TSG-RAN Meeting \#7

Madrid, Spain, 13-15 March 2000
Title: \quad Agreed CRs to TS $\mathbf{2 5 . 2 2 3}$
Source: TSG-RAN WG1
Agenda item: 6.1.3

No.	Doc \#	Spec	CR	Rev	Subject	Cat	Versio	Versio
1	R1-000135	25.223	002	3	Cycling of cell parameters	C	3.1 .1	3.2 .0
2	R1-000220	25.223	005	-	Removal of Synchronisation Case 3 in TDD	F	3.1 .1	3.2 .0
3	R1-000228	25.223	006	1	Signal Point Constellation	F	3.1 .1	3.2 .0

CHANGE REQUEST

Please see embedded help file at the bottom of this page for instructions on how to fill in this form correctly.

25.223 CR 002r3 Current Version: V3.10

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow

\uparrow CR number as allocated by MCC support team
For submission to: RAN \#7
list expected approval meeting \# here \uparrow

Form: CR cover sheet, version 2 for 3GPP and SMG
The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(at least one should be marked with an X)
\square ME \mathbf{X} UTRAN / Radio \qquad Core Network \qquad

Source:
TSG RAN WG1
Date: 13 Jan 2000
Subject: \quad Cycling of cell parameters
Work item: TS25.223

Category:	F	Correction
	A	Corresponds to a correction in an earlier release
(only one category	B	Addition of feature
shall be marked	C	Functional modification of feature
with an X)	D	

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

Reason for Improvement in performance by increased diversity and reduction of false paths.
change:

Clauses affected: $\quad 7.2,7.3$

Other specs	Other 3G core specifications	X	\rightarrow List of CRs:	25.221-CR003r2, 25.224-
affected:	Other GSM core specifications MS test specifications BSS test specifications O\&M specifications		\rightarrow List of CRs:	
			\rightarrow List of CRs:	
			\rightarrow List of CRs:	
			\rightarrow List of CRs:	

Other comments:

7.2 Code Allocation

Three SCH codes are QPSK modulated and transmitted in parallel with the primary synchronization code. The QPSK modulation carries the following information.

- The code group that the base station belongs to (5 bits; Cases $1,2,3$)
- The position of the frame within an interleaving period of $20 \mathrm{msec}(1 \mathrm{bit}$, Cases $1,2,3$)
- The position of the slot within the frame (1 bit, Cases 2,3)
- SCH transport channel information, e.g. the location of the Primary CCPCH (3 bits, Case 3)

The modulated codes are also constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 2 (Case 1) and 4 (Cases 2 and 3) of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 2 (Case 1) and 4 (Cases 2 and 3) of any of the sequences is not equivalent to itself with any other cyclic shift less than 8 . The secondary synchronization codes are partitioned into two code sets for Case 1, four code sets for Case 2 and thirty two code sets (possibly overlapping) for Case 3 . The set is used to provide the following information:

Case 1:

Table 2: Code Set Allocation for Case 1

Code Set	Code Group
1	$0-15$
2	$16-31$

The code group and frame position information is provided by modulating the secondary codes in the code set.
Case 2:
Table 3: Code Set Allocation for Case 2

Code Set	Code Group
1	$0-7$
2	$8-15$
3	$16-23$
4	$24-31$

The slot timing and frame position information is provided by the comma free property of the code word and the Code group is provided by modulating some of the secondary codes in the code set.

Case 3:

Code set $\mathrm{k}, \mathrm{k}=1: 32$ is associated with Code group $\mathrm{k}-1$. The slot information, the frame position information is provided by the comma free property of the code and the SCH transport channel information is provided by modulating some of the codes in the code set.

The following SCH codes are allocated for each code set:
Case 1
Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.
Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.

Case 2

Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.
Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.
Code set 3: $\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.
Code set 4: $\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$.

Case 3

Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.
Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.
Code set 3: $\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.
Code set 4: $\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$.
Code set 5: $\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}$.
Code set 6: $\mathrm{C}_{0}, \mathrm{C}_{3}, \mathrm{C}_{6}$.
Code set 7: $\mathrm{C}_{0}, \mathrm{C}_{4}, \mathrm{C}_{7}$
Code set 8: $\mathrm{C}_{0}, \mathrm{C}_{5}, \mathrm{C}_{8}$.
Code set 9: $\mathrm{C}_{0}, \mathrm{C}_{9}, \mathrm{C}_{12}$.
Code set 10: $\mathrm{C}_{0}, \mathrm{C}_{10}, \mathrm{C}_{13}$.
Code set 11: $\mathrm{C}_{0}, \mathrm{C}_{11}, \mathrm{C}_{14}$.
Code set 12: $\mathrm{C}_{1}, \mathrm{C}_{3}, \mathrm{C}_{7}$.
Code set 13: $\mathrm{C}_{1}, \mathrm{C}_{4}, \mathrm{C}_{6}$.
Code set 14: $\mathrm{C}_{1}, \mathrm{C}_{5}, \mathrm{C}_{9}$.
Code set 15: $\mathrm{C}_{1}, \mathrm{C}_{8}, \mathrm{C}_{10}$.
Code set 16: $\mathrm{C}_{1}, \mathrm{C}_{11}, \mathrm{C}_{12}$.
Code set 17: $\mathrm{C}_{1}, \mathrm{C}_{13}, \mathrm{C}_{15}$.
Code set 18: $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{8}$.
Code set 19: $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{9}$.
Code set 20: $\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}$.
Code set 21: $\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{10}$.
Code set 22: $\mathrm{C}_{2}, \mathrm{C}_{11}, \mathrm{C}_{13}$.
Code set 23: $\mathrm{C}_{2}, \mathrm{C}_{12}, \mathrm{C}_{15}$
Code set 24: $\mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{13}$.
Code set 25: $\mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{12}$.
Code set 26: $\mathrm{C}_{3}, \mathrm{C}_{11}, \mathrm{C}_{15}$.
Code set 27: $\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{11}$.
Code set 28: $\mathrm{C}_{4}, \mathrm{C}_{10}, \mathrm{C}_{14}$.

