TSG-RAN Meeting #7 Madrid, Spain, 13 – 15 March 2000

Title: Agreed CRs to TS 25.225

Source: TSG-RAN WG1

Agenda item: 6.1.3

No	. Doc#	Spec	CR	Rev	Subject	Cat	Versio	Versio
1	R1-000124	25.225	004	1	Correction of CPICH measurements and 'RX	F	3.1.1	3.2.0
2	R1-000227	25.225	005	2	Editorial modifications to 25.225 Measurements	D	3.1.1	3.2.0
3	R1-000403	25.225	006	1	Corrections to 25.225 Measurements for TDD	F	3.1.1	3.2.0

RP-000071

3GPP TSG RAN Meeting #7 Madrid, Spain, 13-15 March 2000

Document R1-00-0124

e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx

	CHANGE REQUEST Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.
	25.225 CR 004r1 Current Version: 3.1.0
GSM (AA.BB) or 3G	(AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team
For submission	eeting # here ↑ for information non-strategic use only)
Proposed chang	<u>le affects:</u> (U)SIM ME X UTRAN / Radio X Core Network
Source:	TSG RAN WG1 <u>Date:</u> 13.01.2000
Subject:	Correction of CPICH measurements and 'RX Timing Deviation' range
Work item:	
Category: (only one category shall be marked with an X) Reason for change:	Corresponds to a correction in an earlier release Addition of feature Release 96 Release 97 Functional modification of feature Release 98
Clauses affected	
Other specs affected:	Other 3G core specifications Other GSM core specifications MS test specifications BSS test specifications O&M specifications → List of CRs:
Other	
comments:	< double-click here for help and instructions on how to create a CR.

5.1.1 PCCPCH RSCP

Definition	Received Signal Code Power, the received power on PCCPCH of own or neighbour cell after despreading. The reference point for the RSCP is the antenna connector at the UE.				
Applicable for	idle mode, connected mode (intra-frequency & inter-frequency)				
Range/mapping	P-CCPCH RSCP is given with a resolution of 1 dB with the range [-115,, -25] dBm. P-CCPCH RSCP shall be reported in the unit P-CCPCH_RSCP_LEV where: P-CCPCH_RSCP_LEV00: P-CCPCH_RSCP < -115dBm P-CCPCH_RSCP_LEV01: -115dBm ≤ P-CCPCH_RSCP < -114dBm P-CCPCH_RSCP_LEV02: -114dBm ≤ P-CCPCH_RSCP < -113dBm P-CCPCH_RSCP_LEV89: -27dBm ≤ P-CCPCH_RSCP < -26dBm P-CCPCH_RSCP_LEV90: -26dBm ≤ P-CCPCH_RSCP < -25dBm P-CCPCH_RSCP_LEV91: -25dBm ≤ P-CCPCH_RSCP				

5.1.2 CPICH RSCP

Definition	Received Signal Code Power, the received power on one the CPICH code after despreading measured on the Primary CPICH. The reference point for the RSCP is the antenna connector at the UE. (This measurement is used in TDD for monitoring FDD cells while camping on a TDD cell).					
Applicable for	idle mode, connected mode (inter-frequency)					
Range/mapping	CPICH RSCP shall be rep CPICH_RSCP_LEV00:		nit CPI ≤ ≤ ≤	CPICH_RSCP < -115dBm CPICH_RSCP < -114dBm		

5.1.3 RSCP

Definition	Received Signal Code Power, the received power on the code of a specified DPCH or PDSCH after despreading. The reference point for the RSCP is the antenna connector at the UE.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	RSCP is given with a resolution of 1 dB with the range [-115,, -25] dBm. RSCP shall be reported in the unit UE_RSCP_LEV where: UE_RSCP_LEV00: RSCP < -115dBm UE_RSCP_LEV01: -115dBm \leq RSCP < -114dBm UE_RSCP_LEV02: -114dBm \leq RSCP < -113dBm UE_RSCP_LEV89: -27dBm \leq RSCP < -26dBm UE_RSCP_LEV90: -26dBm \leq RSCP < -25dBm UE_RSCP_LEV91: -25dBm \leq RSCP			

Applicable for	connected mode (intra-frequency)						
Range/mapping		SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB. SIR shall be reported in the unit SIR where: SIR 00: SIR < -11.0dB					
	$SIR_00:$ $SIR_01:$ -11.0dB \le $SIR_02:$ -10.5dB \le $SIR_02:$	SIR < -10.5dB SIR < -10.0dB					
	 SIR_61: 19.0dB ≤ SIR_62: 19.5dB ≤ SIR 63: 20.0dB ≤	SIR < 19.5dB SIR < 20.0dB SIR					

5.1.8 CPICH Ec/No

Definition	The received energy per chip divided by the power density in the band. The Ec/No is identical to RSCP/RSSI. Measurement shall be performed on the Primary CPICH. The reference point for Ec/No is the antenna connector at the UE. (This measurement is used in TDD for monitoring FDD cells while camping on a TDD cell).		
Applicable for	idle mode, connected mode (inter-frequency)		
Range/mapping	CPICH Ec/No is given with a resolution of 1 dB with the range [-24,, 0] dB. CPICH Ec/No shall be reported in the unit CPICH_Ec/No where: CPICH_Ec/No_00: CPICH_Ec/No < -24dB CPICH_Ec/No_01: -24dB ≤ CPICH_Ec/No < -23dB CPICH_Ec/No_02: -23dB ≤ CPICH_Ec/No < -22dB CPICH_Ec/No_23: -2dB ≤ CPICH_Ec/No < -1dB CPICH_Ec/No_24: -1dB ≤ CPICH_Ec/No < 0dB CPICH_Ec/No_25: 0dB ≤ CPICH_Ec/No		

5.1.9 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) before channel decoding of the data.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range [10^-4.03 1] including a separate case Physical channel BER=0. Physical channel BER shall be reported in the unit PhCH_BER_dB, where: PhCH_BER_dB_00: BER = 0 PhCH_BER_dB_01: -∞ < Log10(Physical channel BER) < -4.030 PhCH_BER_dB_02: -4.030 ≤ Log10(Physical channel BER) < -3.965 PhCH_BER_dB_03: -3.965 ≤ Log10(Physical channel BER) < -3.900 PhCH_BER_dB_61: -0.195 ≤ Log10(Physical channel BER) < -0.130 PhCH_BER_dB_62: -0.130 ≤ Log10(Physical channel BER) < -0.065 PhCH_BER_dB_63: -0.065 ≤ Log10(Physical channel BER) ≤ 0.000			

5.1.10 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER). The BLER estimation shall be
	based on evaluating the CRC on each transport block.

5.2.7 Transmitted carrier power

Transmitted carrier power, is the total transmitted power on one DL carrier from one UTRAN access point measured in a timeslot. The reference point for the UTRAN total transmitted power measurement shall be the antenna connector.				
Transmitted carrier power shall be UTRAN_TX_POWER_000 to UTUTRAN_TX_POWER_016: UTRAN_TX_POWER_017: UTRAN_TX_POWER_018: UTRAN_TX_POWER_114:	reported in the RAN_TX_PO 0.0dBm 0.5dBm 1.0dBm 49.0dBm 49.5dBm	e unit U	TRAN_TX_POWER, where:	
	ccess point measured in a timeslot neasurement shall be the antenna coransmitted carrier power is given Transmitted carrier power shall be UTRAN_TX_POWER_000 to UTUTRAN_TX_POWER_016: UTRAN_TX_POWER_017: UTRAN_TX_POWER_018: UTRAN_TX_POWER_114: UTRAN_TX_POWER_115:	ccess point measured in a timeslot. The reference measurement shall be the antenna connector. Cransmitted carrier power is given with a resolute transmitted carrier power shall be reported in the UTRAN_TX_POWER_000 to UTRAN_TX_POUTRAN_TX_POWER_016: 0.0dBm UTRAN_TX_POWER_017: 0.5dBm UTRAN_TX_POWER_018: 1.0dBm UTRAN_TX_POWER_114: 49.0dBm UTRAN_TX_POWER_114: 49.0dBm UTRAN_TX_POWER_115: 49.5dBm	ccess point measured in a timeslot. The reference point measurement shall be the antenna connector. Cransmitted carrier power is given with a resolution of Cransmitted carrier power shall be reported in the unit UTRAN_TX_POWER_000 to UTRAN_TX_POWER_01TRAN_TX_POWER_016: 0.0dBm \lequiv UTRAN_TX_POWER_017: 0.5dBm \lequiv UTRAN_TX_POWER_018: 1.0dBm \lequiv UTRAN_TX_POWER_018: 1.0dBm \lequiv UTRAN_TX_POWER_114: 49.0dBm \lequiv UTRAN_TX_POWER_114: 49.0dBm \lequiv UTRAN_TX_POWER_115: 49.5dBm \lequiv UTRAN_TX_POWER_115: 49.5dBm \lequiv \lequiv \text{UTRAN_TX_POWER_115:} \lequiv \text{49.5dBm} \lequiv \text{49.5dBm}	

