TSG-RAN Meeting \#8
TSGRP\#8(00)0232
Düsseldorf, Germany, 21-23 June 2000
Title: \quad Agreed CRs to TS 25.402
Source: TSG-RAN WG3
Agenda item: 5.3.3

Tdoc_Num	Specification	CR_Num	Revision_Nu	CR_Subject	CR_Category	WG_Status	Cur_Ver_Num	New_Ver_Nu
R3-001244	25.402	006	2	Clarification to section 9	F	agreed	3.1.0	3.2.0

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.
25.402 CR 6 r2

Current Version: 3.1.0

\uparrow CR number as allocated by MCC support team
GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow

Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/lnformation/CR-Form-
v2.doc
$\frac{\text { Proposed change affects: }}{\text { (at least one should be marked with an } X}$
(U)SIM \square ME \square

UTRAN / Radio
X
Core Network

Source:
R_WG3
Date: April 04, 2000

Subject: \quad Clarifications to section 9

Work item:

Category:

(only one category

F Correction
A Corresponds to a correction in an earlier release
B Addition of feature
shall be marked
C Functional modification of feature
with an X)
D Editorial modification

\mathbf{X}

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for change:

This documents provides some clarifications to section 9, especially regarding the corrections applied to UTRAN synchronisation counters during transitions from common channel to dedicated channel state and vice versa.

Clauses affected: 9

Other

comments:
<--------- double-click here for help and instructions on how to create a CR.

9 Usage of Synchronisation Counters and Parameters to support Transport Channel and Radio Interface Synchronisation

9.1 General

This section describes how the different synchronisation parameters and counters are computed and used in order to obtain Transport Channel (L2) and Radio Interface (L1) Synchronisation.

The parameters that need to be determined by the UE are CFN, OFF [FDD - and Tm](FDD only).
The parameters that need to be determined by the UTRAN are [FDD - DOFF](FDD only), Frame Offset and [FDD Chip Offset](FDD-only).

Figure 21 summarises how these parameters are computed. A detailed description of the actions in each state is given in the following sub-sections $9.2-9.4$, while some examples of corrections applied to synchronisation counters during UE state transitions are shown in section 9.5.

Figure 21: Calculations performed by UE and UTRAN
Figure 22 describes what offset parameters are signalled and used in the different nodes at Initial RL setup and at Handover (HO) in FDD. The rounding to closest 256 chip boundary is done in Node B. The rounded Frame Offset and Chip Offset control the DL DPCH air-interface timing. The 256 chip boundary is to maintain DL orthogonality in the cell (the rounding to the closest 256 chip boundary is done in Node B to facilitate the initial UL chip synchronisation process in Node B).

Figure 22: [FDD]_Usage of Offset values at initial RL and at HO]
Figure 23 describes what offset parameters are signalled and used in the different nodes at Initial RL setup and at Handover (HO) in TDD.

Figure 23: [TDD]: Usage of Offset values at initial RL and at HO]

9.2 Calculations performed in the UTRAN

This chapter describes how an SRNC can calculate the Frame Offset and Chip Offset based on the parameters received from the UE and available in the UTRAN.

9.2.1 UE in CELL FACH/PCH commonchannelstate or CELL DCH state with only stand-alone shared channels.

In CELL_FACH/PCH eemmen channetstate (UE on RACH/FACH), or CELL_DCH state with only stand-alone shared channels the Frame Offset is set to 0 .

9.2.2 UE changes state-from CELL FACH/PCH commoncH-state to CELL DCH dedicated CH state: 1 RL

Im $-[F D D,--6 \underline{B}$ ased on the received parameters from the UE and the DOFF value generated in the SRNC, the SRNC calculates the Frame Offset and the Chip Offset from formula (9.1).
Frame Offset*38400 +Chip Offset = DOFF*512

Frame Offset and Chip Offset are then signalled to the Node B controlling the serving cell.]
[TDD- In TDD-this case Frame Offset $=0$.
Frame Offset is then signalled to the Node B controlling the serving cell.]