Code set 29: $\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{11}$.
Code set 30: $\mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{15}$.
Code set 31: $\mathrm{C}_{6}, \mathrm{C}_{9}, \mathrm{C}_{14}$.
Code set 32: $\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{15}$.

The following subsections 7.2.1 to 7.2.3 refer to the three cases of PSCH/P-CCPCH usage as described in [7].
Note that in the Tables 4-6 corresponding to Cases 1,2, and 3, respectively, Frame 1 implies the frame with an odd SFN and Frame 2 implies the frame with an even SFN.

7.3 Evaluation of synchronisation codes

The evaluation of information transmitted in SCH on code group and frame timing is shown in table 7, where the 32 code groups are listed. Each code group is containing 4 specific scrambling codes (cf. section 6.3), each scrambling code associated with a specific short and long basic midamble code.

Each code group is additionally linked to a specific $t_{\text {offset }}$, thus to a specific frame timing. By using this scheme, the UE can derive the position of the frame border due to the position of the SCH sequence and the knowledge of $\mathrm{t}_{\text {offset }}$. The complete mapping of Code Group to Scrambling Code, Midamble Codes and $\mathrm{t}_{\text {offset }}$ is depicted in table 7.

Table 7: Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $t_{\text {offset }}$

$\begin{aligned} & \text { CELL } \\ & \text { PARA- } \\ & \text { METER } \end{aligned}$	Code Group	Associated Codes			Associat ed toffset
		Scrambling Code	Long Basic Midamble Code	Short Basic Midamble Code	
0	Group 1	Code 0	mpL0	$\mathrm{m}_{\text {SLO }}$	t_{0}
1		Code 1	mpL1	msL1	
2		Code 2	mpL2	msL2	
3		Code 3	mpL3	$\mathrm{m}_{\text {SL3 }}$	
4	Group 2	Code 4	mpL4	$\mathrm{m}_{\text {SL4 }}$	t_{1}
5		Code 5	mpL5	msL5	
6		Code 6	mpL6	$\mathrm{m}_{\text {SL6 }}$	
7		Code 7	mpL7	$\mathrm{m}_{\text {SL7 }}$	
124	Group 32	Code 124	$\mathrm{m}_{\text {PL124 }}$	msL124	t_{31}
125		Code 125	$\mathrm{mpl125}$	$\mathrm{m}_{\text {LL125 }}$	
126		Code 126	mpl126	msL126	
127		Code 127	$\mathrm{mpl127}$	msL127	

For basic midamble codes m_{P} cf.TS 25.221, annex A 'Basic Midamble Codes'.
Each cell shall cycle through two sets of cell parameters in a code group with the cell parameters changing each frame. Table 8 shows how the cell parameters are cycled according to the SFN.

Table 8 Alignment of cell parameter cycling and SFN

Initial Cell Parameter Assignment	Code Group	$\begin{aligned} & \text { Cell Parameter } \\ & \text { used when } \\ & \text { SFN mod } 2=0 \end{aligned}$	$\begin{aligned} & \text { Cell Parameter } \\ & \text { used when } \\ & \text { SFN mod } 2=1 \end{aligned}$
$\underline{0}$	Group 1	$\underline{0}$	1
1		1	$\underline{0}$
$\underline{2}$		$\underline{2}$	$\underline{3}$
$\underline{3}$		$\underline{3}$	$\underline{2}$
4	Group 2	4	5
$\underline{5}$		$\underline{5}$	4
$\underline{6}$		$\underline{6}$	$\underline{7}$
$\underline{7}$		7	$\underline{6}$
124	Group 32	124	125
125		125	124
$\underline{126}$		126	127
$\underline{127}$		127	126

25.223 CR 005

Current Version:
3.1.0

GSM (AA.BB) or $3 G$ (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team

For submission to: RAN\#7
list expected approval meeting \# here

(for SMG use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
The latest version of this form is available from: ftp://ftp.3gpp.org/Information/CR-Form-v2.doc
Proposed change affects:
(U)SIM \square ME \mathbf{X}
UTRAN / Radio X Core Network \square
(at least one should be marked with an X)
Source: TSG RAN WG1
Date: 2000-02-21
Subject: \quad Removal of Synchronisation Case 3 in TDD

Work item:

Category:	F	Correction	X
	A	Corresponds to a correction in an earlier release	
(only one category	B	Addition of feature	
shall be marked	C	Functional modification of feature	
with an X)	D	Editorial modification	

Release: Phase 2

Release 96
Release 97
Release 98
Release 99
Release 00

Reason for \quad Performance of SCH acquisition is too low with synchronisation case 3. change:

Clauses affected: $\quad 3,7.2,7.3$

Other specs	Other 3G core specifications	X	\rightarrow List of CRs:	CR014-221, CR01-224
affected:	Other GSM core specifications		\rightarrow List of CRs:	
	MS test specifications		\rightarrow List of CRs:	
	BSS test specifications		\rightarrow List of CRs:	
	O\&M specifications		\rightarrow List of CRs:	

Other

comments:
<-------- double-click here for help and instructions on how to create a CR.

3 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CDMA	Code Division Multiple Access
P-CCPCH	Primary Common Control Physical Channel
PN	Pseudo Noise
PSCH	Physical Synchronisation Channel
QPSK	Quadrature Phase Shift Keying
RACH	Random Access Channel
SCH	Synchronisation Channel

7.2 Code Allocation

Three SCH codes are QPSK modulated and transmitted in parallel with the primary synchronization code. The QPSK modulation carries the following information.