5.2.8 Transmitted code power

Definition	Transmitted Code Power, is the transmitted power on one carrier and one channelisation code in one timeslot. The reference point for the transmitted code power measurement shall be the antenna connector at the UTRAN access point cabinet.				
Range/mapping	Transmitted code power is given with a				
	Transmitted code power shall be reported				
	UTRAN_TX_CODE_POWER_000 to UTRAN_TX_POWER_009: reserved				
	UTRAN_TX_ CODE_POWER_010:	$UTRAN_TX_CODE_POWER_010: -10.0dBm \le CODE_POWER < -9.5dBr$			
	UTRAN_TX_ CODE_POWER_011:	-9.5dBm	\leq	CODE_POWER < -8.5dBm	
	UTRAN_TX_ CODE_POWER_012:	-8.5dBm	\leq	CODE_POWER < -7.5dBm	
	UTRAN_TX_ CODE_POWER_120:	45.0dBm	\leq	CODE_POWER < 45.5dBm	
	UTRAN_TX_ CODE_POWER_121:	45.5dBm	\leq	CODE_POWER < 46.0dBm	
	UTRAN_TX_ CODE_POWER_122:	46.0dBm	\leq	CODE_POWER < 46.5dBm	

5.2.9 RX Timing Deviation

Definition	'RX Timing Deviation' is the time difference TRXdev = TTS - TRXpath in chips, with		
	•	ime of the reception in the Node B of the first significant uplink path to be used n the detection process	
		ime of the beginning of the respective slot according to the Node B internal iming	
(1 <u>1</u> 2 bit). RX Timing Deviation cell shall be reported in the unit RX_TIME.		7: $(N* 0.25 - 256)$ chips \leq RX Timing Deviation $<$ $((N+1)* 0.25 - 256)$ chips	

NOTE: This measurement can be used for timing advance calculation or location services.

Document R1-00-0227 3GPP TSG RAN Meeting #7 e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx Madrid, Spain, 13-15 March 2000 Please see embedded help file at the bottom of this CHANGE REQUEST page for instructions on how to fill in this form correctly. Current Version: 3.1.1 25.225 CR 005rev2 GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team For submission to: RAN#7 for approval strategic (for SMG list expected approval meeting # here use only) for information non-strategic Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc ME X UTRAN / Radio X Proposed change affects: (U)SIM Core Network (at least one should be marked with an X) Source: TSG RAN WG1 Date: Feb. 23, 2000 Editorial modifications to 25.225 Measurements for TDD (CR005 rev2) Subject: Work item: Category: Correction Release: Phase 2 Corresponds to a correction in an earlier release Release 96 (only one category B Addition of feature Release 97 shall be marked Functional modification of feature С Release 98 with an X) Editorial modification Release 99 Release 00 Reason for The following modifications are included in this CR: Names of the mapped measurement levels are aligned with FDD 25.215 change: Resolution values for power measurements were changed from dBm to dB as already proposed in CR 003 rev1 (R1-99L43). Clauses affected: Chapter 5 Other specs Other 3G core specifications → List of CRs: Other GSM core affected: → List of CRs: specifications MS test specifications → List of CRs: BSS test specifications → List of CRs: **O&M** specifications → List of CRs:

Other comments:

CR history: CR005 rev1: R1-00-0181, CR005: R1-00-143

help.doc

<----- double-click here for help and instructions on how to create a CR.

4.4 Measurements for DCA

DCA is used to optimise the resource allocation by means of a channel quality criteria or traffic parameters. The DCA measurements are configured by the UTRAN. The UE reports the measurements to the UTRAN.

For DCA no measurements are performed in idle mode in the serving TDD cell.

When connecting with the initial access the UE immediately starts measuring the ISCP of time slots which are communicated on the BCH. The measurements and the preprocessing are done while the UTRAN assigns an UL channel for the UE for signalling and measurement reporting.

In connected mode the UE performs measurements according to a measurement control message from the UTRAN.

4.5 Measurements for timing advance

To update timing advance of a moving UE the UTRAN measures 'Received Timing Deviation', i.e. the time difference of the received UL transmission (PRACH, DPCH, PUSCH) in relation to its timeslot structure that means in relation to the ideal case where an UL transmission would have zero propagation delay. The measurements are reported to higher layers, where timing advance values are calculated and signalled to the UE.

5 Measurement abilities for UTRA TDD

In this chapter the physical layer measurements reported to higher layers. (this may also include UE internal measurements not reported over the air-interface) are defined.

5.1 UE measurement abilities

- NOTE 1: Measurements for TDD which are specified on the Primary CCPCH (P-CCPCH) are carried out on the P-CCPCH or other physical channels with beacon function, see [6].
- NOTE 2: For those channels providing beacon function [6], the received power measurements are based on the sum of the received powers for midambles $m^{(1)}$ and $m^{(2)}$.
- NOTE 3: The UTRAN has to take into account the UE capabilities when specifying the timeslots to be measured in the measurement control message.
- NOTE 4: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.
- NOTE 5: The line 'applicable for' indicates whether the measurement is applicable for inter-frequency and/or intra-frequency and furthermore for idle and/or connected mode.

5.1.1 P-CCPCH RSCP

Definition	Received Signal Code Power, the received power on P-CCPCH of own or neighbour cell after			
	despreading. The reference point for the RSCP is the antenna connector at the UE.			
Applicable for	idle mode, connected mode (intra-frequency & inter-frequency)			
Range/mapping	P-CCPCH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.			
	P-CCPCH RSCP shall be reported in the unit P-CCPCH_RSCP_LEV where:			
	P-CCPCH_RSCP_LEV_00: P-CCPCH_RSCP < -115dBm			
	P-CCPCH_RSCP_LEV_01: -115dBm ≤ P-CCPCH_RSCP < −114dBm			
	P-CCPCH_RSCP_LEV_02: -114dBm ≤ P-CCPCH_RSCP < −113dBm			
	P -CCPCH_RSCP_LEV_89: -27dBm \leq P -CCPCH_RSCP $<$ $-26d$ Bm			
	P-CCPCH_RSCP_LEV_90: -26dBm ≤ P-CCPCH_RSCP < −25dBm			
	P-CCPCH_RSCP_LEV_91: -25dBm ≤ P-CCPCH_RSCP			

5.1.2 CPICH RSCP

D	efinition	Received Signal Code Power, the received power on the CPICH code after despreading. The reference point for the RSCP is the antenna connector at the UE.			
Α	pplicable for	idle mode, connected mode (inter-frequency)			
R	ange/mapping	CPICH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.			
		CPICH RSCP shall be repo	rted in the unit	CPICH	I_RSCP_LEV where:
		CPICH_RSCP_LEV_00:			CPICH_RSCP < -115dBm
		CPICH_RSCP_LEV_01:	-115dBm	\leq	CPICH_RSCP < -114dBm
		CPICH_RSCP_LEV_02:	-114dBm	≤	CPICH_RSCP < -113dBm
.					
		CPICH_RSCP_LEV_89:	-27dBm	\leq	CPICH_RSCP < -26dBm
		CPICH_RSCP_LEV_90:	-26dBm	\leq	CPICH_RSCP < -25dBm
		CPICH_RSCP_LEV_91:	-25dBm	≤	CPICH_RSCP

5.1.3 RSCP

Definition	Received Signal Code Power, the received power on the code of a specified DPCH or PDSCH after despreading. The reference point for the RSCP is the antenna connector at the UE.		
Applicable for	connected mode (intra-frequency	•	
Range/mapping	RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.		
	RSCP shall be reported in the	unit l	JE_RSCP_LEV where:
	UE_RSCP_LEV00:		RSCP < -115dBm
	UE_RSCP_LEV01: -115dBm	\leq	RSCP < -114dBm
	UE_RSCP_LEV02: -114dBm	\leq	RSCP < -113dBm
	UE_RSCP_LEV89: -27dBm	\leq	RSCP < -26dBm
	UE_RSCP_LEV90: -26dBm	\leq	RSCP < -25dBm
	UE RSCP LEV91: -25dBm	≤	RSCP

5.1.4 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot			
	after despreading. Only the non-orthogonal part of the interference is included in the			
	measurement. The reference point for the ISCP is the antenna connector at the UE.			
Applicable for	connected mode (intra-frequer	connected mode (intra-frequency)		
Range/mapping	Timeslot ISCP is given with a	resolution of 1	1 dBm with the range [-115,, -25] dBm.	
	Timeslot ISCP shall be reported	Timeslot ISCP shall be reported in the unit UE_TS_ISCP_LEV where:		
	UE_TS_ISCP_LEV_00:		Timeslot_ISCP < -115dBm	
	UE_TS_ISCP_LEV_01: -1	$15dBm \leq$	≤ Timeslot_ISCP < −114dBm	
	UE_TS_ISCP_LEV_02: -1	14dBm ≤	≤ Timeslot_ISCP < −113dBm	
	-			
	UE_TS_ISCP_LEV_89: -2	?7dBm ≤	≤ Timeslot_ISCP < −26dBm	
	UE_TS_ISCP_LEV_90: -2	26dBm ≤	≤ Timeslot_ISCP < −25dBm	
	UE_TS_ISCP_LEV_91: -2	25dBm ≤	≤ Timeslot_ISCP	

