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	014	1	Removal of Synchronisation Case 3 in TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	015	1	Signal Point Constellation	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	016	-	Association between Midambles and Channelisation Codes	3.1.1	3.2.0
31/03/00	RAN_07	RP-000067	017	-	Removal of ODMA from the TDD specifications	3.1.1	3.2.0
26/06/00	RAN_08	RP-000271	018	1	Removal of the reference to ODMA	3.2 .0	3.3.0
26/06/00	RAN_08	RP-000271	019	-	Editorial changes in transport channels section	3.2.0	3.3.0
26/06/00	RAN_08	RP-000271	020	1	TPC transmission for TDD	3.2.0	3.3.0
26/06/00	RAN 08	RP-000271	021	-	Editorial modification of 25.221	3.2 .0	3.3.0
26/06/00	RAN_08	RP-000271	023	-	Clarifications on TxDiversity for UTRA TDD	3.2 .0	3.3.0
26/06/00	RAN_08	RP-000271	024	-	Clarifications on PCH and PICH in UTRA TDD	3.2.0	3.3.0