- The code group that the base station belongs to (5 bits; Cases $1,2,3$)
- The position of the frame within an interleaving period of $20 \mathrm{msec}(1 \mathrm{bit}$, Cases $1,2,3$)
- The position of the slot within the frame (1 bit, Cases 2,3)

SCH transport channel information, e.g. the location of the Primary CCPCH (3 bits, Case 3)
The modulated codes are also constructed such that their cyclic-shifts are unique, i.e. a non-zero cyclic shift less than 2 (Case 1) and 4 (Cases 2 and 3) of any of the sequences is not equivalent to some cyclic shift of any other of the sequences. Also, a non-zero cyclic shift less than 2 (Case 1) and 4 (Cases 2 and 3) of any of the sequences is not equivalent to itself with any other cyclic shift less than 8 . The secondary synchronization codes are partitioned into two code sets for Case 1, and four code sets for Case 2 and thirty two code sets (possibly overlapping) for Case 3. The set is used to provide the following information:

Case 1:
Table 2: Code Set Allocation for Case 1

Code Set	Code Group
1	$0-15$
2	$16-31$

The code group and frame position information is provided by modulating the secondary codes in the code set.
Case 2:
Table 3: Code Set Allocation for Case 2

Code Set	Code Group
1	$0-7$
2	$8-15$
3	$16-23$
4	$24-31$

The slot timing and frame position information is provided by the comma free property of the code word and the Code group is provided by modulating some of the secondary codes in the code set.

Case 3:

Code set $\mathrm{k}, \mathrm{k}=1: 32$ is associated with Code group $\mathrm{k}-1$. The slot information, the frame position information is provided by the comma free property of the code and the SCH transport channel information is provided by modulating some of the codes in the code set.

The following SCH codes are allocated for each code set:

Case 1

Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.
Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.

Case 2
Code set 1: $\mathrm{C}_{0}, \mathrm{C}_{1}, \mathrm{C}_{2}$.

Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.
Code set 3: $\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$.
Code set 4: $\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$.

Case 3

Code set 1: $\mathrm{C}_{6}, \mathrm{C}_{4}, \mathrm{C}_{2}$
Code set 2: $\mathrm{C}_{3}, \mathrm{C}_{4}, \mathrm{C}_{5}$.
Code set 3: $\mathrm{C}_{6}, \mathrm{C}_{7}, \mathrm{C}_{8}$
Code set 4: $\mathrm{C}_{9}, \mathrm{C}_{10}, \mathrm{C}_{11}$.
Code set 5: $\mathrm{C}_{12}, \mathrm{C}_{13}, \mathrm{C}_{14}$.
Code set 6: $\mathrm{C}_{\theta}, \mathrm{C}_{3}, \mathrm{C}_{6}$.
Code set 7: $\mathrm{C}_{6}, \mathrm{C}_{4}, \mathrm{C}_{7}$
Code set 8: $\mathrm{C}_{6}, \mathrm{C}_{5}, \mathrm{C}_{8}$.
Code set 9: $\mathrm{C}_{9}, \mathrm{C}_{9}, \mathrm{C}_{12}$.
Code set 10: $\mathrm{C}_{0}, \mathrm{C}_{10}, \mathrm{C}_{13}$.
Code set 11: $\mathrm{C}_{\theta}, \mathrm{C}_{41}, \mathrm{C}_{14}$.
Code set 12: $\mathrm{C}_{4}, \mathrm{C}_{3}, \mathrm{C}_{7}$.
Code set 13: $\mathrm{C}_{4}, \mathrm{C}_{4}, \mathrm{C}_{6}$.
Code set 14: $\mathrm{C}_{4}, \mathrm{C}_{5}, \mathrm{C}_{9}$
Code set 15: $\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{40}$.
Code set 16: $\mathrm{C}_{4}, \mathrm{C}_{14}, \mathrm{C}_{12}$.
Code set 17: $\mathrm{C}_{4}, \mathrm{C}_{13}, \mathrm{C}_{15}$.
Code set 18: $\mathrm{C}_{2}, \mathrm{C}_{3}, \mathrm{C}_{8}$.
Code set 19: $\mathrm{C}_{2}, \mathrm{C}_{4}, \mathrm{C}_{9}$
Code set 20: $\mathrm{C}_{2}, \mathrm{C}_{5}, \mathrm{C}_{6}$.
Code set 21: $\mathrm{C}_{2}, \mathrm{C}_{7}, \mathrm{C}_{10}$.
Code set 22: $\mathrm{C}_{2}, \mathrm{C}_{41}, \mathrm{C}_{13}$.
Code set 23: $\mathrm{C}_{2}, \mathrm{C}_{12}, \mathrm{C}_{15}$
Gode set 24: $\mathrm{C}_{3}, \mathrm{C}_{9}, \mathrm{C}_{43}$
Code set 25: $\mathrm{C}_{3}, \mathrm{C}_{10}, \mathrm{C}_{12}$.
Code set 26: $\mathrm{C}_{3}, \mathrm{C}_{41}, \mathrm{C}_{15}$.
Code set 27: $\mathrm{C}_{4}, \mathrm{C}_{8}, \mathrm{C}_{41}$.
Code set 28: $\mathrm{C}_{4}, \mathrm{C}_{10}, \mathrm{C}_{14}$.
Code set 29: $\mathrm{C}_{5}, \mathrm{C}_{7}, \mathrm{C}_{14}$
Code set 30: $\mathrm{C}_{5}, \mathrm{C}_{10}, \mathrm{C}_{15}$.

Code set 31: $\mathrm{C}_{6}, \mathrm{C}_{9}, \mathrm{C}_{14}$.
Code set 32: $\mathrm{C}_{7}, \mathrm{C}_{9}, \mathrm{C}_{15}$.

The following subsections 7.2.1 to 7.2.23 refer to the two three cases of PSCH/P-CCPCH usage as described in [7].

7.2.1 Code allocation for Case 1:

NOTE: Modulation by " j " indicates that the code is transmitted on the Q channel.
Table 4: Code Allocation for Case 1