5.1.5 UTRA carrier RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a UTRAN DL carrier. The				
	reference point for the RSSI is the antenna connector at the	UE.			
Applicable for	idle mode, connected mode (intra- & inter-frequency)				
Range/mapping	UTRA carrier RSSI is given with a resolution of 1 dBm	with the range [-94,, -32]			
	dBm.				
	UTRA carrier RSSI shall be reported in the unit UTRA_carrier_RSSI_LEV where:				
		RA_carrier_RSSI < -94dBm			
	UTRA_carrier_RSSI_LEV_01: -94dBm ≤ UT	RA_carrier_RSSI < -93dBm			
	UTRA_carrier_RSSI_LEV_02: -93dBm ≤ UT	RA_carrier_RSSI < -92dBm			
	UTRA_carrier_RSSI_LEV_61: -34dBm ≤ UT	RA_carrier_RSSI < -33dBm			
	UTRA_carrier_RSSI_LEV_62: -33dBm ≤ UT	RA_carrier_RSSI < -32dBm			
	UTRA_carrier_RSSI_LEV_63: -32dBm ≤ UT	RA_carrier_RSSI			

5.1.6 GSM carrier RSSI

	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a GSM BCCH carrier. The reference point for the RSSI is the antenna connector at the UE.	
	idle mode, connected mode (inter-frequency)	
Range/mapping	According to the definition of RXLEV in GSM 05.08.	

5.1.7 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of a DPCH or PDSCH divided by ISCP of the			
	same timeslot. The reference point for the SIR is the antenna connector of the UE.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB.			
	SIR shall be reported in the unit <u>UE_</u> SIR where:			
	<u>UE_</u> SIR_00: SIR < -11.0dB			
	$\underline{UE}_{SIR} = 01: -11.0 dB \leq SIR < -10.5 dB$			
	<u>UE_</u> SIR_02: -10.5dB ≤ SIR < -10.0dB			
	$\underline{UE}_{SIR} = SIR_{SIR} = SIR_{$			
	<u>UE_</u> SIR_62: 19.5dB ≤ SIR < 20.0dB			
	UE_SIR_63: 20.0dB ≤ SIR			

5.1.8 CPICH Ec/No

Definition	The received energy per chip divided by the power density in the band. The Ec/No is identical to RSCP/RSSI. The reference point for Ec/No is the antenna connector at the UE.			
Applicable for	idle mode, connected mode (inter-frequency)			
Range/mapping	CPICH Ec/No is given with a resolution of 1 dB with the range [-24,, 0] dB.			
	CPICH Ec/No shall be reported in the unit CPICH_Ec/No where:			
	CPICH_Ec/No_00: CPICH_Ec/No < -24dB			
	CPICH_Ec/No_01: -24dB ≤ CPICH_Ec/No < -23dB			
	CPICH_Ec/No_02: -23dB ≤ CPICH_Ec/No < -22dB			
	CPICH_Ec/No_23: -2dB ≤ CPICH_Ec/No < -1dB			
	CPICH_Ec/No_24: -1dB ≤ CPICH_Ec/No < 0dB			
	CPICH_Ec/No_25: 0dB ≤ CPICH_ Ec/No			

5.1.9 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) before channel			
	decoding of the data.			
Applicable for	connected mode (intra-frequency)			
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range			
	[10^-4.03 1] including a separate case Physical channel BER=0.			
	Physical channel BER shall be reported in the unit PhCH_BER_LOGdB, where:			
	PhCH_BER_LOGdB_00: BER = 0			
	PhCH_BER_LOGdB_01: -∞ < Log10(Physical channel BER) < -4.030			
	PhCH_BER_LOGdB_02: -4.030 ≤ Log10(Physical channel BER) < -3.965			
	PhCH_BER_LOGdB_03: -3.965 ≤ Log10(Physical channel BER) < -3.900			
	<u></u>			
	PhCH_BER_LOGdB_61: -0.195 ≤ Log10(Physical channel BER) < -0.130			
	PhCH_BER_LOGdB_62: -0.130 ≤ Log10(Physical channel BER) < -0.065			
	PhCH_BER_LOGdB_63: -0.065 ≤ Log10(Physical channel BER) ≤ 0.000			

5.1.10 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER). The BLER estimation shall be based			
	on evaluating the CRC on	on evaluating the CRC on each transport block.		
Applicable for	connected mode (intra-free	connected mode (intra-frequency)		
Range/mapping	Transport channel BLER is	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range		
	[10^-4.03 1] including a	separate cas	e Transport channel BLER=0.	
	Transport channel BLER s	hall be report	ted in the unit TCH_ BLER_ <u>LOGdB</u> , where:	
	TCH_BLER_LOGdB_00:	BLER = 0		
	TCH_BLER_LOGdB_01:	-∞	< Log10(Transport channel BLER) <	-4.030
	TCH_BLER_LOGdB_02:	-4.030	≤ Log10(Transport channel BLER) <	-3.965
	TCH_BLER_LOGdB_03:	-3.965	≤ Log10(Transport channel BLER) <	-3.900
	TCH_BLER_LOGdB_61:	-0.195	≤ Log10(Transport channel BLER) <	-0.130
	TCH_BLER_LOGdB_62:	-0.130	≤ Log10(Transport channel BLER) <	-0.065
	TCH_BLER_LOGdB_63:	-0.065	≤ Log10(Transport channel BLER) ≤	0.000

5.1.11 UE transmitted power

Definition	The total UE transmitted power on one carrier measured in a timeslot. The reference point for the		
	UE transmitted power shall be the UE antenna connector.		
Applicable for	connected mode (intra-frequency).		
Range/mapping	UE transmitted power is given with a resolution of 1dBm with the range [-50,, 33] dBm. UE transmitted power shall be reported in the unit UE_TX_POWER, where:		
	UE_TX_POWER_000 to UE_TX_POWER_020: reserved UE_TX_POWER_021: -50dBm ≤ UE_transmitted_power < -49dBm UE_TX_POWER_022: -49dBm ≤ UE_transmitted_power < -48dBm		
	UE_TX_POWER_023: -48dBm ≤ UE_transmitted_power < -47dBm UE TX POWER 102: 31dBm ≤ UE transmitted power < 32dBm		
	UE_TX_POWER_103: 32dBm \leq UE_transmitted_power \leq 33dBm UE_TX_POWER_104: 33dBm \leq UE_transmitted_power \leq 34dBm		

5.1.12 SFN-SFN observed time difference

Definition	SFN-SFN observed time difference is the time difference of the reception times of frames from				
	two cells (serving and target) measured in the UE and expressed in chips. It is distinguished in				
	two types: Type 2 applies if the serving and the target cell have the same frame timing and SFN				
	numbering. Type 1 applies in all other cases.				
	Type 1:				
	SFN-SFN observed time difference = OFF \times 38400+ T_m in chips, where:				
	T _m = T _{RxSFNk} - T _{RxSFNi} , given in chip units with the range [0, 1,, 38399] chips				
	T _{RxSFNi} : time of start of the received frame SFN _i of the serving TDD cell i.				
	T _{RXSFNk} : time of start of the received frame SFN _k of the target UTRA cell k after the time				
	instant T _{RXSFNi} in the UE. If the next frame of the target UTRA cell is received				
	exactly at T _{RXSFNi} then T _{RXSFNk} = T _{RXSFNi} (which leads to T _m =0).				
	OFF=(SFN _k - SFN _i) mod 256, given in number of frames with the range [0, 1,, 255] frames				
	SFNi: system frame number for downlink frame from serving TDD cell i in the UE at the				
	time T _{RxSFNi} .				
	SFNk: system frame number for downlink frame from target UTRA cell k received in the				
	UE at the time T _{RXSFNk} .(for FDD: the P-CCPCH frame)				
	of at the time Transpire. (for 1 bb. the 1 -oot of thathe)				
	Type 2:				
	SFN-SFN observed time difference = T_{RXTSi} , in chips, where				
	T _{RXTSi} : time of start of a timeslot received of the serving TDD cell i.				
	T _{RXTSk} : time of start of a timeslot received from the target UTRA cell k that is closest in				
	time to the start of the timeslot of the serving TDD cell i.				
Applicable for	idle mode, connected mode (intra-frequency)				
Range/mapping	Type 1:				
	SFN-SFN observed time difference is given with a resolution of 1 chip with the range				
	[0; 9830400) chips (24 bits).				
	SFN-SFN observed time difference shall be reported in the unit T1_SFN-SFN_TIME, where				
	T1_SFN-SFN_TIME_N:				
	N* 1 chip ≤ SFN-SFN observed time difference < (N+1)* 1 chip				
	With N= 0, 1, 2,, 9830399				
	Type 2:				
	SFN-SFN observed time difference is given with a resolution of 0.25 chip with the range				
	(-1280; 1280] chips (14 bits).				
	SFN-SFN observed time difference shall be reported in the unit T2_SFN-SFN_TIME, where				
	T2_SFN-SFN_TIME_N:				
	N^* 0.25 chip –1280 chips < SFN-SFN observed time difference \leq (N+1)* 0.25 chip –1280 chips				
	With N= 0, 1, 2,, 10239				
	Will 14- 0, 1, 2,, 10200				

