TSG-RAN Meeting \#8

Düsseldorf, Germany, 21-23 June 2000
Title: \quad Agreed CRs to TS 25.223
Source: TSG-RAN WG1
Agenda item: 5.1.3

| No. | Doc \# | Spec | CR | Rev | | Subject | Cat | Current_v |
| :---: | :---: | :---: | :---: | :---: | :--- | :---: | :---: | :---: | New_v (

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

25.223 CR 008

Current Version: 3.2.0

[^0]For submission to: TSG RAN \#8
list expected approval meeting \# here

Form: CR cover sheet, version 2 for 3GPP and SMG
$-$
(U)SIM \square ME \square UTRAN / Radio \mathbf{X} Core Network

Source: TSG RAN WG1
Subject: \quad Editorial Modifications for 25.223
Work item:

Category:
(only one category
F Correction
A Corresponds to a correction in an earlier release
shall be marked
with an X)
C Functional modification of feature
D Editorial modification

Release: Phase 2

Release 96
Release 97
Release 98
Release 99
Release 00

Reason for change:
 Some editorial modifications to 25.223 are required after approval of removal of synchcase 3 and change of signal point constellation. The scope of the spec was somehow changed in a former release of the document.

Clauses affected: $\quad 1,7.1,7.2$

Other specs
affected:

Other 3G core specifications
Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

\rightarrow List of CRs:

Other

comments:
help.doc
<--------- double-click here for help and instructions on how to create a CR.

1 Scope

The present document describes spreading and modulation for UTRA Physical Layer TDD mode.
The present document describes multiplexing, channel coding and interleaving for UTRA Physical Layer TDD mode.

7 Synchronisation codes

7.1 Code Generation

The Primary code sequence, C_{p} is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Define $\mathrm{a}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1\rangle$
The PSC code word is generated by repeating the sequence ' a ' modulated by a Golay complementary sequence and creating a complex-valued sequence with identical real and imaginary components.

The PSC code word C_{p} is defined as $\mathrm{C}_{\mathrm{p}}=\langle\mathrm{y}(0), \mathrm{y}(1), \mathrm{y}(2), \ldots, \mathrm{y}(255)\rangle$
where $y=(1+\mathrm{j}) \times<a, a, a,-a,-a, a,-a,-a, a, a, a,-a, a,-a, a, a>$
and the left most index corresponds to the chip transmitted first in each time slot.
The $16 \underline{12}$ secondary synchronization code words, $\left\{\mathrm{C}_{0}, \ldots, \mathrm{C}_{15} \underline{\mathrm{C}_{11}}\right\}$ are complex valued with identical real and imaginary components, and are constructed from the position wise multiplication of a Hadamard sequence and a sequence z , defined as

$$
\begin{aligned}
& \mathrm{z}=\langle b, b, b,-b, b, b,-b,-b, b,-b, b,-b,-b,-b,-b,-b\rangle \text {, where } \\
& \mathrm{b}=\left\langle x_{1}, \ldots, x_{8},-x_{9}, \ldots,-x_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1\rangle .
\end{aligned}
$$

The Hadamard sequences are obtained as the rows in a matrix H_{8} constructed recursively by:

$$
\begin{gathered}
H_{0}=(1) \\
H_{k}=\left(\begin{array}{cc}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{array}\right) \quad k \geq 1
\end{gathered}
$$

The rows are numbered from the top starting with row 0 (the all zeros sequence).
Denote the n :th Hadamard sequence $\underline{h}_{\underline{n}}$ as a row of H_{8} numbered from the top, $\mathrm{n}=0,1,2, \ldots, 255$, in the sequel.
Furthermore, let $h_{m}(i)$ and $z(i)$ denote the i :th symbol of the sequence h_{m} and z, respectively where $i=0,1,2, \ldots, 255$ and $i=0$ corresponds to the leftmost symbol.

The i :th SCH code word, $\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}, \mathrm{i}=0, \ldots, 15 \underline{11}$ is then defined as

$$
\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}=(1+j) \times\left\langle h_{m}(0) \times z(0), h_{m}(1) \times z(1), h_{m}(2) \times z(2), \ldots, h_{m}(255) \times z(255)>,\right.
$$

where $m=(16 \times i)$ and the leftmost chip in the sequence corresponds to the chip transmitted first in time.
This code word is chosen from every $16^{\text {th }}$ row of the matrix H_{8}, which yields 16 possible codewords.
The Secondary SCH code words are defined in terms of $\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}$ and the definition of $\left\{\mathrm{C}_{0}, \ldots, \mathrm{C}_{15} \underline{\mathrm{C}}_{\underline{11}}\right\}$ now follows as:

$$
\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}, \mathrm{i}=0, \ldots, 115
$$

7.2 Code Allocation

Three SCH codes are QPSK modulated and transmitted in parallel with the primary synchronization code. The QPSK modulation carries the following information.

- The code group that the base station belongs to (5 bits; Cases 1, 2)
- The position of the frame within an interleaving period of $20 \mathrm{msec}(1$ bit, Cases 1,2$)$
- The position of the slot within the frame (1 bit, Case 2)

The modulated codes are also constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 2 (Case 1) and 4 (Case 2) of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 2 (Case 1) and 4 (Case 2) of any of the sequences is not equivalent to itself with any other cyclic shift less than 8 . The secondary synchronization codes are partitioned into two code sets for Case 1 and four code sets for Case 2. The set is used to provide the following information:

Case 1:

Table 2: Code Set Allocation for Case 1

Code Set	Code Group
1	$0-15$
2	$16-31$

The code group and frame position information is provided by modulating the secondary codes in the code set.

Case 2:

Table 3: Code Set Allocation for Case 2

Code Set	Code Group
1	$0-7$
2	$8-15$
3	$16-23$
4	$24-31$

The slot timing and frame position information is provided by the comma free property of the code word and the Code group is provided by modulating some of the secondary codes in the code set.

The following SCH codes are allocated for each code set:
Case 1
Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.
Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.

Case 2
Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.
Code set $2: \mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.
Code set 3: $\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.
Code set 4: $\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$.
The following subsections 7.2.1 to 7.2.2 refer to the two cases of SCH/P-CCPCH usage as described in [7].
Note that in the Tables $4-6-5$ corresponding to Cases 1,2 , and 3 , respectively, Frame 1 implies the frame with an odd SFN and Frame 2 implies the frame with an even SFN.