Code Group	Code Set	Frame 1			Frame 2			Associated
0	1	C_{0}	C_{1}	C_{2}	C_{0}	C_{1}	- C_{2}	t_{0}
1	1	C_{0}	- C_{1}	C_{2}	C_{0}	$-\mathrm{C}_{1}$	- C_{2}	t_{1}
2	1	- C_{0}	C_{1}	C_{2}	- C_{0}	C_{1}	- C_{2}	t_{2}
3	1	- C_{0}	- C_{1}	C_{2}	- C_{0}	- C_{1}	- C_{2}	t_{3}
4	1	jC_{0}	JC_{1}	C_{2}	jC_{0}	jC_{1}	- C_{2}	t_{4}
5	1	jC_{0}	$-\mathrm{j} \mathrm{C}_{1}$	C_{2}	j_{0}	$-\mathrm{j} \mathrm{C}_{1}$	- C_{2}	t_{5}
6	1	$-\mathrm{j} \mathrm{C}_{0}$	JC_{1}	C_{2}	$-\mathrm{j} \mathrm{C}_{0}$	jC_{1}	- C_{2}	t_{6}
7	1	$-\mathrm{j} \mathrm{C}_{0}$	$-\mathrm{j} \mathrm{C}_{1}$	C_{2}	$-\mathrm{j}_{0}$	$-\mathrm{j} \mathrm{C}_{1}$	- C_{2}	t_{7}
8	1	jC_{0}	JC_{2}	C_{1}	j_{0}	jC_{2}	- C_{1}	t_{8}
9	1	jC_{0}	$-\mathrm{j}_{2}$	C_{1}	j_{0}	$-\mathrm{j}_{2}$	- C_{1}	t_{9}
10	1	$-\mathrm{j} \mathrm{C}_{0}$	JC_{2}	C_{1}	$-\mathrm{j} \mathrm{C}_{0}$	jC_{2}	- C_{1}	t_{10}
11	1	$-\mathrm{j} \mathrm{C}_{0}$	$-\mathrm{j} \mathrm{C}_{2}$	C_{1}	$-\mathrm{j}_{0}$	$-\mathrm{j}_{2}$	- C_{1}	t_{11}
12	1	j_{1}	JC_{2}	C_{0}	JC_{1}	jC_{2}	- C_{0}	t_{12}
13	1	jC_{1}	$-\mathrm{j} \mathrm{C}_{2}$	C_{0}	JC_{1}	$-\mathrm{j}_{2}$	$-\mathrm{C}_{0}$	t_{13}
14	1	$-\mathrm{j} \mathrm{C}_{1}$	JC_{2}	C_{0}	$-\mathrm{j} \mathrm{C}_{1}$	jC_{2}	- C_{0}	t_{14}
15	1	$-\mathrm{j} \mathrm{C}_{1}$	-jC2	C_{0}	$-\mathrm{j}_{1}$	$-\mathrm{j}_{2}$	- C_{0}	t_{15}
16	2	C_{3}	C_{4}	C_{5}	C_{3}	C_{4}	$-\mathrm{C}_{5}$	t_{16}
17	2	C_{3}	- C_{4}	C_{5}	C_{3}	$-\mathrm{C}_{4}$	$-\mathrm{C}_{5}$	t_{17}
\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	...	\ldots
20	2	jC_{3}	JC_{4}	C_{5}	jC_{3}	jC_{4}	$-\mathrm{C}_{5}$	t_{20}
		\ldots	\ldots	...	\ldots	\ldots	\ldots	\ldots
24	2	jC_{3}	jC_{5}	C_{4}	jC_{3}	JC_{5}	$-\mathrm{C}_{4}$	t_{24}
\ldots	\ldots	\ldots	...	\ldots	\ldots
31	2	$-\mathrm{j} \mathrm{C}_{4}$	$-\mathrm{j} \mathrm{C}_{5}$	C_{3}	$-\mathrm{j} \mathrm{C}_{4}$	$-\mathrm{j} \mathrm{C}_{5}$	$-\mathrm{C}_{3}$	t_{31}

NOTE: The code construction for code groups 0 to 15 using only the SCH codes from code set 1 is shown. The construction for code groups 16 to 31 using the SCH codes from code set 2 is done in the same way.