9.2.3 [FDD - UE changes state-from CELL FACH/PCH common CH-state to CELL DCH dedicated CH-state: several RL's].(FDD only)

Based on the received parameters from the UE for each cell $\underline{\underline{k}}_{\underline{\underline{k}}}\left(\mathrm{OFF}_{\underline{\underline{k}}}\right.$ and $\left.\mathrm{Tm}_{\underline{k}}\right)$ and the DOFF value generated in the SRNC, the SRNC calculates the Frame Offset $\underline{\underline{k}}_{\underline{k}}$ and the Chip Offset $\underline{\underline{k}}_{\underline{k}}$. The Frame Offset $\underline{\underline{k}}_{\underline{k}}$ and the Chip Offset $\underline{\underline{k}}_{\underline{k}}$ are calculated from the following formula (9.2).:-

$$
\begin{equation*}
\text { Frame Offset } \underline{\underline{k}}_{\underline{2}} * 38400+\text { Chip Offset }_{\underline{\underline{k}}}=\text { DOFF }^{2} 512+\mathrm{OFF}_{\underline{\underline{k}}} * 38400+\mathrm{Tm}_{\underline{\underline{k}}} \tag{9.2}
\end{equation*}
$$

NOTE: that formula (9.23) is covering formula (9.1) since in the case 4 described in section 9.2.2, $\mathrm{OFF}_{\underline{k}}$ and $\mathrm{Tm}_{\underline{k}}$ are both equal to zero.

Each Frame Offset ${ }_{k}$ and Chip Offset ${ }_{k}$ are then signalled to the Node B controlling the cell ${ }_{k}$.

9.2.4 UE in CELL DCH dedicated CH state request to add a new RL or moves to another cell

m $\mathrm{m}\left[\mathrm{FDD},-_b\right.$ Based on the received parameters from the UE, the SRNC calculates the Frame Offset target and the Chip Offset $_{\text {target }}$ with the following-formula:(9.3).

$$
\begin{equation*}
\text { Frame Offset } \underline{\text { target }} * 38400+\text { Chip Offset }_{\underline{\text { target }}}=\mathrm{OFF}_{\text {target }} * 38400+\mathrm{Tm}_{\underline{\text { target }}} \tag{9.3}
\end{equation*}
$$

Frame Offset target $^{\text {and Chip Offset }}$ arget are then signalled to the Node B controlling the target cell.]
[TDD - In TDD-this case Frame Offset ${ }_{\text {target }}=\mathrm{OFF}_{\text {targeet }}$.
It is signalled to the Node B controlling the target cell.]

9.2.5 Handover from other RAN to UMTS

In [FDD --- $b \underline{B}$ ased on the definitions for OFF and Tm formula (9.1) can also be used when the UE enters the UTRAN from another $\overline{\mathrm{C}} \mathrm{N}$ and establishes 4 -one dedicated RL. The same is true for formula (9.2) when establishing 4 -one or more dedicated RL's.]

Im [TDD $-\#$ When the UE enters the UTRAN from another CN and establishes 4 -one dedicated RL, OFF is 0.$]$

9.3 9.3-Calculations performed in the UE

This chapter describes which synchronisation parameters are computed and how the CFN is initialised in the UE in case of CELL_FACH/PCH state and CELL_DCH state.

9.3.1a UE in CELL FACH/PCH state or CELL DCH state with only standalone shared channels.

In CELL FACH/PCH state or CELL_DCH state with only stand-alone shared channels the Frame Offset is set to 0, i.e. the CFN is initialised with the values CFN = SFN for PCH and CFN $=$ SFN mod 256 for all other common and shared channels. The CFN for all common and shared channels in the CRNC is increased (mod 256) by 1 every frame, except PCH, which CFN has the same range of the SFN.

9.3.1 UE changes from CELL FACH/PCH state to CELL DCH state: 1 RLFirst RL

In [FDD,$-=6$ Based on the received DOFF and the SFN of the cell in which the UE is source, the UE can ealeulate initialise the CFN with the value given by following formula (9.4):

$$
\begin{equation*}
\mathrm{CFN}=((\mathrm{SFN} * 38400-\mathrm{DOFF} * 512) \operatorname{div} 38400)_{_} \bmod 256 \tag{9.4}
\end{equation*}
$$

Im [TDD - the -The CFN is initialised with the value given by formula (9.5).:

$$
\begin{equation*}
\mathrm{CFN}=\mathrm{SFN} \bmod 256 \tag{9.5}
\end{equation*}
$$

NOTE: in case the UE is coming from another RAN, the SFN is not the SFN from the source cell but the SFN from the reference cell. In this case the OFF is set to 0 .