7.2.1 Code allocation for Case 1:

NOTE: Modulation by " j " indicates that the code is transmitted on the Q channel.
Table 4: Code Allocation for Case 1

Code Group	Code Set	Frame 1			Frame 2			Associated
0	1	C_{0}	C_{1}	C_{2}	C_{0}	C_{1}	- C_{2}	t_{0}
1	1	C_{0}	- C_{1}	C_{2}	C_{0}	- C_{1}	- C_{2}	t_{1}
2	1	$-\mathrm{C}_{0}$	C_{1}	C_{2}	$-\mathrm{C}_{0}$	C_{1}	- C_{2}	t_{2}
3	1	$-\mathrm{C}_{0}$	- C_{1}	C_{2}	$-\mathrm{C}_{0}$	- C_{1}	- C_{2}	t_{3}
4	1	jC_{0}	${ }^{+} \mathrm{C}_{4} \mathrm{jC}_{1}$	C_{2}	jC_{0}	jC_{1}	- C_{2}	t_{4}
5	1	jC_{0}	$-\mathrm{j} \mathrm{C}_{1}$	C_{2}	jC_{0}	-jC C_{1}	- C_{2}	t_{5}
6	1	$-\mathrm{j} \mathrm{C}_{0}$	${ }^{+6}{ }_{4} \mathrm{jC}_{1}$	C_{2}	- C_{0}	j_{1}	- C_{2}	t_{6}
7	1	$-\mathrm{j} \mathrm{C}_{0}$	$-\mathrm{j} \mathrm{C}_{1}$	C_{2}	$-\mathrm{j} \mathrm{C}_{0}$	-jC C_{1}	- C_{2}	t_{7}
8	1	j_{0}	${ }^{\mathrm{JC}_{2} \mathrm{j}_{2} \mathrm{C}_{2}}$	C_{1}	j_{0}	j_{2}	- C_{1}	t_{8}
9	1	jC_{0}	$-\mathrm{j}_{2}$	C_{1}	jC_{0}	-jC2	$-\mathrm{C}_{1}$	t_{9}
10	1	$-\mathrm{j} \mathrm{C}_{0}$	${ }^{\mathrm{JC}_{2} \mathrm{jC}_{2}}$	C_{1}	-jC ${ }_{0}$	j_{2}	$-\mathrm{C}_{1}$	t_{10}
11	1	$-\mathrm{j} \mathrm{C}_{0}$	$-\mathrm{j}_{2}$	C_{1}	$-\mathrm{j} \mathrm{C}_{0}$	-jC2	$-\mathrm{C}_{1}$	t_{11}
12	1	j_{1}	${ }^{\mathrm{JC}_{2} \mathrm{j}_{2} \mathrm{C}_{2}}$	C_{0}	$\mathrm{JC}_{4} \mathrm{jC}_{1}$	j_{2}	$-\mathrm{C}_{0}$	t_{12}
13	1	jC_{1}	$-\mathrm{j}_{2}$	C_{0}	$\mathrm{dG}_{4} \mathrm{jC}_{1}$	-jC2	$-\mathrm{C}_{0}$	t_{13}
14	1	$-\mathrm{j} \mathrm{C}_{1}$	${ }^{\mathrm{JC}_{2} \mathrm{j}_{2} \mathrm{C}_{2}}$	C_{0}	-jC ${ }_{1}$	j_{2}	$-\mathrm{C}_{0}$	t_{14}
15	1	$-\mathrm{j} \mathrm{C}_{1}$	$-\mathrm{j}_{2}$	C_{0}	-jC ${ }_{1}$	-jC2	- C_{0}	t_{15}
16	2	C_{3}	C_{4}	C_{5}	C_{3}	C_{4}	$-\mathrm{C}_{5}$	t_{16}
17	2	C_{3}	- C_{4}	C_{5}	C_{3}	$-\mathrm{C}_{4}$	$-\mathrm{C}_{5}$	t_{17}
	...	\ldots	\ldots	...	\ldots	\ldots	...	\ldots
20	2	jC_{3}	${ }^{1} \mathrm{C}_{4} \mathrm{IC}_{4}$	C_{5}	jC_{3}	jC_{4}	$-\mathrm{C}_{5}$	t_{20}
..	\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots	\ldots
24	2	jC_{3}	$\mathrm{dG}_{5} \mathrm{j}^{\mathrm{C}_{5}}$	C_{4}	jC_{3}	$\mathrm{JG}_{5} \mathrm{LC}_{5}$	$-\mathrm{C}_{4}$	t_{24}
	\ldots	\ldots
31	2	-jC4	-jC5	C_{3}	-jC4	-jC ${ }_{5}$	$-\mathrm{C}_{3}$	t_{31}

NOTE: The code construction for code groups 0 to 15 using only the SCH codes from code set 1 is shown. The construction for code groups 16 to 31 using the SCH codes from code set 2 is done in the same way.

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.
25.223 CR 009 Current Version: 3.2.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team
For submission to: TSG RAN \#8 list expected approval meeting \# here

for approval	
for information	\mathbf{X}

strategic \square (for SMG non-strategic (for SMG use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
latest version of this form is available from: ftp://tp.3app.org/Information/CR-Form-v2.doc

Proposed change affects:
(U)SIM \square ME \qquad UTRAN / Radio \qquad Core Network \qquad
(at least one should be marked with an X)
Source: TSG RAN WG1
Date: 10, May 2000
Subject: \quad Editorial modification of 25.223

Work item: TS 25.223

Category:
(only one category
shall be marked
with an X)

Reason for change:

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
C Functional modification of feature
D Editorial modification

Release: Phase 2 Release 96 Release 97 Release 98 Release 99 Release 00

Other specs
Other 3G core specifications affected:

There is a reference to the document itself and references to the documents not referred to, also there are abbreviations used but not defined.

Clauses affected: Reference, Abbreviations

Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

\rightarrow List of CRs:

Other

comments:
<--------- double-click here for help and instructions on how to create a CR.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
[1] 3G TS 25.201: "Physical layer - general description"
[2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)"
[3] 3G TS 25.212: "Multiplexing and channel coding (FDD)"
[4] 3G TS 25.213: "Spreading and modulation (FDD)"
[5] 3G TS 25.214: "Physical layer procedures (FDD)"
[6] 3G TS 25.215: "Physical layer - Measurements (FDD)"
[7] 3G TS 25.221: "Physical channels and mapping of transport channels onto physical channels (TDD)"
[8] 3G TS 25.222: "Multiplexing and channel coding (TDD)"
[9] 3G TS 25.223: "Spreading and modulation (TDD)"
[10] 3G TS 25.224: "Physical layer procedures (TDD)"
[11] 3G TS 25.225: "Physical layer-Measurements (TDD)"

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CDMA	Code Division Multiple Access
P-CCPCH	Primary Common Control Physical Channel
PN	Pseudo Noise
OVSF	Orthogonal Variable Spreading Factor
PRACH	Physical Random Access Channel
QPSK	Quadrature Phase Shift Keying
RACH	Random Access Channel
SCH	Synchronisation Channel

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.
25.223 CR 010 Current Version: 3.2.0

GSM (AA.BB) or 3G (AA.BBB) specification number $\uparrow \quad \uparrow$ CR number as allocated by MCC support team
For submission to: TSG RAN \#8 list expected approval meeting \# here

for approval	
for information	X

strategic \square (for SMG non-strategic (for SMG use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2 doc

Proposed change affects:
(U)SIM \square ME \qquad UTRAN / Radio \qquad Core Network \qquad
(at least one should be marked with an X)
Source: TSG RAN WG1
Date: 10, May 2000
Subject: \quad Editorial modification of 25.223

Work item: TS 25.223

Category:
(only one category
shall be marked
with an X)

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
C Functional modification of feature
D Editorial modification

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for . Typing errors found change:

Clauses affected: $\quad 6.2,6.3,6.4$
Other specs
Other 3G core specifications
affected:
Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

\rightarrow List of CRs:

Other

 comments:
6.2 Channelisation codes

The elements $c_{q}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K} ; \mathrm{q}=1, \ldots, \mathrm{Q}_{\mathrm{k}} ;$ of the real valued channelisation codes

$$
\mathbf{c}^{(k)}=\left(c_{1}^{(k)}, c_{2}^{(k)}, \ldots, c_{Q_{k}}^{(k)}\right) ; \mathrm{k}=1, \ldots, \mathrm{~K}
$$

shall be taken from the set

$$
\begin{equation*}
\mathrm{V}_{\mathrm{c}}=\{1,-1\} \tag{3}
\end{equation*}
$$

The $\mathbf{c}_{Q_{k}}^{(k)}$ are Orthogonal Variable Spreading Factor (OVSF) codes, allowing to mix in the same timeslot channels with different spreading factors while preserving the orthogonality. The OVSF codes can be defined using the code tree of figure 1.