7.2.2 Code allocation for Case 2:

Table 5: Code Allocation for Case 2

Code Group	CodeSet	Frame 1						Frame 2						Associated toffset
		Slot k			Slot k+8			Slot k			Slot k+8			
0	1	C_{0}	C_{1}	C_{2}	C_{0}	C_{1}	$-\mathrm{C}_{2}$	$-\mathrm{C}_{0}$	$-\mathrm{C}_{1}$	C_{2}	$-\mathrm{C}_{0}$	$-\mathrm{C}_{1}$	- C_{2}	t_{0}
1	1	C_{0}	- C_{1}	C_{2}	C_{0}	- C_{1}	$-\mathrm{C}_{2}$	- C_{0}	C_{1}	C_{2}	$-\mathrm{C}_{0}$	C_{1}	- C_{2}	t_{1}
2	1	$\mathrm{j}^{\mathrm{C}} 0$	jC_{1}	C_{2}	j_{0}	jC_{1}	- C_{2}	$-\mathrm{j}_{0}$	$-\mathrm{j} \mathrm{C}_{1}$	C_{2}	$-\mathrm{j} \mathrm{C}_{0}$	$-\mathrm{j} \mathrm{C}_{1}$	- C_{2}	t_{2}
3	1	$\mathrm{j}^{\mathrm{C}} 0$	$-\mathrm{j} \mathrm{C}_{1}$	C_{2}	$\mathrm{j}^{0} 0$	$-\mathrm{j} \mathrm{C}_{1}$	$-\mathrm{C}_{2}$	$-\mathrm{j}_{0}$	j_{1}	C_{2}	-jC0	j_{1}	- C_{2}	t_{3}
4	1	jC_{0}	jC_{2}	C_{1}	$\mathrm{j}^{0} 0$	jC_{2}	- C_{1}	$-\mathrm{j} \mathrm{C}_{0}$	$-\mathrm{j}_{2}$	C_{1}	- $\mathrm{j}^{0} 0$	$-\mathrm{j}_{2}$	- C_{1}	t_{4}
5	1	$\mathrm{j}^{\text {C }}$	$-\mathrm{j}_{2}$	C_{1}	jC_{0}	$-\mathrm{j}_{2}$	$-\mathrm{C}_{1}$	$-\mathrm{j}_{0}$	jC_{2}	C_{1}	$-\mathrm{j}_{0}$	j_{2}	- C_{1}	t_{5}
6	1	jC_{1}	jC_{2}	C_{0}	j_{1}	jC_{2}	$-\mathrm{C}_{0}$	$-\mathrm{j}_{1}$	$-\mathrm{j}_{2}$	C_{0}	-jC ${ }_{1}$	$-\mathrm{j}_{2}$	- C_{0}	t_{6}
7	1	j_{1}	$-\mathrm{j}_{2}$	C_{0}	j_{1}	$-\mathrm{j}_{2}$	$-\mathrm{C}_{0}$	$-\mathrm{j}_{1}$	j_{2}	C_{0}	$-\mathrm{j} \mathrm{C}_{1}$	j_{2}	- C_{0}	t_{7}
8	2	C_{3}	C_{4}	C_{5}	C_{3}	C_{4}	$-\mathrm{C}_{5}$	$-\mathrm{C}_{3}$	$-\mathrm{C}_{4}$	C_{5}	$-\mathrm{C}_{3}$	$-\mathrm{C}_{4}$	$-\mathrm{C}_{5}$	t_{8}
9	2	C_{3}	$-\mathrm{C}_{4}$	C_{5}	C_{3}	$-\mathrm{C}_{4}$	$-\mathrm{C}_{5}$	- C_{3}	C_{4}	C_{5}	$-\mathrm{C}_{3}$	C_{4}	- C_{5}	t9
10	2	jC_{3}	jC_{4}	C_{5}	jC_{3}	jC_{4}	$-\mathrm{C}_{5}$	$-\mathrm{jC}_{3}$	-jC4	C_{5}	-jC3	-jC4	- C_{5}	t_{10}
11	2	j_{3}	$-\mathrm{j} \mathrm{C}_{4}$	C_{5}	j_{3}	$-\mathrm{j} \mathrm{C}_{4}$	$-\mathrm{C}_{5}$	$-\mathrm{j}_{3}$	j_{4}	C_{5}	$-\mathrm{j}_{3}$	jC_{4}	$-\mathrm{C}_{5}$	t_{11}
12	2	jC_{3}	jC_{5}	C_{4}	j_{3}	jC_{5}	$-\mathrm{C}_{4}$	$-\mathrm{jC}_{3}$	$\mathrm{-j}^{-j}$	C_{4}	-jC3	$-\mathrm{j} \mathrm{C}_{5}$	- C_{4}	t_{12}
13	2	jC_{3}	$-\mathrm{j} \mathrm{C}_{5}$	C_{4}	j_{3}	$-\mathrm{j} \mathrm{C}_{5}$	$-\mathrm{C}_{4}$	$-\mathrm{jC}_{3}$	j_{5}	C_{4}	$-\mathrm{j} \mathrm{C}_{3}$	j_{5}	- C_{4}	t_{13}
14	2	jC_{4}	jC_{5}	C_{3}	jC_{4}	jC_{5}	$-\mathrm{C}_{3}$	$-\mathrm{jC}_{4}$	${ }^{-j} \mathrm{C}_{5}$	C_{3}	$-\mathrm{j} \mathrm{C}_{4}$	-jC5	- C_{3}	t_{14}
15	2	$\mathrm{j}^{\mathrm{C}} 4$	$-\mathrm{j} \mathrm{C}_{5}$	C_{3}	j_{4}	$-\mathrm{j} \mathrm{C}_{5}$	$-\mathrm{C}_{3}$	$-\mathrm{j} \mathrm{C}_{4}$	j_{5}	C_{3}	$-\mathrm{j} \mathrm{C}_{4}$	j_{5}	- C_{3}	t_{15}
16	3	C_{6}	C_{7}	C_{8}	C_{6}	C_{7}	$-\mathrm{C}_{8}$	- C_{6}	$-\mathrm{C}_{7}$	C_{8}	$-\mathrm{C}_{6}$	$-\mathrm{C}_{7}$	- C_{8}	t_{16}
\ldots	\ldots	\ldots	\ldots	...	\ldots	\ldots	\ldots	...	\ldots	...	\ldots	...	\ldots	\ldots
23	3	jC_{7}	-jC8	C_{6}	j_{7}	$-\mathrm{j}_{8}$	- C_{6}	$-\mathrm{j}_{7}$	j_{8}	C_{6}	-jC7	j_{8}	- C_{6}	t_{20}
24	4	C_{9}	C_{10}	C_{11}	C_{9}	C_{10}	$-\mathrm{C}_{11}$	$-\mathrm{C}_{9}$	$-\mathrm{C}_{10}$	C_{11}	$-\mathrm{C}_{9}$	$-\mathrm{C}_{10}$	$-\mathrm{C}_{11}$	t_{24}
								...	\ldots		
31	4	jC_{10}	$-\mathrm{j}_{11}$	C_{9}	jC_{10}	$-\mathrm{j}_{1}{ }_{11}$	$-\mathrm{C}_{9}$	-jC C_{10}	jC_{11}	C_{9}	-jC C_{10}	j_{11}	$-\mathrm{C}_{9}$	t_{31}

NOTE: The code construction for code groups 0 to 15 using the SCH codes from code sets 1 and 2 is shown. The construction for code groups 16 to 31 using the SCH codes from code sets 3 and 4 is done in the same way.

7.2.3 Gode allocation for Gase 3:

In addition to the information on code group three bits from SCH transport channel are transmitted to the UE with these codes.
Fable 6: Code Allocation for Case 3