5.1.13 Observed time difference to GSM cell

Definition	Observed time difference to GSM cell is the time difference T _m in ms, where						
	T _m = T _{RXGSMk} - T _{RXSFN0i}						
	T _{RXSFN0i} : time of start of the received frame SFN=0 of the serving TDD cell i						
	T _{RxGSMk} .: time of start of the received 51-GSM-multiframe of the considered target GSM						
	beacon frequency k which is following next after the start of frame SFN=0 of the						
	serving TDD cell.						
Applicable for	Idle mode, connected mode (inter-frequency)						
Range/mapping	Observed time difference to GSM cell is given with a resolution of 3060ms/(13*4096) (12 bit) with						
	the range [0, 3060) ms.						
	Observed time difference to GSM cell shall be reported in the unit GSM_TIME, where						
	GSM_TIME_N:						
	N* 3060ms/(13*4096) ≤ Observed time difference to GSM cell < (N+1)* 3060ms/(13*4096)						
	With N= 0, 1, 2,, 4095						

5.2 UTRAN measurement abilities

NOTE 1: If the UTRAN supports multiple frequency bands then the measurements apply for each frequency band individually.

NOTE 2: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.

5.2.1 RSCP

Definition	Received Signal Code Power, the received power on one DPCH, PRACH or PUSCH code after				
	despreading. The reference point for the RSCP shall be the antenna connector.				
Range/mapping	RSCP is given with a resolution of 0.5 dBm with the range [-120,, -80] dBm.				
	RSCP shall be reported in the unit UTRAN_RSCP_LEV where:				
	UTRAN_RSCP_LEV_00: RSCP < -120.0dBm				
	$UTRAN_RSCP_LEV_01$: -120.0dBm \leq RSCP < -119.5dBm				
	$\frac{\text{UTRAN}_{RSCP}}{\text{LEV}_{02}}$: -119.5dBm \leq RSCP < -119.0dBm				
	$\frac{UTRAN_{R}}{RSCP_{LEV_{79}}}$: -81.0dBm \leq RSCP < -80.5dBm				
	$UTRAN_RSCP_LEV_80$: $-80.5dBm \le RSCP < -80.0dBm$				
	UTRAN_RSCP_LEV_81: -80.0dBm ≤ RSCP				

5.2.2 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot					
	after despreading. Only the non-orthogonal part of the interference is included in the					
	measurement. The reference p	point for the ISC	CP shall be	the antenna connector.		
Range/mapping	Timeslot ISCP is given with a r	esolution of 0.5	5 dB m with	the range [-120,, -80] dBm.		
	Timeslot ISCP shall be reporte	d in the unit U	FRAN_TS_	ISCP_LEV where:		
	UTRAN_TS_ISCP_LEV_00:			Timeslot_ISCP < -120.0dBm		
	UTRAN_TS_ISCP_LEV_01:	-120.0dBm	\leq	Timeslot_ISCP < -119.5dBm		
	UTRAN_TS_ISCP_LEV_02:	-119.5dBm	\leq	Timeslot_ISCP < -119.0dBm		
	UTRAN_TS_ISCP_LEV_79:	-81.0dBm	\leq	Timeslot_ISCP < -80.5dBm		
	UTRAN_TS_ISCP_LEV_80:	-80.5dBm	≤	Timeslot_ISCP < -80.0dBm		
	UTRAN_TS_ISCP_LEV_81:	-80.0dBm	≤	Timeslot_ISCP		

5.2.3 RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the UTRAN UL carrier					
	channel bandwidth in a specified timeslot. The reference point for the RSSI shall be the antenna					
	connector.					
Range/mapping	RSSI is given with a resolution of 0.5dBm with the range [-105,, -74] dBm.					
	RSSI shall be reported in the unit RSSI_LEV, where:					
	RSSI_LEV_00: RSSI < -105.0dBm					
	$RSSI_LEV_01$: $-105.0dBm \le RSSI < -104.5dBm$					
	$RSSI_LEV_02: -104.5dBm \le RSSI < -104.0dBm$					
	$ RSSI_LEV_61: -75.0dBm \le RSSI < -74.5dBm$					
	$RSSI_LEV_62:$ $-74.5dBm \le RSSI < -74.0dBm$					
	RSSI_LEV_63: -74.0dBm ≤ RSSI					

5.2.4 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of the DPCH or PUSCH divided by ISCP of the same timeslot. The reference point for the SIR shall be the antenna connector.
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB. SIR shall be reported in the unit <u>UTRAN_SIR</u> where:
	UTRAN_SIR_00: SIR < -11.0dB UTRAN_SIR_01: -11.0dB \leq SIR < -10.5dB UTRAN_SIR_02: -10.5dB \leq SIR < -10.0dB
	<u>UTRAN_</u> SIR_61: 19.0dB ≤ SIR < 19.5dB <u>UTRAN_</u> SIR_62: 19.5dB ≤ SIR < 20.0dB <u>UTRAN_</u> SIR_63: 20.0dB ≤ SIR

5.2.5 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) of a DPCH or				
	PUSCH before channel decoding of the data.				
Range/mapping Physical channel BER is given with a logarithmic resolution of 0.065 with the range [10^-4.03 1] including a separate case Physical channel BER=0.					
	Physical channel BER shall be reported in the unit PhCH_BER_LOGdB, where:				
	PhCH_BER_LOGdB_00: BER = 0				
	PhCH_BER_LOGdB_01: -∞ < Log10(Physical channel BER) < -4.030				
	PhCH_BER_LOGdB_02: -4.030 ≤ Log10(Physical channel BER) < -3.965				
	PhCH_BER_LOGdB_03: -3.965 ≤ Log10(Physical channel BER) < -3.900				
	 PhCH_BER_LOGdB_61: -0.195 ≤ Log10(Physical channel BER) < -0.130				
	PhCH_BER_LOGdB_62: -0.130 ≤ Log10(Physical channel BER) < -0.065				
	PhCH_BER_LOGdB_63: -0.065 < Log10(Physical channel BER) < 0.000				

5.2.6 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER) of a DCH or USCH. The BLER				
	estimation shall be based on evaluating the CRC on each transport block.				
Range/mapping	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range				
	[10^-4.03 1] including a	separate case	Transport channel BLER=0.		
	Transport channel BLER s	hall be reported	d in the unit TCH_ BLER_ <u>LOG</u> dB, where:		
	TCH_BLER_LOGdB_00:	TCH_BLER_LOGdB_00: BLER = 0			
	TCH_BLER_LOGdB_01:	-∞	< Log10(Transport channel BLER) <	-4.030	
	TCH_BLER_LOGdB_02:	-4.030	≤ Log10(Transport channel BLER) <	-3.965	
	TCH_BLER_LOGdB_03:	-3.965	≤ Log10(Transport channel BLER) <	-3.900	
	TCH_BLER_LOGdB_61:	-0.195	≤ Log10(Transport channel BLER) <	-0.130	
	TCH_BLER_LOGdB_62:	-0.130	≤ Log10(Transport channel BLER) <	-0.065	
	TCH_BLER_LOGdB_63:	-0.065	≤ Log10(Transport channel BLER) ≤	0.000	

5.2.7 Transmitted carrier power

Definition	Transmitted carrier power, is the total transmitted power on one DL carrier from one UTRAN access point measured in a timeslot. The reference point for the UTRAN total transmitted power measurement shall be the antenna connector.		
Range/mapping	Transmitted carrier power is given with a resolution of 0.5dBm with the range [0,, 50] dBm. Transmitted carrier power shall be reported in the unit UTRAN_TX_POWER, where: UTRAN_TX_POWER_000 to UTRAN_TX_POWER_015: reserved UTRAN_TX_POWER_016: 0.0dBm Transmitted carrier power < 0.5dBm UTRAN_TX_POWER_017: 0.5dBm Transmitted carrier power < 1.0dBm UTRAN_TX_POWER_018: 1.0dBm Transmitted carrier power < 1.5dBm		
	UTRAN_TX_POWER_114: 49.0dBm ≤ Transmitted carrier power < 49.5dBm UTRAN_TX_POWER_115: 49.5dBm ≤ Transmitted carrier power < 50.0dBm UTRAN_TX_POWER_116: 50.0dBm ≤ Transmitted carrier power < 50.5dBm		