Figure 1:Code-tree for generation of Orthogonal Variable Spreading Factor (OVSF) codes for Channelisation Operation

Each level in the code tree defines a spreading factor indicated by the value of Q in the figure. All codes within the code tree cannot be used simultaneously in a given timeslot. A code can be used in a timeslot if and only if no other code on the path from the specific code to the root of the tree or in the sub-tree below the specific code is used in this timeslot. This means that the number of available codes in a slot is not fixed but depends on the rate and spreading factor of each physical channel.
The spreading factor goes up to $\mathrm{Q}_{\mathrm{MAX}}=16$.

6.3 Scrambling codes

The spreading of data by a real valued channelisation code $\mathbf{c}^{(k)}$ of length Q_{k} is followed by a cell specific complex scrambling sequence $\underline{\underline{i}}=\left(\underline{i}_{1}, \underline{i}_{2}, \ldots, \underline{i}_{16}\right)$. The elements $\underline{i}_{i} ; i=1, \ldots, 16$ of the complex valued scrambling codes shall be taken from the complex set

$$
\begin{equation*}
\underline{\mathrm{V}}_{\underline{v}}=\{1, \mathrm{j},-1,-\mathrm{j}\} \tag{54}
\end{equation*}
$$

In equation $5 \underline{4}$ the letter j denotes the imaginary unit. A complex scrambling code $\underline{\underline{1}}$ is generated from the binary scrambling codes $v=\left(v_{1}, v_{2}, \ldots, v_{16}\right)$ of length 16 shown in Annex A. The relation between the elements \underline{i} and \mathbf{i} is given by:

$$
\begin{equation*}
\underline{v}_{i}=(\mathrm{j})^{i} \cdot v_{i} \quad v_{i} \in\{1,-1\}, \mathrm{i}=1, \ldots, 16 \tag{65}
\end{equation*}
$$

Hence, the elements \underline{v}_{i} of the complex scrambling code \underline{i} are alternating real and imaginary.
The length matching is obtained by concatenating $\mathrm{Q}_{\mathrm{MAX}} / \mathrm{Q}_{\mathrm{k}}$ spread words before the scrambling. The scheme is illustrated in figure 32 below and is described in more detail in section 6.4.

Figure 2: Spreading of data symbols

6.4 Spread signal of data symbols and data blocks

The combination of the user specific channelisation and cell specific scrambling codes can be seen as a user and cell specific spreading code $\mathbf{s}^{(k)}=\left(s_{p}^{(k)}\right)$ with

$$
s_{p}^{(k)}=c_{1+\left[(p-1) \bmod Q_{k}\right]}^{(k)} . \dot{\underline{L}}_{1+\left[(p-1) \bmod Q_{M A X}\right]}, \mathrm{k}=1, \ldots, \mathrm{~K}, \mathrm{p}=1, \ldots, \mathrm{~N}_{\mathrm{k}} \mathrm{Q}_{\mathrm{k}} .
$$

With the root raised cosine chip impulse filter $\mathrm{Cr}_{0}(\mathrm{t})$ the transmitted signal belonging to the data block $\underline{\mathbf{d}}^{(k, 1)}$ of equation transmitted before the midamble is

$$
\begin{equation*}
\underline{d}^{(k, 1)}(t)=\sum_{\mathrm{n}=1}^{N_{k}} \underline{d}_{n}^{(k, 1)} \sum_{q=1}^{Q_{k}} s_{(n-1) Q_{k}+q} \cdot C r_{o}\left(t-(q-1) T_{c}-(n-1) Q_{k} T_{c}\right) \tag{36}
\end{equation*}
$$

and for the data block $\underline{\mathbf{d}}^{(k, 2)}$ of equation transmitted after the midamble

$$
\begin{equation*}
\underline{d}^{(k, 2)}(t)=\sum_{\mathrm{n}=1}^{N_{k}} \underline{d}_{n}^{(k, 2)} \sum_{q=1}^{Q_{k}} s_{(n-1) Q_{k}+q}^{(k)} \cdot C r_{0}\left(t-(q-1) T_{C}-(n-1) Q_{k} T_{c}-N_{k} Q_{k} T_{c}-L_{m} T_{c}\right) . \tag{47}
\end{equation*}
$$

where L_{m} is the number of midamble chips.

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.
25.223 CR 011r2 Current Version: 3.2.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team
For submission to: TSG RAN \#8 list expected approval meeting \# here

for approval	
for information	X

strategic \square (for SMG non-strategic use only)

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Proposed change affects:

\square ME \qquad UTRAN / Radio \qquad Core Network \qquad
(at least one should be marked with an X)
Source: TSG RAN WG1
Date: 22, May 2000
Subject: \quad Editorial modification of 25.223

Work item: TS 25.223

Category:
(only one category shall be marked with an X)

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
C Functional modification of feature
D Editorial modification

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for To correct wrong reference to a table. change:

Clauses affected: Annex A
Other specs
affected:

Other 3G core specifications
Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

\rightarrow List of CRs:

Other comments:
 help.doc

<--------- double-click here for help and instructions on how to create a CR.

Annex A (Normative): Scrambling Codes

The applicable scrambling codes are listed in below. Code numbers are referring to table 6 'Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $\mathrm{t}_{\text {offset }}$ ' in section $7.2 \underline{3}$ 'Code AllocationEvaluation of synchronisation codes'.

25.223 CR 012r2

Current Version: 3.2.0
GSM (AA.BB) or 3G (AA.BBB) specification number $\uparrow \quad \uparrow$ CR number as allocated by MCC support team

For submission to: TSG RAN\#8
list expected approval meeting \# here

Form: CR cover sheet, version 2 for 3GPP and SMG
$-$
(U)SIM \square ME X UTRAN / Radio \mathbf{X} Core Network \square
Proposed change affects:
(at least one should be marked with an X)
Source:
TSG RAN WG1
Subject: \quad Modified Code Sets on SCH for Cell Search in UTRA TDD

Work item:

	Category:	F
	Correction	X
(only one category	A	Corresponds to a correction in an earlier release
shall be marked	C	Function of feature modification of feature
with an X	D	D Editorial modification

Release: Phase 2

Release 96
Release 97
Release 98
Release 99
Release 00

Reason for The modified Code Sets benefit from improved cross-correlation properties with the change: Primary Synchronisation Code.