Code	Code	Frame 1						Frame 2						Associated toffset	Addll bits from SCH transport channel
Group	Set	Slot k			Slot $\mathrm{k}+8$			Slot k			Slot k+8				
θ	7	G0	G_{1}	G_{2}	G_{0}	G_{1}	-6_{2}	-6_{0}	$-\mathrm{G}_{1}$	G_{2}	-6_{0}	-6_{1}	$-\mathrm{G}_{2}$	to	000
7	7	G_{0}	$-G_{1}$	G_{2}	G_{0}	$-G_{1}$	-6_{2}	$-G_{0}$	G_{4}	G_{2}	$-G_{0}$	6_{1}	-6_{2}	t_{1}	000
2	1	j_{6}	j_{1}	C_{2}	j_{0}	j_{1}	$-\mathrm{C}_{2}$	-jC0	-jC1	C_{2}	-jC0	-jC1	$-\mathrm{C}_{2}$	t_{2}	000
3	4	j_{6}	-jG4	G_{2}	jG_{0}	$\mathrm{j}^{\mathrm{j}} \mathrm{C}_{1}$	$-\mathrm{C}_{2}$	$-j C_{\theta}$	jG_{7}	G_{2}	-j60	jG_{4}	$-\mathrm{C}_{2}$	\ddagger_{3}	000
4	1	j_{6}	jC_{2}	C_{1}	j_{6}	jC_{2}	- C_{1}	-jC0	$-j \mathrm{C}_{2}$	C_{1}	-jC0	$-\mathrm{j}_{2}$	$=\mathrm{C}_{1}$	t_{4}	000
5	4	j_{6}	-jC C_{2}	C_{7}	j_{6}	$\mathrm{-jC}_{2}$	${ }^{-} \mathrm{C}_{4}$	-jC ${ }_{0}$	j_{2}	C_{4}	$-j \mathrm{C}_{\theta}$	jG_{2}	$=\mathrm{C}_{7}$	t_{5}	000
6	7	jC_{1}	jG_{2}	G_{0}	jG_{1}	jG_{2}	- C_{0}	-jG1	${ }_{-j} \mathrm{C}_{2}$	G_{0}	-jG1	jG_{2}	- C_{0}	t_{6}	000
7	4	j_{4}	-j C_{2}	C_{0}	j_{7}	$\mathrm{j}^{\mathrm{j}} \mathrm{C}_{2}$	- C_{0}	${ }_{-j} \mathrm{jC}_{4}$	j_{2}	C_{0}	${ }_{-j} \mathrm{jG}_{7}$	jC_{2}	$=\mathrm{C}_{0}$	t_{7}	000
8	2	G3	G_{4}	G_{5}	G_{3}	6_{4}	-6_{5}	-6_{3}	$-\mathrm{C}_{4}$	G_{5}	$-\mathrm{C}_{3}$	-6_{4}	-6_{5}	\#8	000
9	2	C_{3}	$=\mathrm{C}_{4}$	C_{5}	C_{3}	- C_{4}	$-\mathrm{C}_{5}$	$\mathrm{-C}_{3}$	C_{4}	C_{5}	$\mathrm{-C}_{3}$	C_{4}	$-\mathrm{C}_{5}$	tg	000
10	2	j_{3}	jG_{4}	G_{5}	j_{3}	j_{4}	$-\mathrm{C}_{5}$	-j63	j_{4}	G_{5}	-jG3	j_{4}	$-\mathrm{C}_{5}$	$\ddagger 10$	000
11	2	$\mathrm{jC3}_{3}$	-jG4	C_{5}	$\mathrm{jC3}_{3}$	$-\mathrm{jC}_{4}$	$-\mathrm{C}_{5}$	$-\mathrm{jC}_{3}$	j_{4}	C_{5}	${ }_{-j} \mathrm{C}_{3}$	jC_{4}	$=\mathrm{C}_{5}$	t_{11}	000
12	2	j_{3}	j_{5}	G_{4}	jG_{3}	j_{6}	-6_{4}	-j63	${ }_{-j}{ }^{\text {c }}$	G_{4}	$\mathrm{j}_{-1 \mathrm{G}}$	-j65	$-G_{4}$	\ddagger_{12}	000
13	2	jG_{3}	-j65	G_{4}	jG_{3}	j_{6}	- C_{4}	${ }_{-j} \mathrm{jG}_{3}$	jG_{5}	G_{4}	${ }_{-j} \mathrm{jG}_{3}$	j_{6}	$=\mathrm{C}_{4}$	\ddagger_{13}	000
14	2	j_{4}	j_{5}	G_{3}	j_{4}	j_{5}	$-\mathrm{C}_{3}$	$-j G_{4}$	-j65	E_{3}	$-j G_{4}$	-j65	$-\mathrm{C}_{3}$	\#14	000
15	2	j_{4}	-j65	G_{3}	$\mathrm{jG4}_{4}$	-j65	-6_{3}	$-\mathrm{jG4}_{4}$	j_{6}	G_{3}	$-\mathrm{jG}_{4}$	j_{6}	$-\mathrm{G}_{3}$	\ddagger_{15}	000
16	3	G_{6}	6_{7}	G_{8}	G_{6}	6_{7}	$-\mathrm{C}_{8}$	$-\mathrm{C}_{6}$	$-G_{7}$	G_{8}	$-\mathrm{C}_{6}$	-6_{7}	$-\mathrm{C}_{8}$	${ }^{1} 16$	000
\ldots	\ldots	\ldots	\ldots	\cdots	\ldots										
31	4	j_{10}	j^{-11}	69	j_{10}	${ }_{-j} \mathrm{C}_{11}$	-69	${ }_{-j} \mathrm{C}_{10}$	jC11	G_{9}	${ }_{-j} \mathrm{C}_{10}$	j_{11}	- C_{9}	$\ddagger 31$	000
θ	5	G_{12}	G_{13}	G_{14}	G_{12}	G_{13}	$-G_{14}$	$-G_{12}$	-G13	G_{14}	$-G_{12}$	$-\mathrm{C}_{13}$	$-G_{14}$	to	001
7	5	G_{12}	$-_{13}$	G_{14}	G_{12}	$-G_{13}$	$-\mathrm{C}_{14}$	$-G_{12}$	G_{13}	G_{14}	$-G_{12}$	G_{13}	$-G_{14}$	t_{1}	001
2	5	j_{12}	j_{43}	G_{14}	j_{12}	$\mathrm{j}_{4}{ }^{13}$	$-G_{14}$	j^{-12}	j_{13}	G_{14}	- G_{42}	j^{-13}	$-\mathrm{C}_{14}$	\ddagger_{2}	001
\ldots															
31	8	j_{5}	j_{6}	6_{0}	j_{6}	-j68	$-\mathrm{C}_{0}$	-j65	j_{8}	C_{0}	j_{5}	j_{8}	- 0_{0}	$\ddagger 31$	001
θ	9	G0	G9	G_{12}	G0	G_{9}	$-G_{12}$	-6_{0}	$-\mathrm{C}_{9}$	G_{12}	-60	-69	$-\mathrm{C}_{12}$	to	010
\ldots	\ldots	\ldots	\cdots	\cdots	\ldots	\ldots	\cdots	\cdots	\ldots						
30	32	j_{9}	j_{15}	C_{7}	j_{9}	$\mathrm{j}_{1}{ }^{\text {d }}$	$=\mathrm{C}_{7}$	-jC9	-jC15	C_{7}	-jC9	-jC ${ }_{15}$	$=\mathrm{C}_{7}$	± 30	111
31	32	j_{9}	-jC45	C_{7}	j_{6}	${ }_{-j} \mathrm{C}_{15}$	$=\mathrm{C}_{7}$	-jC9	j_{15}	C_{7}	$-\mathrm{j} \mathrm{C}_{9}$	j_{15}	$=\mathrm{C}_{7}$	\dagger_{31}	111