After the initialisation, the CFN in the UE is increased (mod 256) by 1 every frame.

9.3.1b [FDD - UE changes from CELL FACH/PCH to CELL DCH state: several RL's]

Based on the received DOFF and the $\mathrm{SFN}_{\mathrm{i}}$ of the reference cell, the UE initialises the CFN with the value given by formula (9.6)

$$
\begin{equation*}
\mathrm{CFN}=\left(\left(\mathrm{SFN}_{\mathrm{j}} * 38400-\mathrm{DOFF} * 512\right) \operatorname{div} 38400\right) \bmod 256 \tag{9.6}
\end{equation*}
$$

After the initialisation, the CFN in the UE is increased (mod 256) by 1 every frame.
The UE reports to the SRNC the parameters $\mathrm{OFF}_{\underline{k}}$ and $\mathrm{Tm}_{\underline{k}}$ for each cell $\underline{\underline{k}}$ measured respect to the reference cell ${ }_{i}$ determined by means of formula (9.7)

$$
\begin{equation*}
\mathrm{OFF}_{\underline{k}}+\mathrm{Tm}_{\underline{k}}=\left(\mathrm{SFN}_{\underline{k}}-\mathrm{CFN}\right) \bmod 256 \tag{9.7}
\end{equation*}
$$

9.3.2 UE in CELL DCH state request to add a new RL or moves to another cellAdditional RL's or UE moves into a new cell

As long as the UE has one or more RL's established, the CFN will be increased (mod 256) by 1 every frame. Normally Nno special corrections to CFN are needed when moving from one cell to the another.

However every time the UE enters a new cell (target cell), $\mathrm{OFF}_{\text {target }}$ might have to be reported.
In [FDD - $\mathrm{Tm}_{\text {target }}$ is always reported. The target cell $\mathrm{OFF}_{\text {target }}$ is calculated using the following formula (9.8):

$$
\begin{equation*}
\mathrm{OFF}_{\text {target }}+\mathrm{Tm}_{\text {target }}=\left(\mathrm{SFN}_{\text {target }}-\mathrm{CFN}^{-}\right) \bmod 256 \tag{9.6자}
\end{equation*}
$$

NOTE: $\quad \mathrm{OFF}_{\text {target }}$ is calculated as the integer number of frames, $\mathrm{Tm}_{\text {target }}$ is the Fframe fractional part with the unit chips.]
ma $\left[\right.$ TDD_ \ddagger The target cell $\mathrm{OFF}_{\text {target }}$ is calculated using the following formula (9.9):

$$
\begin{equation*}
\mathrm{OFF}_{\text {target }}=\left(\mathrm{SFN}_{\text {target }}-\mathrm{CFN}\right) \bmod 256 \tag{9.7근}
\end{equation*}
$$

9.4 Synchronisation of L1 configuration changes

When a synchronised L1 configuration change shall be made, the SRNC commands the related Node B's to prepare for the change. When preparations are completed and SRNC informed, serving RNC decides appropriate change time. SRNC tells the CFN for the change by a suitable RRC message. The Node B's are informed the CFN by RNSAP and NBAP Synchronised Radio Link Reconfiguration procedures.

At indicated switch time UE and Node B's change the L1 configuration.

9.5 Examples of synchronisation counters during state transitions

The example of Figure 24 shows the corrections applied to UTRAN synchronisation counters during multiple transitions from CELL_FACH/PCH state to CELL_DCH state before and after handover, without SRNS relocation.

Figure 24: Example 1
The example of Figure 25 shows the corrections applied to UTRAN synchronisation during multiple transitions from CELL FACH/PCH state to CELL DCH state after cell reselection, without SRNC relocation.

Figure 25: Example 2

The example of Figure 26 shows the corrections applied to UTRAN synchronisation counters during multiple transitions from CELL_FACH/PCH state to CELL_DCH state before and after handover and SRNS relocation (without UE involvement).

Figure 26: Example 3