Clauses affected: $\quad 7.1,7.2$

Other specs Other 3G core specifications affected: Other GSM core specifications MS test specifications BSS test specifications O\&M specifications

\square	\rightarrow List of CRs:
	\rightarrow List of CRs:
	\rightarrow List of CRs:
\square	\rightarrow List of CRs:
	\rightarrow List of CRs:

Note: Proposed changes of this CR in the last paragraph of section 7.1 (e.g. from "The Secondary SCH code words are defined in terms of $\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}$ and the definition..." onwards) are not necessary anymore, as CR013r1-25.223 (R1-00-0748) is approved and this paragraph has been removed.

7 Synchronisation codes

7.1 Code Generation

The Primary code sequence, C_{p} is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Define $\mathrm{a}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1\rangle$
The PSC code word is generated by repeating the sequence 'a' modulated by a Golay complementary sequence and creating a complex-valued sequence with identical real and imaginary components.

The PSC code word C_{p} is defined as $\mathrm{C}_{\mathrm{p}}=\langle\mathrm{y}(0), \mathrm{y}(1), \mathrm{y}(2), \ldots, \mathrm{y}(255)\rangle$
where $y=(1+\mathrm{j}) \times<a, a, a,-a,-a, a,-a,-a, a, a, a,-a, a,-a, a, a>$
and the left most index corresponds to the chip transmitted first in each time slot.
The $1 \underline{2} 6$ secondary synchronization code words, $\left\{\mathrm{C}_{0}, \underline{\mathrm{C}}_{1}, \underline{\mathrm{C}_{3}}, \underline{\mathrm{C}_{4}}, \underline{\mathrm{C}_{5}}, \underline{\mathrm{C}_{6}}, \underline{\mathrm{C}_{8}}, \mathrm{C}_{10}, \underline{\mathrm{C}}_{12}, \underline{\mathrm{C}_{13}}, \underline{\mathrm{C}_{14}} \ldots, \mathrm{C}_{15}\right\}$ are complex valued with identical real and imaginary components, and are constructed from the position wise multiplication of a Hadamard sequence and a sequence z, defined as

$$
\begin{aligned}
& \mathrm{z}=\langle b, b, b,-b, b, b,-b,-b, b,-b, b,-b,-b,-b,-b,-b\rangle \text {, where } \\
& \mathrm{b}=\left\langle x_{1}, \ldots, x_{8},-x_{9}, \ldots,-x_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1\rangle .
\end{aligned}
$$

The Hadamard sequences are obtained as the rows in a matrix H_{8} constructed recursively by:

$$
\begin{gathered}
H_{0}=(1) \\
H_{k}=\left(\begin{array}{cc}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{array}\right) \quad k \geq 1
\end{gathered}
$$

The rows are numbered from the top starting with row 0 (the all zeros sequence).
Denote the n :th Hadamard sequence as a row of H_{8} numbered from the top, $\mathrm{n}=0,1,2, \ldots, 255$, in the sequel.
Furthermore, let $h_{m}(i)$ and $z(i)$ denote the i :th symbol of the sequence h_{m} and z, respectively where $i=0,1,2, \ldots, 255$ and $i=0$ corresponds to the leftmost symbol.

The i:th SCH code word, $\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}, \mathrm{i}=0,1,3,4,5,6,8,10,12,13,14 \ldots, 15$ is then defined as

$$
\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}=(1+j) \times<h_{m}(0) \times z(0), h_{m}(1) \times z(1), h_{m}(2) \times z(2), \ldots, h_{m}(255) \times z(255)>,
$$

where $m=(16 \times i)$ and the leftmost chip in the sequence corresponds to the chip transmitted first in time.
This code word is chosen from every $16^{\text {th }}$ row of the matrix H_{8}, which yields 16 possible codewords.
The Secondary SCH code words are defined in terms of $\mathrm{C}_{\text {SCH }, \mathrm{i}}$ and the definition of $\left\{\mathrm{C}_{0}, \underline{\mathrm{C}}_{1}, \underline{\mathrm{C}}_{3}, \underline{\mathrm{C}}_{4}, \underline{\mathrm{C}}_{5}, \underline{\mathrm{C}}_{6}, \underline{\mathrm{C}}_{8}, \mathrm{C}_{10}, \underline{C}_{12}\right.$. $\left.\underline{C}_{13}, \underline{C}_{14} \ldots, \mathrm{C}_{15}\right\}$ now follows as:
$\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}, \mathrm{i}=0,1,3,4,5,6,8,10,12,13,14 \ldots, 15$

7.2 Code Allocation

Three SCH codes are QPSK modulated and transmitted in parallel with the primary synchronization code. The QPSK modulation carries the following information:

- the code group that the base station belongs to (5 bits; Cases 1, 2);
- the position of the frame within an interleaving period of $20 \mathrm{msec}(1 \mathrm{bit}$, Cases 1,2$)$;
- the position of the slot within the frame (1 bit, Case 2).

The modulated codes are also constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 2 (Case 1) and 4 (Case 2) of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 2 (Case 1) and 4 (Case 2) of any of the sequences is not equivalent to itself with any other cyclic shift less than 8 . The secondary synchronization codes are partitioned into two code sets for Case 1 and four code sets for Case 2. The set is used to provide the following information:

Case 1:

Table 2: Code Set Allocation for Case 1

Code Set	Code Group
1	$0-15$
2	$16-31$

The code group and frame position information is provided by modulating the secondary codes in the code set.

Case 2:

Table 3: Code Set Allocation for Case 2

Code Set	Code Group
1	$0-7$
2	$8-15$
3	$16-23$
4	$24-31$

The slot timing and frame position information is provided by the comma free property of the code word and the Code group is provided by modulating some of the secondary codes in the code set.

The following SCH codes are allocated for each code set:
Case 1
Code set 1: $\mathrm{C}_{\theta \underline{1}}, \mathrm{C}_{4 \underline{3},}, \mathrm{C}_{2 \underline{5}}$.
Code set 2: $\mathrm{C}_{\underline{3} \underline{10}}, \mathrm{C}_{4 \underline{13}}, \mathrm{C}_{5 \underline{14}}$.

Case 2

Code set 1: $\mathrm{C}_{\theta 11}, \mathrm{C}_{+1}, \mathrm{C}_{25}$.
Code set 2: $\mathrm{C}_{310}, \mathrm{C}_{413}, \mathrm{C}_{514}$.
Code set 3: $\mathrm{C}_{6 \underline{0}}, \mathrm{C}_{7 \underline{6} \underline{6}}, \mathrm{C}_{8 \underline{12}}$.
Code set 4: $\mathrm{C}_{94}, \mathrm{C}_{10 \underline{8}}, \mathrm{C}_{1+15}$.
The following subclauses 7.2.1 to 7.2 .2 refer to the two cases of $\mathrm{SCH} / \mathrm{P}-\mathrm{CCPCH}$ usage as described in [7].
Note that in the Tables 4-6 corresponding to Cases 1,2, and 3, respectively, Frame 1 implies the frame with an odd SFN and Frame 2 implies the frame with an even SFN.