NOTE: The code construction using code sets 1 to-4 is exactly the same as for Case 2, and the additional bits from the SCH transport channel are "000". The code _ _construction from code sets 5 to 32 is done in the same way with the additional bits for code sets 5 to 8 being "001", code sets 9 to 12 being " 010 ", code sets 13 to-
. 16 being " 011 ", code sets 17 to 20 being " 100 ", code sets 21 to 21 being " 101 ", code sets 25 to 28 being " 110 ", and code sets 29 to 32 being " 111 ".

7.3 Evaluation of synchronisation codes

The evaluation of information transmitted in SCH on code group and frame timing is shown in table 7 , where the 32 code groups are listed. Each code group is containing 4 specific scrambling codes (cf. section 6.3), each scrambling code associated with a specific short and long basic midamble code.

Each code group is additionally linked to a specific $t_{\text {Offset }}$, thus to a specific frame timing. By using this scheme, the UE can derive the position of the frame border due to the position of the SCH sequence and the knowledge of $\mathrm{t}_{\mathrm{Offse}}$. The complete mapping of Code Group to Scrambling Code, Midamble Codes and $\mathrm{t}_{\mathrm{Off} s \mathrm{~s}}$ is depicted in table 7 .

Table 7: Mapping scheme for Cell Parameters, Code Groups, Scrambling Codes, Midambles and $t_{\text {offset }}$

For basic midamble codes m_{P} cf.TS 25.221, annex A 'Basic Midamble Codes'.

25.223 CR 006r1

Current Version:
3.1.0

GSM (AA.BB) or 3G (AA.BBB) specification number \uparrow
\uparrow CR number as allocated by MCC support team

For submission to: TSG RAN\#7
list expected approval meeting \# here
\uparrow
strategic non-strategic \square use only)

Form: CR cover sheet, version 2 for 3GPP and SMG
-

The
Proposed change affects:
(U)SIM \square ME X
UTRAN / Radio X Core Network \square
(at least one should be marked with an X)
Source: TSG RAN WG1
Date: 2000-02-25
Subject: \quad Signal Point Constellation

Work item:

Category:	F	Correction
	A	Corresponds to a correction in an earlier release
(only one category	B Addition of feature	
shall be marked	C	Functional modification of feature
with an X)	D	
		Editorial modification

Release: Phase 2
Release 96
Release 97
Release 98
Release 99
Release 00

-description of signal point constellation aligned to FDD -channelisation and scrambling operation modified and aligned with FDD -SCH description aligned with FDD and signal point constellation of SCH modified

Clauses affected:
$5.2,5.2 .1,5.2 .2,6.1,6.2,6.3,6.4,6.5,7.1$

Other specs	Other 3G core specifications	X	\rightarrow List of CRs:	25.221 CR015r1, 25.224 CR013
affected:	Other GSM core specifications		\rightarrow List of CRs:	
	MS test specifications		\rightarrow List of CRs:	
	BSS test specifications		\rightarrow List of CRs:	
	O\&M specifications		\rightarrow List of CRs:	

Other comments:

<--------- double-click here for help and instructions on how to create a CR.

5 Data modulation

5.1 Symbol rate

The symbol duration T_{S} depends on the spreading factor Q and the chip duration T_{C} : $\mathrm{T}_{\mathrm{s}}=\mathrm{Q} \times \mathrm{T}_{\mathrm{c}}$, where $\mathrm{T}_{\mathrm{c}}=\frac{1}{\text { chiprate }}$.

5.2 Mapping of bits onto signal point constellation

5.2.1 Mapping for burst type 1 and 2

A certain number K of CDMA codes can be assigned to either a single user or to different users who are simultaneously transmitting bursts in the same time slot and the same frequency. The maximum possible number of CDMA codes, which is smaller or equal to 16, depends on the individual spreading factors, the actual interference situation and the service requirements. The applicable burst formats are shown in[7]. The data modulation is performed to the bits from the output of the physical channel mapping procedure in [8] and combines always 2 consecutive binary bits to a complex valued data symbol. Each user burst has two data carrying parts, termed data blocks:

$$
\begin{equation*}
\underline{\mathbf{d}}^{(k, i)}=\left(\underline{d}_{1}^{(k, i)}, \underline{d}_{2}^{(k, i)}, \ldots, \underline{d}_{N_{k}}^{(k, i)}\right)^{\mathrm{T}} \mathrm{i}=1,2 ; \mathrm{k}=1, \ldots, \mathrm{~K} . \tag{1}
\end{equation*}
$$

N_{k} is the number of symbols per data field for the user k. This number is linked to the spreading factor Q_{k} as described in table 1 of [7].

Data block $\underline{\mathbf{d}}^{(k, 1)}$ is transmitted before the midamble and data block $\underline{\mathbf{d}}^{(k, 2)}$ after the midamble. Each of the N_{k} data symbols $\underline{d}_{n}^{(k, i)} ; \mathrm{i}=1,2 ; \mathrm{k}=1, \ldots, \mathrm{~K} ; \mathrm{n}=1, \ldots, \mathrm{~N}_{\mathrm{k}}$; of equation 1 has the symbol duration $T_{s}^{(k)}=Q_{k} \cdot T_{c}$ as already given.