5.2.8 Transmitted code power

Definition	Transmitted Code Power, is the transmitted power on one carrier and one channelisation code in				
	one timeslot. The reference point for the transmitted code power measurement shall be the				
	antenna connector at the UTRAN access point cabinet.				
Range/mapping	Transmitted code power is given with a resolution of 0.5dBm with the range [-10,, 46] dBm.				
	Transmitted code power shall be reported in the unit UTRAN_TX_CODE_POWER, where:				
	UTRAN_TX_CODE_POWER_000 to UTRAN_TX_POWER_009: reserved				
	UTRAN_TX_ CODE_POWER_010: -10.0dBm ≤ CODE_POWER < -9.5dBm				
	UTRAN_TX_ CODE_POWER_011: -9.5dBm ≤ CODE_POWER < -8.5dBm				
	UTRAN_TX_CODE_POWER_012: -8.5dBm ≤ CODE_POWER < -7.5dBm				
	UTRAN_TX_CODE_POWER_120: 45.0dBm ≤ CODE_POWER < 45.5dBm				
	UTRAN_TX_CODE_POWER_121: 45.5dBm < CODE_POWER < 46.0dBm				
	UTRAN TX CODE POWER 122: 46.0dBm ≤ CODE POWER < 46.5dBm				

5.2.9 RX Timing Deviation

B 6 14	TOTAL DESIGNATION OF THE TOTAL OF THE STATE				
Definition	'RX Timing Deviation' is the time difference TRXdev = TTS – TRXpath in chips, with				
	TRXpath: time of the reception in the Node B of the first significant uplink path to be used				
	in the detection process				
	TTS: time of the beginning of the respective slot according to the Node B internal				
	timing				
Range/mapping	RX Timing Deviation is given with a resolution of 0.25 chip with the range [0; 1024) chips (12 bit).				
	RX Timing Deviation cell shall be reported in the unit RX_TIME_DEV, where				
	RX_TIME_DEV: N* 0.25 chips ≤ RX Timing Deviation < (N+1)* 0.25 chips				
	With N= 0. 1. 2 4095				

NOTE: This measurement can be used for timing advance calculation or location services.

3GPP TSG RAN Meeting #7 R1-00-0403 Document e.g. for 3GPP use the format TP-99xxx or for SMG, use the format P-99-xxx Madrid, Spain, 13-15 March 2000 Please see embedded help file at the bottom of this CHANGE REQUEST page for instructions on how to fill in this form correctly. Current Version: 3.1.1 25.225 CR 006rev1 GSM (AA.BB) or 3G (AA.BBB) specification number ↑ ↑ CR number as allocated by MCC support team For submission to: RAN#7 for approval strategic (for SMG list expected approval meeting # here use only) for information non-strategic Form: CR cover sheet, version 2 for 3GPP and SMG The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc Proposed change affects: (U)SIM ME X UTRAN / Radio X Core Network (at least one should be marked with an X) Source: TSG RAN WG1 Date: March 2, 2000 Corrections to 25.225 Measurements for TDD (CR006 rev1) Subject: Work item: Category: F Correction Release: Phase 2 Corresponds to a correction in an earlier release Release 96 (only one category В Addition of feature Release 97 shall be marked Functional modification of feature C Release 98

Reason for change:

with an X)

The following modifications are included in this CR:

Editorial modification

Removal of RSCP measurement in the UE (this measurement was included for SIR calculation, however it is not reported and therefore it is deleted as it is already decided for FDD on the RAN RRM ad hoc, compare also R1-00-0348).

Release 99 Release 00

- SIR definition (for UE and UTRAN) is now aligned with FDD (multiplication with SF)
- In the RSCP and ISCP definitions the term 'after despreading' is omitted to avoid misunderstandings between measurement point and reference point of the measurements (this is in line with FDD).
- The transmitted carrier power measured by the UTRAN is now defined relatively to the maximum transmission power for the cell (this was requested by RAN WG4 for FDD and is already included in 25.215 and 25.302 and is here applied for TDD).
- The SFN-SFN observed time difference definition type 1 of TDD is now aligned with the same definition in FDD (compare R1-00-0046, CR029 to 25.215).
- For 'Observed time difference to GSM cell' the beginning of the GSM 51-multiframe was clarified (analogous to R1-00-0042, CR 025 to 25.215).

Revision 1 of the CR adds the following corrections:

- The Physical Channel BER measurement in the UE is removed due to the discussions on the RAN RRM ad hoc (aligned with FDD proposal R1-00-0217/R1-00-0407).
- Additional to the Physical Channel BER measurement in the UTRAN a Transport Channel BER measurement in the UTRAN is introduced reducing complexity when considering BER measurement on the data part (in line with FDD proposal R1-00-0215 and LS R1-00-0401). For both BER measurements a revised mapping is applied (compare FDD proposal R1-00-0274).
- Corrections of 5.1.2 CPICH RSCP and 5.1.8 CPICH Ec/No to clarify these measurements for the case of TX diversity (analogous to FDD CR R1-00-0309).
- The range and mapping of 5.2.3 RSSI in the UTRAN is modified according to the decisions in the RAN RRM ad hoc (compare RPA-00-0040 and R1-00-0435 for FDD).
- For all places where ISCP is explained the phrase 'only the non-orthogonal part of the interference is considered' is replaced by 'the interference which can't be eliminated by the receiver' to take into account the different receiver technologies lead to different ISCP values.

Clauses affected:		Chapter 5		
Other specs	Othe	r 3G core specifications	→ List of CRs:	
affected:	Othe	r GSM core pecifications	→ List of CRs:	
	MS te	est specifications	→ List of CRs:	
	BSS	test specifications	→ List of CRs:	
	O&M	specifications	→ List of CRs:	

Other comments:

History: CR006 to 25.225 (R1-00-0318)

Handling of modifications of this CR if it affects sections modified by previous CRs:

- CR005r2 (R1-00-0227): Editorial modifications of 5.1.9 Physical Channel BER measured in the UE are obsolete since this CR here removes this measurement.
- CR005r2 (R1-00-0227): Editorial modifications of 5.2.5 Physical Channel BER measured in the UTRAN are overwritten by this CR here since this section is divided into two sections.
- CR005r2 (R1-00-0227): Editorial modifications of 5.2.3 RSSI measured in the UTRAN are overwritten by this CR here since the range and mapping was modified in this section.
- CR004r1 (R1-00-0124): Corrections of the definitions of 5.1.2 CPICH RSCP and 5.1.8 CPICH Ec/No and corrections in this CR here for the two subsections apply both together.

4.4 Measurements for DCA

DCA is used to optimise the resource allocation by means of a channel quality criteria or traffic parameters. The DCA measurements are configured by the UTRAN. The UE reports the measurements to the UTRAN.

For DCA no measurements are performed in idle mode in the serving TDD cell.

When connecting with the initial access the UE immediately starts measuring the ISCP of time slots which are communicated on the BCH. The measurements and the preprocessing are done while the UTRAN assigns an UL channel for the UE for signalling and measurement reporting.

In connected mode the UE performs measurements according to a measurement control message from the UTRAN.

4.5 Measurements for timing advance

To update timing advance of a moving UE the UTRAN measures 'Received Timing Deviation', i.e. the time difference of the received UL transmission (PRACH, DPCH, PUSCH) in relation to its timeslot structure that means in relation to the ideal case where an UL transmission would have zero propagation delay. The measurements are reported to higher layers, where timing advance values are calculated and signalled to the UE.

5 Measurement abilities for UTRA TDD

In this chapter the physical layer measurements reported to higher layers. (this may also include UE internal measurements not reported over the air-interface) are defined.

5.1 UE measurement abilities

- NOTE 1: Measurements for TDD which are specified on the Primary CCPCH (P-CCPCH) are carried out on the P-CCPCH or other physical channels with beacon function, see [6].
- NOTE 2: For those channels providing beacon function [6], the received power measurements are based on the sum of the received powers for midambles m⁽¹⁾ and m⁽²⁾.
- NOTE 3: The UTRAN has to take into account the UE capabilities when specifying the timeslots to be measured in the measurement control message.
- NOTE 4: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.
- NOTE 5: The line 'applicable for' indicates whether the measurement is applicable for inter-frequency and/or intra-frequency and furthermore for idle and/or connected mode.