7.2.1 Code allocation for Case 1

NOTE: Modulation by " j " indicates that the code is transmitted on the Q channel.
Table 4: Code Allocation for Case 1

Code Group	Code Set	Frame 1			Frame 2			Associated
0	1	C_{01}	C_{13}	C_{25}	C_{01}	C_{13}	$-\mathrm{C}_{25}$	t_{0}
1	1	C_{01}	$-\mathrm{C}_{43}$	C_{25}	C_{01}	$-\mathrm{C}_{43}$	$-\mathrm{C}_{25}$	t_{1}
2	1	- Col_{01}	C_{13}	C_{25}	$-\mathrm{C}_{01}$	C_{13}	$-\mathrm{C}_{25}$	t_{2}
3	1	$-\mathrm{C}_{01}$	$-\mathrm{C}_{43}$	C_{25}	$-\mathrm{C}_{01}$	$-\mathrm{C}_{43}$	$-\mathrm{C}_{25}$	t_{3}
4	1	jC_{01}	JC_{13}	C_{25}	jC_{01}	jC_{13}	$-\mathrm{C}_{25}$	t_{4}
5	1	jC_{01}	$-\mathrm{j}_{13}$	C_{25}	jC_{01}	$\mathrm{j}^{\mathrm{j}} \mathrm{C}_{13}$	$-\mathrm{C}_{25}$	t_{5}
6	1	-jC01	JC_{13}	C_{25}	$-\mathrm{jC}_{01}$	jC_{13}	$-\mathrm{C}_{25}$	t_{6}
7	1	$-\mathrm{j} \mathrm{C}_{01}$	$-\mathrm{j}_{43}$	C_{25}	-jC ${ }^{01}$	$-\mathrm{j}^{\text {+ }}$	$-\mathrm{C}_{25}$	t_{7}
8	1	jC_{01}	JC_{25}	C_{13}	$\mathrm{j}^{\text {C }}$ 01	$\mathrm{j}_{2} 5$	$-\mathrm{C}_{13}$	t_{8}
9	1	jC_{61}	$\mathrm{-jC}_{25}$	C_{43}	j_{61}	$\mathrm{-j}_{25}$	$-\mathrm{C}_{13}$	t9
10	1	-jC01	JC_{25}	C_{13}	-jC01	$\mathrm{j}_{2} 5$	$-\mathrm{C}_{13}$	t_{10}
11	1	- $\mathrm{j}_{6} \mathrm{C}_{1}$	$\mathrm{-jC}_{25}$	C_{43}	-jC01	$-\mathrm{j}_{25}$	$-\mathrm{C}_{43}$	t_{11}
12	1	CC_{13}	JC_{25}	C_{01}	JC_{43}	$\mathrm{j}_{2} 5$	$-\mathrm{C}_{01}$	t12
13	1	jC_{43}	$-\mathrm{j}_{25}$	C_{61}	JC_{43}	$-\mathrm{j}_{25}$	$-\mathrm{C}_{01}$	t_{13}
14	1	$-\mathrm{j}_{43}$	JC_{25}	C_{61}	$-\mathrm{j}_{43}$	$\mathrm{j}_{2} 5$	$-\mathrm{C}_{01}$	t_{14}
15	1	$-\mathrm{j}_{43}$	$-\mathrm{j}_{25}$	C_{61}	$-\mathrm{j}_{43}$	$-\mathrm{j}_{25}$	$-\mathrm{C}_{01}$	t_{15}
16	2	C_{310}	C_{413}	C_{514}	C_{310}	C_{413}	$-\mathrm{C}_{514}$	t_{16}
17	2	C_{310}	$-\mathrm{C}_{413}$	C_{514}	C_{310}	$-\mathrm{C}_{413}$	$-\mathrm{C}_{514}$	t_{17}
\ldots								
20	2	jC_{310}	JC_{413}	C_{514}	jC_{310}	jC_{413}	$-\mathrm{C}_{514}$	t_{20}
		\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	..
24	2	jC_{310}	jC_{514}	C_{413}	jC_{310}	JC_{514}	$-\mathrm{C}_{413}$	t_{24}
\ldots	\ldots	\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots
31	2	$-\mathrm{j}_{413}$	$-\mathrm{j} \mathrm{C}_{514}$	C_{310}	-jC413	-jC514	$-\mathrm{C}_{310}$	t_{31}

NOTE: The code construction for code groups 0 to 15 using only the SCH codes from code set 1 is shown. The construction for code groups 16 to 31 using the SCH codes from code set 2 is done in the same way.

7.2.2 Code allocation for Case 2

Table 5: Code Allocation for Case 2

Code Group	Code Set	Frame 1						Frame 2						Associated $\mathrm{t}_{\text {ofiset }}$
		Slot k			Slot k+8			Slot k			Slot k+8			
0	1	C_{01}	C_{43}	C_{25}	C_{01}	C_{43}	$-\mathrm{C}_{25}$	$-\mathrm{C}_{01}$	$-\mathrm{C}_{43}$	C_{25}	- 0_{01}	$-\mathrm{C}_{43}$	$-\mathrm{C}_{25}$	t_{0}
1	1	C_{01}	$-\mathrm{C}_{13}$	C_{25}	C_{01}	$-\mathrm{C}_{43}$	$-\mathrm{C}_{25}$	$-\mathrm{C}_{01}$	C_{13}	C_{25}	$-\mathrm{C}_{01}$	C_{43}	$-\mathrm{C}_{25}$	t_{1}
2	1	$\mathrm{j}_{0} \mathrm{O}_{1}$	jC_{43}	C_{25}	jC_{61}	jC_{43}	$-\mathrm{C}_{25}$	-jC01	${ }_{-}^{-\mathrm{C}_{4}}$	C_{25}	-jC01	$-\mathrm{j}_{4}{ }^{\text {a }}$	$-\mathrm{C}_{25}$	t_{2}
3	1	jC_{01}	${ }_{-j} \mathrm{C}_{13}$	C_{25}	jC_{01}	$-\mathrm{j}_{43}$	$-\mathrm{C}_{25}$	-jC01	jC_{13}	C_{25}	-jC01	jC_{43}	$-\mathrm{C}_{25}$	t_{3}
4	1	j_{01}	j_{25}	C_{43}	$\mathrm{j}_{6} \mathrm{Cl}_{1}$	j_{25}	$-\mathrm{C}_{13}$	-jC ${ }_{01}$	$-\mathrm{j}_{25}$	C_{43}	-jC C_{01}	$-\mathrm{j}_{25}$	$-\mathrm{C}_{13}$	t_{4}
5	1	jC_{01}	$-\mathrm{j}_{2} 25$	C_{13}	jC_{01}	$-\mathrm{j}_{25}$	$-\mathrm{C}_{13}$	-jC 0_{01}	j_{25}	C_{13}	-jC01	j_{25}	$-\mathrm{C}_{13}$	t_{5}
6	1	jC_{43}	jC_{25}	C_{01}	jC_{43}	jC_{25}	- C_{01}	$-\mathrm{j}_{43}$	${ }_{-j} \mathrm{C}_{25}$	C_{01}	$-\mathrm{j} \mathrm{C}_{43}$	$-\mathrm{j}_{25}$	$-\mathrm{C}_{01}$	t_{6}
7	1	jC_{43}	-jC25	C_{01}	jC_{13}	$-\mathrm{j}_{25}$	$-\mathrm{C}_{01}$	$-\mathrm{j}_{13}$	jC_{25}	C_{01}	$-\mathrm{j}_{4}{ }^{\text {a }}$	j_{25}	$-\mathrm{C}_{01}$	t_{7}
8	2	C_{310}	$\mathrm{C}_{4 \underline{13}}$	C_{514}	C_{310}	C_{413}	C_{514}	$-\mathrm{C}_{3110}$	$-\mathrm{C}_{413}$	C_{514}	$-\mathrm{C}_{3 \underline{10}}$	$-\mathrm{C}_{4 \underline{13}}$	C_{514}	t_{8}
9	2	C_{310}	$-\mathrm{C}_{413}$	C_{514}	C_{310}	$-\mathrm{C}_{413}$	C_{514}	$-\mathrm{C}_{3110}$	C_{413}	C_{514}	$-\mathrm{C}_{3110}$	C_{413}	C_{514}	t9
10	2	jC_{310}	$\mathrm{jC}_{4 \underline{13}}$	C_{514}	jC_{310}	jC_{413}	C_{514}	-jC310	$-\mathrm{j} \mathrm{C}_{4 \underline{13}}$	C_{514}	$\mathrm{-jC}_{310}$	-jC443	C_{514}	t_{10}
11	2	jC_{310}	j_{413}	C_{514}	$\mathrm{jC}_{3 \underline{10}}$	$-\mathrm{j} \mathrm{C}_{4 \underline{13}}$	C_{514}	$-\mathrm{jC}_{310}$	$\mathrm{j}_{4} \underline{13}$	C_{514}	${ }^{-\mathrm{C}_{310}}$	$\mathrm{jC}_{4 \underline{13}}$	C_{514}	t_{11}
12	2	jC_{310}	jC_{514}	C_{413}	$\mathrm{jC}_{3 \underline{10}}$	$\mathrm{j}_{5} \underline{14}$	$\overline{C_{413}}$	-jC ${ }_{310}$	$-\mathrm{j}_{5} \underline{14}$	C_{413}	${ }^{-\mathrm{C}_{310}}$	-jC5 ${ }_{514}$	C_{413}	t_{12}
13	2	jC_{310}	j_{514}	C_{413}	jC_{310}	$-\mathrm{j} \mathrm{C}_{514}$	C_{413}	-jC310	jC514	C_{413}	${ }^{-j \mathrm{C}_{310}}$	jC_{514}	C_{413}	t_{13}
14	2	$\mathrm{jC}_{4 \underline{13}}$	jC_{514}	C_{310}	jC_{413}	j_{5114}	C_{310}	-jC443	$-\mathrm{j} \mathrm{C}_{514}$	C_{310}	${ }^{-j C_{413}}$	-jC5514	C_{310}	t_{14}
15	2	$\mathrm{jC}_{4 \underline{13}}$	j_{514}	C_{310}	$\mathrm{jC}_{4 \underline{13}}$	$-\mathrm{j} \mathrm{C}_{514}$	C_{310}	${ }_{-j \mathrm{C}_{4} 13}$	$\mathrm{j}_{5} \underline{14}$	C_{310}	${ }^{-\mathrm{j}_{4}{ }_{413}}$	$\mathrm{j}_{5} \underline{14}$	$\begin{gathered} - \\ C_{310} \end{gathered}$	t_{15}
16	3	C_{60}	C_{76}	C_{812}	C_{60}	$\mathrm{C}_{7 \underline{6}}$	C_{812}	- 60 1	$-\mathrm{C}_{76}$	C_{812}	$-\mathrm{C}_{60}$	$-\mathrm{C}_{76}$	C_{812}	t_{16}
\ldots	\ldots		\ldots		\ldots	...	\ldots	\ldots	...		\ldots	...	\ldots	\ldots
23	3	$\mathrm{jC}_{7 \underline{6}}$	j_{812}	C_{60}	$\mathrm{jC}_{7} \underline{6}$	$-\mathrm{j} \mathrm{C}_{812}$	$-\mathrm{C}_{60}$	${ }^{-j C_{7}{ }^{6}}$	$\mathrm{j}_{8} \underline{12}$	C_{60}	-jC $\mathrm{C}_{\text {7 }}$	j_{812}	$-\mathrm{C}_{60}$	t_{20}
24	4	C_{94}	C_{108}	$\begin{gathered} \mathrm{C}_{111} \\ \underline{5} \end{gathered}$	C_{94}	C_{108}	$\begin{gathered} C_{1+1}^{-} \\ \hline \\ \hline \end{gathered}$	$-\mathrm{C}_{94}$	$-\mathrm{C}_{108}$	$\begin{gathered} \mathrm{C}_{111} \\ \underline{5} \end{gathered}$	$-\mathrm{C}_{94}$	$-\mathrm{C}_{108}$	$\begin{gathered} \mathrm{C}_{111} \\ 5 \\ \hline \end{gathered}$	t_{24}
	\ldots		\ldots	\ldots	...	\ldots	...	\ldots	\ldots		\ldots
31	4	jC_{108}	$j C_{1+1}$	C_{94}	jC_{108}	j_{1+15}	$-\mathrm{C}_{94}$	-jC108	j_{11115}	C_{94}	${ }^{-\mathrm{C}_{108}}$	jC_{1115}	$-\mathrm{C}_{94}$	t_{31}

NOTE: The code construction for code groups 0 to 15 using the SCH codes from code sets 1 and 2 is shown. The construction for code groups 16 to 31 using the SCH codes from code sets 3 and 4 is done in the same way.

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc

Reason for	- Editorial Alignments with FDD spec
change:	- Informative Annex B on alternative generation of Golay sequences added

Clauses affected:

2, 3, 6.5, 7.1, 7.3, former Annex B renamed to Annex C new chapters: 3.1, 6.5.1, 6.5.2, Annex B

Other specs

 affected:| Other 3G core specifications | \square | \rightarrow List of CRs: |
| :--- | :--- | :--- |
| Other GSM core specifications | | \rightarrow List of CRs: |
| MS test specifications | | \rightarrow List of CRs: |
| BSS test specifications | | \rightarrow List of CRs: |
| O\&M specifications | | \rightarrow List of CRs: |

Other
 comments:

<-------- double-click here for help and instructions on how to create a CR.