5.1.1 P-CCPCH RSCP

Definition	Received Signal Code Power, the received power on P-CCPCH of own or neighbour cell-after despreading. The reference point for the RSCP is the antenna connector at the UE.		
Applicable for	idle mode, connected mode (intra-frequency & inter-frequency)		
Range/mapping	P-CCPCH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm.		
	P-CCPCH RSCP shall be reported in the unit P-CCPCH_RSCP_LEV where:		
	P-CCPCH_RSCP_LEV00: P-CCPCH_RSCP < -115dBm		
	P-CCPCH_RSCP_LEV01: -115dBm ≤ P-CCPCH_RSCP < −114dBm		
	P-CCPCH_RSCP_LEV02: -114dBm \leq P-CCPCH_RSCP $<$ -113dBm		
	P-CCPCH_RSCP_LEV89: -27dBm ≤ P-CCPCH_RSCP < -26dBm		
	P-CCPCH_RSCP_LEV90: $-26dBm \le P-CCPCH_RSCP < -25dBm$		
	P-CCPCH_RSCP_LEV91: -25dBm ≤ P-CCPCH_RSCP		

5.1.2 CPICH RSCP

Definition	Received Signal Code Power, the received power on the CPICH code after despreading. The reference point for the RSCP is the antenna connector at the UE. If Tx diversity is applied on the Primary CPICH the received code power from each antenna shall be separately measured and summed together in [W] to a total received code power on the Primary CPICH.
Applicable for	idle mode, connected mode (inter-frequency)
Range/mapping	CPICH RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm. CPICH RSCP shall be reported in the unit CPICH_RSCP_LEV where: CPICH_RSCP_LEV00: CPICH_RSCP < -115dBm CPICH_RSCP_LEV01: -115dBm \leq CPICH_RSCP < -114dBm CPICH_RSCP_LEV02: -114dBm \leq CPICH_RSCP < -113dBm CPICH_RSCP_LEV89: -27dBm \leq CPICH_RSCP < -26dBm CPICH_RSCP_LEV90: -26dBm \leq CPICH_RSCP < -25dBm CPICH_RSCP_LEV91: -25dBm \leq CPICH_RSCP

5.1.3 RSCP

Definition	Received Signal Code Power, the received power on the code of a specified DPCH or PDSCH after despreading. The reference point for the RSCP is the antenna connector at the UE.
Applicable for	connected mode (intra-frequency)
Range/mapping	RSCP is given with a resolution of 1 dBm with the range [-115,, -25] dBm. RSCP shall be reported in the unit UE_RSCP_LEV where: UE_RSCP_LEV00: RSCP < -115dBm UE_RSCP_LEV01: -115dBm
	UE_RSCP_LEV89: -27dBm ≤ RSCP < -26dBm UE_RSCP_LEV90: -26dBm ≤ RSCP < -25dBm UE_RSCP_LEV91: -25dBm ≤ RSCP

5.1.4 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot			
	after despreading. Only thise non-orthogonal part of the interference that is not eliminated by the			
	receiver included shall be	included in the	e meas	urement. The reference point for the ISCP is the
	antenna connector at the	UE.		
Applicable for	Connected mode (intra-fr	equency)		
Range/mapping	Timeslot ISCP is given wi	ith a resolution	of 1 dE	Bm with the range [-115,, -25] dBm.
	Timeslot ISCP shall be re	ported in the u	nit UE_	_TS_ISCP_LEV where:
	UE_TS_ISCP_LEV00:			Timeslot_ISCP < -115dBm
	UE_TS_ISCP_LEV01:	-115dBm	\leq	Timeslot_ISCP < -114dBm
	UE_TS_ISCP_LEV02:	-114dBm	\leq	Timeslot_ISCP < -113dBm
	UE_TS_ISCP_LEV89:	-27dBm	\leq	Timeslot_ISCP < -26dBm
	UE_TS_ISCP_LEV90:	-26dBm	\leq	Timeslot_ISCP < -25dBm
	UE_TS_ISCP_LEV91:	-25dBm	\leq	Timeslot_ISCP

5.1.5 UTRA carrier RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a UTRAN DL carrier. The reference point for the RSSI is the antenna connector at the UE.		
Applicable for	idle mode, connected mode (intra-	& inter-frequency)	
Range/mapping	UTRA carrier RSSI is given with dBm.	n a resolution of 1	dBm with the range [-94,, -32] TRA_carrier_RSSI_LEV where: UTRA_carrier_RSSI < -94dBm UTRA_carrier_RSSI < -93dBm UTRA_carrier_RSSI < -92dBm UTRA_carrier_RSSI < -33dBm UTRA_carrier_RSSI < -32dBm
	UTRA_carrier_RSSI_LEV63:	-32dBm ≤	UTRA_carrier_RSSI

5.1.6 GSM carrier RSSI

	Received Signal Strength Indicator, the wide-band received power within the relevant channel bandwidth in a specified timeslot. Measurement shall be performed on a GSM BCCH carrier. The reference point for the RSSI is the antenna connector at the UE.
	idle mode, connected mode (inter-frequency)
Range/mapping	According to the definition of RXLEV in GSM 05.08.

5.1.7 SIR

Definition	Signal to Interference Ratio, defined as the RSCP of a DPCH or PDSCH divided by ISCP of the
	same timeslot. The reference point for the SIR is the antenna connector of the UE.
	Signal to Interference Ratio, defined as: (RSCP/ISCP)xSF.
	Where:
	RSCP = Received Signal Code Power, the received power on the code of a specified DPCH or
	PDSCH.
	ISCP = Interference Signal Code Power, the interference on the received signal in the
	same timeslot which can't be eliminated by the receiver.
	SF = The used spreading factor.
	The reference point for the SIR is the antenna connector of the UE.
Applicable for	Connected mode (intra-frequency)
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB.
	SIR shall be reported in the unit SIR where:
	SIR_00: SIR < -11.0dB
	SIR_01 : -11.0dB \leq $SIR < -10.5dB$
	SIR_{02}^{-} : -10.5dB \leq $SIR < -10.0dB$
	SIR 61: 19.0dB ≤ SIR < 19.5dB
	SIR_62: 19.5dB ≤ SIR < 20.0dB
	SIR_63: 20.0dB ≤ SIR

5.1.8 CPICH Ec/No

Definition	The received energy per chip divided by the power density in the band. The Ec/No is identical to RSCP/RSSI. The reference point for Ec/No is the antenna connector at the UE.
	· ·
	If Tx diversity is applied on the Primary CPICH the received energy per chip (Ec) from each
	antenna shall be separately measured and summed together in [Ws] to a total received chip
	energy per chip on the Primary CPICH, before calculating the Ec/No.
Applicable for	idle mode, connected mode (inter-frequency)
Range/mapping	CPICH Ec/No is given with a resolution of 1 dB with the range [-24,, 0] dB.
	CPICH Ec/No shall be reported in the unit CPICH_Ec/No where:
	CPICH_Ec/No_00: CPICH_Ec/No < -24dB
	CPICH_Ec/No_01: -24dB ≤ CPICH_Ec/No < -23dB
	CPICH_Ec/No_02: -23dB ≤ CPICH_Ec/No < -22dB
	CPICH_Ec/No_23: -2dB ≤ CPICH_Ec/No < -1dB
	CPICH_Ec/No_24: -1dB ≤ CPICH_Ec/No < 0dB
	CPICH_Ec/No_25: 0dB ≤ CPICH_ Ec/No

5.1.9 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) before channel
	decoding of the data.
Applicable for	Connected mode (intra-frequency)
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.065 with the range
	[10^-4.03 1] including a separate case Physical channel BER=0.
	Physical channel BER shall be reported in the unit PhCH_BER_dB, where:
	PhCH_BER_dB_00: BER = 0
	PhCH_BER_dB_01: -∞ < Log10(Physical channel BER) < -4.030
	PhCH_BER_dB_02: -4.030 ≤ Log10(Physical channel BER) < -3.965
	PhCH_BER_dB_03: -3.965 ≤ Log10(Physical channel BER) < -3.900
	
	PhCH_BER_dB_61: -0.195 ≤ Log10(Physical channel BER) <0.130
	PhCH_BER_dB_62: -0.130 ≤ Log10(Physical channel BER) <
	PhCH_BER_dB_63: -0.065 ≤ Log10(Physical channel BER) ≤ 0.000

5.1.10 Transport channel BLER

Definition	Estimation of the transport channel block error rate (BLER). The BLER estimation shall be based		
	on evaluating the CRC on each tr	ansport block.	
Applicable for	Connected mode (intra-frequency	()	
Range/mapping	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range		
	[10^-4.03 1] including a separate case Transport channel BLER=0.		
	Transport channel BLER shall be	reported in the unit TCH_BLER_dB, where:	
	TCH_BLER_dB_00: BLER = 0	•	
	TCH_BLER_dB_01: -∞	< Log10(Transport channel BLER) <	-4.030
	TCH_BLER_dB_02: -4.030	≤ Log10(Transport channel BLER) <	-3.965
	TCH_BLER_dB_03: -3.965	≤ Log10(Transport channel BLER) <	-3.900
	TCH_BLER_dB_61: -0.195	≤ Log10(Transport channel BLER) <	-0.130
	TCH_BLER_dB_62: -0.130	≤ Log10(Transport channel BLER) <	-0.065
	TCH_BLER_dB_63: -0.065	≤ Log10(Transport channel BLER) ≤	0.000