2 References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or non-specific.
- For a specific reference, subsequent revisions do not apply.
- For a non-specific reference, the latest version applies.
[1] 3G TS 25.201: "Physical layer - general description".
[2] 3G TS 25.211: "Physical channels and mapping of transport channels onto physical channels (FDD)".
[3] 3G TS 25.212: "Multiplexing and channel coding (FDD)".
[4] 3G TS 25.213: "Spreading and modulation (FDD)".
[5] 3G TS 25.214: "Physical layer procedures (FDD)".
[6] 3G TS 25.215: "Physical layer - Measurements (FDD)".
[7] 3G TS 25.221: "Physical channels and mapping of transport channels onto physical channels (TDD)".
[8] 3G TS 25.222: "Multiplexing and channel coding (TDD)".
[9] 3G TS 25.223: "Spreading and modulation (TDD)".
[10] 3G TS 25.224: "Physical layer procedures (TDD)".
[11] 3G TS 25.225: "Physical layer - Measurements (TDD)".
[12] 3G TS 25.102: "UTRA (UE) TDD; Radio Transmission and Reception"
[13] 3G TS 25.105: "UTRA (BS) TDD; Radio Transmission and Reception"

3 Symbols and abbreviations

3.1 Symbols

For the purposes of the present document, the following symbols apply:
$\underline{C}_{\mathrm{p}}: \quad \quad$ PSC
$\underline{C}_{i}: \quad$ i:th secondary SCH code

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CDMA	Code Division Multiple Access
P-CCPCH	Primary Common Control Physical Channel
PN	Pseudo Noise
PSC	Primary Synchronisation Code
QPSK	Quadrature Phase Shift Keying
RACH	Random Access Channel
SCH	Synchronisation Channel

6.5 Modulation

The complex-valued chip sequence is QPSK modulated as shown in Figure 3 below.

Figure 3: Modulation of complex valued chip sequences
The pulse-shaping characteristics are described in [12] and [13].

6.5.1 Combination of physical channels in uplink

Figure 4 illustrates how the maximum of two different physical uplink channels are combined within one timeslot. Each complex-valued spread channel is separately weighted by a weight factor G_{i} and combined using complex addition.

Figure 4: Combination of different physical channels in uplink

6.5.2 Combination of physical channels in downlink

Figure 5 illustrates how different physical downlink channels are combined within one timeslot. Each complex-valued spread channel is separately weighted by a weight factor G_{i}. If a timeslot contains the SCH , the complex-valued SCH , as described in [7] is separately weighted by a weight factor G $_{\text {SCH }}$. All downlink physical channels are then combined using complex addition.

Different downlink Physical channels

Figure 5: Combination of different physical channels in downlink in case of SCH timeslot

7 Synchronisation codes

7.1 Code Generation

The pPrimary synchronisation code sequence (PSC), C_{p} is constructed as a so-called generalised hierarchical Golay sequence. The PSCPrimary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Define $\mathrm{a}=\left\langle\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1\rangle$
The PSC eode word is generated by repeating the sequence ' a ' modulated by a Golay complementary sequence and creating a complex-valued sequence with identical real and imaginary components.

The PSC eode word C_{p} is defined as $\quad \mathrm{C}_{\mathrm{p}}=\langle\mathrm{y}(0), \mathrm{y}(1), \mathrm{y}(2), \ldots, \mathrm{y}(255)\rangle$
where $y=(1+\mathrm{j}) \times<a, a, a,-a,-a, a,-a,-a, a, a, a,-a, a,-a, a, a>$
and the left most index corresponds to the chip transmitted first in each-time-slot.
The 16 secondary synchronization codes words, $\left\{\mathrm{C}_{0}, \ldots, \mathrm{C}_{15}\right\}$ are complex valued with identical real and imaginary components, and are constructed from the position wise multiplication of a Hadamard sequence and a sequence z, defined as:

$$
\begin{aligned}
& \mathrm{z}=<b, b, b,-b, b, b,-b,-b, b,-b, b,-b,-b,-b,-b,-b\rangle \text {, where } \\
& \mathrm{b}= \\
& \left.<x_{1}, \ldots, x_{8},-x_{9}, \ldots, x_{16}><x_{1}, x_{2}, x_{3}, x_{4}, x_{5}, x_{6}, x_{7}, x_{8},-x_{9},-x_{10},-x_{11},-x_{12},-x_{13},-x_{14},-x_{15},-x_{16}\right\rangle \\
& =\langle 1,1,1,1,1,1,1,-1,-1,-1,1,1,1,1,-1\rangle
\end{aligned}
$$

and $\mathrm{x}_{1}, \mathrm{x}_{2}, \mathrm{x}_{3}, \ldots, \mathrm{x}_{16}$ are the same as in the definition of the sequence ' a ' above.
The Hadamard sequences are obtained as the rows in a matrix H_{8} constructed recursively by:

$$
\begin{gathered}
H_{0}=(1) \\
H_{k}=\left(\begin{array}{cc}
H_{k-1} & H_{k-1} \\
H_{k-1} & -H_{k-1}
\end{array}\right) \quad k \geq 1
\end{gathered}
$$

The rows are numbered from the top starting with row 0 (the all zeros-ones sequence).
Denote the n :th Hadamard sequence as a row of H_{8} numbered from the top, $\mathrm{n}=0,1,2, \ldots, 255$, in the sequel.
Furthermore, let $h_{m}(i)$ and $z(i)$ denote the i :th symbol of the sequence h_{m} and z, respectively where $i=0,1,2, \ldots, 255$ and $i=0$ corresponds to the leftmost symbol.

The i :th secondary SCH code word, $\mathrm{C}_{\text {Set }}, \mathrm{i}=0, \ldots, 15$ is then defined as

$$
\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}=(1+j) \times\left\langle h_{m}(0) \times z(0), h_{m}(1) \times z(1), h_{m}(2) \times z(2), \ldots, h_{m}(255) \times z(255)>,\right.
$$

where $m=(16 \times i)$ and the leftmost chip in the sequence corresponds to the chip transmitted first in time.
This code word is chosen from every $16^{\text {th }}$ row of the matrix H_{8}, which yields 16 possible codewords.
The Secondary SCH code words are defined in terms of $\mathrm{C}_{\mathrm{SCH}, \mathrm{i}}$ and the definition of $\left\{\mathrm{C}_{\theta}, \ldots, \mathrm{C}_{15}\right\}$ now follows as:

$$
\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{SCH}, i}, \mathrm{i}=0, \ldots, 15
$$

7.3 Evaluation of synchronisation codes

The evaluation of information transmitted in SCH on code group and frame timing is shown in table 6 , where the 32 code groups are listed. Each code group is containing 4 specific scrambling codes (cf. subclause 6.3), each scrambling code associated with a specific short and long basic midamble code.

Each code group is additionally linked to a specific $t_{\text {offset }}$, thus to a specific frame timing. By using this scheme, the UE can derive the position of the frame border due to the position of the SCH sequence and the knowledge of $\mathrm{t}_{\text {offset }}$. The complete mapping of Code Group to Scrambling Code, Midamble Codes and $\mathrm{t}_{\text {offset }}$ is depicted in table 6.

Table 6: Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $t_{\text {offset }}$

$\begin{aligned} & \text { CELL } \\ & \text { PARA- } \\ & \text { METER } \end{aligned}$	Code Group	Associated Codes			Associat ed toffset
		Scrambling Code	Long Basic Midamble Code	Short Basic Midamble Code	
0	Group 0	Code 0	mpL0	msL0	t_{0}
1		Code 1	mpL1	$\mathrm{m}_{\text {SL1 }}$	
2		Code 2	mpL2	msL2	
3		Code 3	mpL3	$\mathrm{m}_{\text {SL3 }}$	
4	Group 1	Code 4	mpL4	$\mathrm{m}_{\text {SL4 }}$	t_{1}
5		Code 5	mpL5	$\mathrm{m}_{\text {SL5 }}$	
6		Code 6	mpL6	msL6	
7		Code 7	$\mathrm{mpL7}$	$\mathrm{m}_{\text {SL7 }}$	
124	Group 31	Code 124	$\mathrm{m}_{\text {PL124 }}$	$\mathrm{m}_{\text {SL124 }}$	t_{31}
125		Code 125	$\mathrm{mpL125}$	$\mathrm{m}_{\text {SL125 }}$	
126		Code 126	mpL126	msL126	
127		Code 127	$\mathrm{mpl127}$	$\mathrm{m}_{\text {LL127 }}$	

For basic midamble codes m_{P} cf.[7]TS 25.221, annex A 'Basic Midamble Codes'.
Each cell shall cycle through two sets of cell parameters in a code group with the cell parameters changing each frame. Table 7 shows how the cell parameters are cycled according to the SFN.

Table 7: Alignment of cell parameter cycling and SFN

Initial Cell Parameter Assignment	Code Group	Cell Parameter used when SFN $\bmod 2=0$	Cell Parameter used when SFN mod 2 = 1
0	Group $1 \underline{0}$	0	1
1		1	0
2		2	3
3		3	2
4	Group 21	4	5
5		5	4
6		6	7
7		7	6
124	Group $32 \underline{31}$	124	125
125		125	124
126		126	127
127		127	126

Annex B (informative): Generalised Hierarchical Golay Sequences

B. 1 Alternative generation

The generalised hierarchical Golay sequences for the PSC described in 7.1 may be also viewed as generated (in real valued representation) by the following methods:

Method 1.
The sequence y is constructed from two constituent sequences $x_{\underline{l}}$ and $x_{\underline{2}}$ of length $n_{\underline{l}} \underline{\text { and }} n_{\underline{2}} \underline{\text { respectively using the }}$ following formula:
$-\mathrm{y}(\mathrm{i})=\mathrm{x}_{2}\left(\mathrm{i} \bmod \mathrm{n}_{2}\right) * \mathrm{x}_{1}\left(\mathrm{i} \operatorname{div} \mathrm{n}_{2}\right), \mathrm{i}=0 \ldots\left(\mathrm{n}_{1} * \mathrm{n}_{2}\right)-1$.
The constituent sequences $x_{\underline{1}}$ and $x_{2} \underline{\text { are chen }}$ to be the following length 16 (i.e. $n_{\underline{1}}=n_{\underline{2}}=16$) sequences:

- $\quad \mathrm{x}_{1}$ is defined to be the length $16\left(\mathrm{~N}^{(1)}=4\right)$ Golay complementary sequence obtained by the delay matrix $\mathrm{D}^{(1)}=[8$, $4,1,2]$ and weight matrix $\mathrm{W}^{(1)}=[1,-1,1,1]$.
- X_{2} is a generalised hierarchical sequence using the following formula, selecting $\mathrm{s}=2$ and using the two Golay complementary sequences $X_{3} \underline{x}^{\text {and }} X_{4}$ as constituent sequences. The length of the sequence x_{3} and x_{4} is called n_{3} respectively n_{4}.
$-x_{2}(i)=x_{4}\left(i \bmod s+s^{*}\left(i \operatorname{div} s n_{3}\right)\right) * x_{3}\left((i \operatorname{div} s) \bmod n_{3}\right), i=0 \ldots\left(n_{3} \underline{*}_{4}\right)-1$.
$-\quad \mathrm{X}_{3}$ and x_{4} are defined to be identical and the length $4\left(\mathrm{~N}^{(3)}=\mathrm{N}^{(4)}=2\right)$ Golay complementary sequence obtained by the delay matrix $\mathrm{D}^{(3)}=\mathrm{D}^{(4)}=[1,2]$ and weight matrix $\mathrm{W}^{(3)}=\mathrm{W}^{(4)}=[1,1]$.

The Golay complementary sequences x_{1}, x_{3} and X_{4} are defined using the following recursive relation:

$$
\begin{aligned}
a_{0}(k) & =\delta(k) \text { and } b_{0}(k)=\delta(k) ; \\
a_{\underline{n}}(k) & =a_{\underline{n-1}}(k)+W^{(j)}{ }_{\underline{n}} \cdot b_{\underline{n-1}}\left(k-D^{(j)}{ }_{n}\right) ; \\
b_{\underline{n}}(k) & =a_{\underline{n-1}}(k)-W^{(j)}{ }_{\underline{n}} \cdot b_{n-1}\left(k-D^{(j)}{ }_{n}\right) ; \\
k & =0,1,2, \ldots, 2^{* *} \mathrm{~N}^{(j)}-1 ; \\
\quad n & =1,2, \ldots, \mathbf{N}^{(j)} .
\end{aligned}
$$

The wanted Golay complementary sequence x_{j} is defined by a_{n} assuming $n=N^{(j)}$. The Kronecker delta function is described by $\delta, \mathrm{k}, \mathrm{j}$ and n are integers.

Method 2
The sequence y can be viewed as a pruned Golay complementary sequence and generated using the following parameters which apply to the generator equations for a and b above:
(a) Let $\mathrm{j}=0, \mathrm{~N}^{(0)}=8$.

(c) $\left[\mathrm{W}_{\underline{1}}{ }^{0}, \mathrm{~W}_{2}{ }^{0}, \mathrm{~W}_{3} \underline{0}^{0}, \mathrm{~W}_{4}{ }^{0}, \mathrm{~W}_{\underline{5}} \underline{0}^{0}, \mathrm{~W}_{6} \underline{0}^{0}, \mathrm{~W}_{2}{ }^{0}, \mathrm{~W}_{8}{ }^{0}\right]=[1,-1,1,1,1,1,1,1]$.
(d) For $\mathrm{n}=4,6$, set $\mathrm{b}_{4}(\mathrm{k})=\mathrm{a}_{4}(\mathrm{k}), \mathrm{b}_{6}(\mathrm{k})=\mathrm{a}_{6}(\mathrm{k})$.

Annex B-C (informative):

Change history

Change history							
Date	TSG \#	TSG Doc.	CR	Rev	Subject/Comment	Old	New
14/01/00	RAN 05	RP-99593	-		Approved at TSG RAN \#5 and placed under Change Control	-	3.0.0
14/01/00	RAN_06	RP-99696	001	01	Primary and Secondary CCPCH in TDD	3.0.0	3.1.0
14/01/00	RAN_06	RP-99695	003	1	Alignment of Terminology Regarding Spreading for TDD Mode	3.0.0	3.1.0
14/01/00	RAN_06	RP-99696	004	-	Code allocation for Case 3	3.0.0	3.1.0
14/01/00	-	-	-		Change history was added by the editor	3.1.0	3.1.1
31/03/00	RAN_07	RP-000069	002	3	Cycling of cell parameters	3.1.1	3.2.0
31/03/00	RAN_07	RP-000069	005	-	Removal of Synchronisation Case 3 in TDD	3.1.1	3.2.0
31/03/00	RAN_07	RP-000069	006	1	Signal Point Constellation	3.1.1	3.2.0

[^0]: GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
 \uparrow CR number as allocated by MCC support team