5.1.11 UE transmitted power

Definition	The total UE transmitted power on one carrier measured in a timeslot. The reference point for the	
	UE transmitted power shall be the UE antenna connector.	
Applicable for	Connected mode (intra-frequency).	
Range/mapping	UE transmitted power is given with a resolution of 1dBm with the range [-50,, 33] dBm. UE transmitted power shall be reported in the unit UE_TX_POWER, where:	
	UE_TX_POWER_000 to UE_TX_POWER_020: reserved UE_TX_POWER_021: -50dBm ≤ UE_transmitted_power < -49dBm UE_TX_POWER_022: -49dBm ≤ UE_transmitted_power < -48dBm UE_TX_POWER_023: -48dBm ≤ UE_transmitted_power < -47dBm	
	UE_TX_POWER_102: 31dBm ≤ UE_transmitted_power < 32dBm UE_TX_POWER_103: 32dBm ≤ UE_transmitted_power < 33dBm UE_TX_POWER_104: 33dBm ≤ UE_transmitted_power < 34dBm	

5.1.12 SFN-SFN observed time difference

Definiti	on SFN-	SFN observed time difference is the time difference of the reception times of frames from
	_	ells (serving and target) measured in the UE and expressed in chips. It is distinguished in
		pes_: Type 2 applies if the serving and the target cell have the same frame timing and SFN
		ering. Type 1 applies in all other cases.
	Туре	
	SFN-	SFN observed time difference = OFF \times 38400+ T_m in chips, where:
		RXSFNiki - TRXSFNik, given in chip units with the range [0, 1,, 38399] chips
	T _{RxSFN}	
	T _{RxSFN}	
		recent in time before after the time
		instant T _{RXSFNi} in the UE. If thise next frame SFN _k of the target UTRA cell is received
		exactly at T _{RXSFNi} then T _{RXSFNk} = T _{RXSFNi} (which leads to T _m =0).
	OFF=	(SFN _{ki} - SFN _{ik}) mod 256, given in number of frames with the range [0, 1,, 255] frames
	SFNi	: system frame number for downlink frame from serving TDD cell i in the UE at the
		time T _{RxSFNi} .
	SFNk	· · · · · · · · · · · · · · · · · · ·
		UE at the time T _{RxSFNk} .(for FDD: the P-CCPCH frame)
	_	
	Type	
		SFN observed time difference = T _{RxTSk} - T _{RxTSi} , in chips, where
	T _{RxTSi}	
	T _{RxTSk}	
Applica	hlo for idlo m	time to the start of the timeslot of the serving TDD cell i.
	mapping Type	node, connected mode (intra-frequency), connected mode (inter-frequency)
Kange		SFN observed time difference is given with a resolution of 1 chip with the range
		30400) chips (24 bits).
		SFN observed time difference shall be reported in the unit T1_SFN-SFN_TIME, where
		FN-SFN TIME N:
	_	chip ≤ SFN-SFN observed time difference < (N+1)* 1 chip
		N= 0, 1, 2,, 9830399
		7- 0, 1, 2,, 0000000
	Type	2:
		SFN observed time difference is given with a resolution of 0.25 chip with the range
		0; 1280] chips (14 bits).
		SFN observed time difference shall be reported in the unit T2_SFN-SFN_TIME, where
		FN-SFN_TIME_N:
		25 chip −1280 chips < SFN-SFN observed time difference ≤ (N+1)* 0.25 chip −1280 chips
		N= 0, 1, 2,, 10239

5.1.13 Observed time difference to GSM cell

Definition	Observed time difference to GSM cell is the time difference T _m in ms, where	
	T _m = T _{RxGSMk} - T _{RxSFN0i}	
	T _{RxSFN0i} : time of start of the received frame SFN=0 of the serving TDD cell i	
	T _{RXGSMk} .: time of start of the received 51-GSM <u>BCCH 51</u> -multiframe of the considered target	
	GSM frequency k received closest in time after the time T _{RXSFN0i} .	
	— beacon frequency k which is following next after the start of frame SFN=0 of the serving TDD cell.	
	If the next GSM BCCH 51-multiframe is received exactly at TRXSFN0i then TRXGSMK = TRXSFN0i	
	(which leads to T _m =0).	
	_	
	The beginning of the GSM BCCH 51-multiframe is defined as the beginning of the first tail bit of	
	the frequency correction burst in the first TDMA-frame of the GSM BCCH 51-multiframe, i.e. the	
	TDMA-frame following the IDLE-frame.	
Applicable for	Idle mode, connected mode (inter-frequency)	
Range/mapping	Observed time difference to GSM cell is given with a resolution of 3060ms/(13*4096) (12 bit) with	
	the range [0, 3060/13) ms.	
	Observed time difference to GSM cell shall be reported in the unit GSM_TIME, where	
	GSM_TIME_N:	
	N* 3060ms/(13*4096) ≤ Observed time difference to GSM cell < (N+1)* 3060ms/(13*4096)	
	With N= 0, 1, 2,, 4095	

5.2 UTRAN measurement abilities

NOTE 1: If the UTRAN supports multiple frequency bands then the measurements apply for each frequency band individually.

NOTE 2: The RSCP can either be measured on the data part or the midamble of a burst, since there is no power offset between both. However, in order to have a common reference, the measurement on the midamble is assumed.

5.2.1 RSCP

Definition	Received Signal Code Power, the received power on one DPCH, PRACH or PUSCH code after despreading. The reference point for the RSCP shall be the antenna connector.
Range/mapping	RSCP is given with a resolution of 0.5 dBm with the range [-120,, -80] dBm. RSCP shall be reported in the unit UTRAN_RSCP_LEV where: UTRAN_RSCP_LEV00: RSCP < -120.0dBm UTRAN_RSCP_LEV01: -120.0dBm RSCP < -119.5dBm
	UTRAN_RSCP_LEV02: -119.5dBm ≤ RSCP < −119.0dBm UTRAN_RSCP_LEV79: -81.0dBm ≤ RSCP < −80.5dBm UTRAN_RSCP_LEV80: -80.5dBm ≤ RSCP < −80.0dBm UTRAN_RSCP_LEV81: -80.0dBm ≤ RSCP

5.2.2 Timeslot ISCP

Definition	Interference Signal Code Power, the interference on the received signal in a specified timeslot			
	after despreading. Only thise	non-orthogonal	part of	the interference that is not eliminated by the
	receiver included shall be incl	uded in the me	asureme	ent. The reference point for the ISCP shall
	be the antenna connector.			
Range/mapping	Timeslot ISCP is given with a resolution of 0.5 dBm with the range [-120,, -80] dBm.			
	Timeslot ISCP shall be reported	Timeslot ISCP shall be reported in the unit UTRAN_TS_ISCP_LEV where:		
	UTRAN_TS_ISCP_LEV00:			Timeslot_ISCP < -120.0dBm
	UTRAN_TS_ISCP_LEV01:	-120.0dBm	\leq	Timeslot_ISCP < -119.5dBm
	UTRAN_TS_ISCP_LEV02:	-119.5dBm	\leq	Timeslot_ISCP < -119.0dBm
	UTRAN_TS_ISCP_LEV79:	-81.0dBm	≤	Timeslot_ISCP < -80.5dBm
	UTRAN_TS_ISCP_LEV80:	-80.5dBm	≤	Timeslot_ISCP < -80.0dBm
	UTRAN_TS_ISCP_LEV81:	-80.0dBm	≤	Timeslot_ISCP

5.2.3 RSSI

Definition	Received Signal Strength Indicator, the wide-band received power within the UTRAN UL channel bandwidth in a specified timeslot. The reference point for the RSSI shall be the antenna connector.		
Range/mapping	RSSI is given with a resolution of 0.15dBm with the range [-11205,, -5074] dBm. RSSI shall be reported in the unit RSSI_LEV, where:		
	$ \begin{array}{llllllllllllllllllllllllllllllllllll$		
	$RSSI_LEV_002:$ $-1_{11.904.5}dBm \le RSSI < -1_{11.804.0}dBm$		
	RSSI_LEV_619: $-50.275.0$ dBm ≤ RSSI < $-50.174.5$ dBm RSSI_LEV_620: $-50.174.5$ dBm ≤ RSSI < -5074.0 dBm RSSI_LEV_6213: -5074.0 dBm ≤ RSSI		

5.2.4 SIR

Definition	Circulty Interference Detail defined as the DOOD of the DDOUL or DUCOUL divided by 100D of
Definition	Signal to Interference Ratio, defined as the RSCP of the DPCH or PUSCH divided by ISCP of
	the same timeslot. The reference point for the SIR shall be the antenna connector.
	Signal to Interference Ratio, defined as: (RSCP/ISCP)xSF.
	Where:
	RSCP = Received Signal Code Power, the received power on the code of a specified DPCH,
	PRACH or PUSCH.
	ISCP = Interference Signal Code Power, the interference on the received signal in the
	same timeslot which can't be eliminated by the receiver.
	SF = The used spreading factor.
	The reference point for the SIR shall be the antenna connector.
Range/mapping	SIR is given with a resolution of 0.5 dB with the range [-11,, 20] dB.
	SIR shall be reported in the unit SIR where:
	SIR_00: SIR < -11.0dB
	SIR_01: -11.0dB ≤ SIR < -10.5dB
	SIR_02: -10.5dB ≤ SIR < -10.0dB
	⁻
	SIR 61: 19.0dB ≤ SIR < 19.5dB
	SIR_62: 19.5dB ≤ SIR < 20.0dB
	SIR_63: 20.0dB ≤ SIR

5.2.5 Transport channel BER

<u>Definition</u>	The transport channel BER is an estimation of the average bit error rate (BER) of DCH or USCH data. The transport channel (TrCH) BER is measured from the data considering only non-punctured bits at the input of the channel decoder in Node B. It shall be possible to report an estimate of the transport channel BER for a TrCH after the end of each TTI of the TrCH. The reported TrCH BER shall be an estimate of the BER during the latest TTI for that TrCH. Transport channel BER is only required to be reported for TrCHs that are channel coded.
Range/mapping	Transport channel BER is given with a logarithmic resolution of 0.008125 within the range [10^-2.06375 1] with two separate cases Transport channel BER=0 and Transport channel BER between 0 and 10^-2.06375 Transport channel BER shall be reported in the unit TrCH_BER_LOG, where: TrCH_BER_LOG_000: Transport channel BER = 0 TrCH_BER_LOG_001: $-\infty$ < Log10(Transport channel BER) < -2.06375 TrCH_BER_LOG_002: $-2.06375 \le \text{Log10}(\text{Transport channel BER}) < -2.055625$ TrCH_BER_LOG_003: $-2.055625 \le \text{Log10}(\text{Transport channel BER}) < -2.0475$ TrCH_BER_LOG_253: $-0.024375 \le \text{Log10}(\text{Transport channel BER}) < -0.01625$ TrCH_BER_LOG_254: $-0.01625 \le \text{Log10}(\text{Transport channel BER}) < -0.008125$ TrCH_BER_LOG_255: $-0.008125 \le \text{Log10}(\text{Transport channel BER}) \le 0.000$

5.2.65 Physical channel BER

Definition	The physical channel BER is an estimation of the average bit error rate (BER) of a DPCH or		
	PUSCH _. -before channel decoding of the data.		
Range/mapping	Physical channel BER is given with a logarithmic resolution of 0.00812565 within the range		
	[10^-2.06375_4.03 1] including with two a separate cases Physical channel BER=0 and Physical		
	channel BER between 0 and 10^-2.06375		
	Physical channel BER shall be reported in the unit PhCH_BER_LOGdB, where:		
	PhCH_BER_LOGdB_000: Physical channel BER = 0		
	PhCH_BER_LOGdB_001: -∞ < Log10(Physical channel BER) < -2.063754.030		
	PhCH_BER_LOGdB_002: -2.063754.030 ≤ Log10(Physical channel BER) < -		
	2.055625 <mark>3.965</mark>		
	PhCH_BER_LOGdB_003: -2.0556253.965 ≤ Log10(Physical channel BER) < -		
	2.0475 3.900		
	2.041.0		
	PhCH_BER_LOGdB_25361: -0.024375195 ≤ Log10(Physical channel BER) < -		
	0. <u>01625130</u>		
	PhCH_BER_LOGeB_25462: -0.01625130 ≤ Log10(Physical channel BER) < -		
	0.00812565		
	PhCH_BER_LOGdB_25563: -0.00812565 ≤ Log10(Physical channel BER) ≤ 0.000		

5.2.<u>76</u> Transport channel BLER

Definition	Estimation of the transport channel	block error rate (BLER) of a DCH or USCH	The BLFR	
Bernition	Estimation of the transport channel block error rate (BLER) of a DCH or USCH. The BLER estimation shall be based on evaluating the CRC on each transport block.			
	estimation shall be based on evalu	ating the CRC on each transport block.		
Range/mapping	Transport channel BLER is given with a logarithmic resolution of 0.065 with the range			
	[10^-4.03 1] including a separate	[10^-4.03 1] including a separate case Transport channel BLER=0.		
	Transport channel BLER shall be re	Transport channel BLER shall be reported in the unit TCH_BLER_dB, where:		
	TCH_BLER_dB_00: BLER = 0			
	TCH_BLER_dB_01: -∞	< Log10(Transport channel BLER) <	-4.030	
	TCH_BLER_dB_02: -4.030	≤ Log10(Transport channel BLER) <	-3.965	
	TCH_BLER_dB_03: -3.965	≤ Log10(Transport channel BLER) <	-3.900	
	TCH_BLER_dB_61: -0.195	≤ Log10(Transport channel BLER) <	-0.130	
	TCH_BLER_dB_62: -0.130	≤ Log10(Transport channel BLER) <	-0.065	
	TCH_BLER_dB_63: -0.065	≤ Log10(Transport channel BLER) ≤	0.000	

5.2.87 Transmitted carrier power

Definition	Transmitted carrier power, is the ratio between the total transmitted power on one DL carrier [W]		
	from one UTRAN access point measured in a timeslot and the maximum transmission power [W]		
	that is possible to use on the same carrier during the measurement period.		
	The maximum transmission power is the configured maximum transmission power for the cell.		
	The measurement shall be possible on any carrier transmitted from the UTRAN access point.		
	The reference point for the UTRAN total transmitted carrier power measurement shall be the		
	antenna connector.		
	In case of Tx diversity the transmitted carrier power for each branch shall be measured.		
Range/mapping	Transmitted carrier power is given with a resolution of 1%0.5dBm with the range [0,, 5100] %		
	dBm.		
	Transmitted carrier power shall be reported in the unit UTRAN_TX_POWER, where:		
	UTRAN_TX_POWER_000: Transmitted carrier power = 0% to UTRAN_TX_POWER_015:		
	reserved		
	UTRAN_TX_POWER_0 <u>01</u> 46: 0.0dBm ₀ % ≤≤ Transmitted carrier power ≤ 1%< 0.5dBm		
	UTRAN_TX_POWER_00247: 0.5dBm1% <≤ Transmitted carrier power ≤ 2%<1.0dBm		
	UTRAN_TX_POWER_00318: 1.0dBm2% <≤ Transmitted carrier power ≤ 3% < 1.5dBm		
'			
	UTRAN_TX_POWER_098114: 49.0dBm97% <≤ Transmitted carrier power ≤ 98% < 49.5dBm		
	UTRAN_TX_POWER_099115: 49.5dBm98% ≤≤ Transmitted carrier power ≤ 99% < 50.0dBm		
	UTRAN_TX_POWER_100 116 : 50.0dBm 99% <≤ Transmitted carrier power ≤ 100% < 50.5dBm		
	<u> </u>		

5.2.<u>98</u> Transmitted code power

Definition	Transmitted Code Power, is the transmitted power on one carrier and one channelisation code in		
	one timeslot. The reference point for the transmitted code power measurement shall be the		
	antenna connector at the UTRAN access point cabinet.		
Range/mapping	Transmitted code power is given with a resolution of 0.5dBm with the range [-10,, 46] dBm.		
	Transmitted code power shall be reported in the unit UTRAN_TX_CODE_POWER, where:		
	UTRAN_TX_CODE_POWER_000 to UTRAN_TX_POWER_009: reserved		
	UTRAN_TX_ CODE_POWER_010: -10.0dBm ≤ CODE_POWER < -9.5dBm		
	UTRAN_TX_ CODE_POWER_011: -9.5dBm ≤ CODE_POWER < -8.5dBm		
	UTRAN_TX_ CODE_POWER_012: -8.5dBm ≤ CODE_POWER < -7.5dBm		
	UTRAN_TX_ CODE_POWER_120: 45.0dBm ≤ CODE_POWER < 45.5dBm		
	UTRAN_TX_ CODE_POWER_121: 45.5dBm ≤ CODE_POWER < 46.0dBm		
	UTRAN_TX_CODE_POWER_122: 46.0dBm ≤ CODE_POWER < 46.5dBm		

5.2.<u>10</u>9 RX Timing Deviation

Definition	'RX Timing Deviation' is the time difference TRXdev = TTS – TRXpath in chips, with
	TRXpath: time of the reception in the Node B of the first significant uplink path to be used
	in the detection process
	TTS: time of the beginning of the respective slot according to the Node B internal
	timing
Range/mapping	RX Timing Deviation is given with a resolution of 0.25 chip with the range [0; 1024) chips (12 bit).
	RX Timing Deviation cell shall be reported in the unit RX_TIME_DEV, where
	RX_TIME_DEV: N* 0.25 chips ≤ RX Timing Deviation < (N+1)* 0.25 chips
	With N= 0, 1, 2,, 4095

NOTE: This measurement can be used for timing advance calculation or location services.