The data modulation is QPSK, thus the data symbols $\underline{d}_{n}^{(k, i)}$ are generated from two interleaved and eneodedconsecutive data bits from the output of the physical channel mapping procedure in [8]:

$$
\begin{equation*}
b_{l, n}^{(k, i)} \in\{0,1\} \quad l=1,2 ; k=1, \ldots K ; n=1, \ldots, N_{k} ; i=1,2 \tag{2}
\end{equation*}
$$

using the equationfollowing mapping to complex symbols:

consecutive binary bit pattern	$\underline{\text { complex symbol }}$
$b_{1, n}^{(k, i)} b_{2, n}^{(k, i)}$	$\underline{\underline{d}_{n}^{(k, i)}}$
$\underline{00}$	$\underline{+\mathrm{j}}$
$\underline{01}$	$\underline{+1}$
$\underline{10}$	$\underline{-1}$
$\underline{11}$	\underline{j}

$$
\begin{equation*}
\frac{\operatorname{Re}\left\{\underline{d}_{n}^{(k, i)}\right\}=\frac{1}{\sqrt{2}}\left(2 b_{1, n}^{(k, i)}-1\right)}{\operatorname{Im}\left\{d_{n}^{(k, i)}\right\}=\frac{1}{\sqrt{2}}\left(2 b_{2, n}^{(k, i)}-1\right) \quad \mathrm{k}=1, \ldots, \mathrm{~K} ; \mathrm{n}=1, \ldots, \mathrm{~N}_{\mathrm{k}} ; \mathrm{i}=1,2 .} \tag{3}
\end{equation*}
$$

The mappingEquation 3 corresponds to a QPSK modulation of the interleaved and encoded data bits $b_{l, n}^{(k, i)}$ of equation 2.

5.2.2 Mapping for PRACH burst type

In case of PRACH burst type, the definitions in subclause 5.2.1 apply with a modified number of symbols in the second data block.. For the PRACH burst type, the number of symbols in the second data block $\underline{\mathbf{d}}^{(k, 2)} \underline{\text { is decreased by }}$ $\underline{\frac{96}{Q_{K}}}$ symbols.

6 Spreading modulation

6.1 Basic spreading parameters

Spreading of data consists of two operations: Channelisation and Scrambling. Firstly, each complex valued data symbol $\underline{d}_{n}^{(k, i)}$ of equation 1 is spread with a eomplex-real valued channelisation code $\underline{c}^{(k)} \underline{c}^{(k)}$ of length $Q_{k} \in\{1,2,4,8,16\}$. The resulting sequence is then scrambled by a complex sequence $\boldsymbol{\forall} \underline{\underline{\mathbf{1}}}$ of length 16 .

6.2 Channelisation codes

The elements $c_{q}^{(k)} \underline{c}_{q}^{(k)} ; \mathrm{k}=1, \ldots, \mathrm{~K} ; \mathrm{q}=1, \ldots, \mathrm{Q}_{\mathrm{k}}$; of the real valued eomplex channelisation codes $\mathbf{c}^{(k)}=\left(c_{1}^{(k)}, c_{2}^{(k)}, \ldots, c_{Q_{k}}^{(k)}\right) \underline{\mathbf{c}}^{(k)}=\left(\underline{c}_{1}^{(k)}, \underline{c}_{2}^{(k)}, \ldots, \underline{c}_{Q_{k}}^{(k)}\right) ; \mathrm{k}=1, \ldots, \mathrm{~K}$; shall be taken from the complex-set

$$
\begin{equation*}
\underline{V}_{c}=\{1, j,-1,-j\}, \mathrm{V}_{\mathrm{c}}=\{1,-1\} \tag{34}
\end{equation*}
$$

In equation 4 the letter j denotes the imaginary unit. A complex channelisation code $\underline{\mathbf{c}}^{(k)}$ is generated from the binary codec $\mathbf{a}_{Q_{k}}^{(k)}=\left(a_{1}^{(k)}, a_{2}^{(k)}, \ldots, a_{Q_{k}}^{(k)}\right)$ of length Q_{k} shown in figure 2 allocated to the $\mathrm{k}^{\text {th }}$ user. The relation between the elements $\underline{e}_{q}^{(k)}$ and $\underline{\boldsymbol{a}}_{q}^{(k)}$ is given by:

$$
\underline{-}_{-}^{(k)}=(\mathrm{j})^{q} \cdot a_{q}^{(k)} a_{q}^{(k)} \in\{1,1\}, \mathrm{q}=1, \ldots, \mathrm{Q}_{\mathrm{k}}
$$

Hence, the elements $\underline{c}_{q}^{(k)}$ of the complex channelisation codec $\underline{e}^{(k)}$ are alternating real and imaginary.
The $\mathbf{c}_{Q_{k}}^{(k)} \mathbf{a}_{Q_{k}}^{(k)}$ are Orthogonal Variable Spreading Factor (OVSF) codes, allowing to mix in the same timeslot channels with $\overline{\text { different spreading factors while preserving the orthogonality. The OVSF codes can be defined using the code tree }}$ of figure $z \underline{1}$.

Figure 1: Code-tree for generation of Orthogonal Variable Spreading Factor (OVSF) codes for Channelisation Operation

Each level in the code tree defines a spreading factor indicated by the value of Q in the figure. All codes within the code tree cannot be used simultaneously in a given timeslot. A code can be used in a timeslot if and only if no other code on the path from the specific code to the root of the tree or in the sub-tree below the specific code is used in this timeslot. This means that the number of available codes in a slot is not fixed but depends on the rate and spreading factor of each physical channel.

The spreading factor goes up to $\mathrm{Q}_{\mathrm{MAX}}=16$.

6.3 Scrambling codes

The spreading of data by a complex-real valued channelisation code $\mathbf{c}^{(k)}$ of length Q_{k} is followed by a cell specific complex scrambling sequence $\forall=\left(v 1, v_{2}, \ldots v_{\text {Qaxa }} \underline{i}=\left(\underline{i}_{1}, \underline{i}_{2}, \ldots, \underline{i}_{16}\right)\right.$. The elements $\underline{i}_{i} ; i=1, \ldots, 16$ of the complex valued scrambling codes shall be taken from the complex set

$$
\begin{equation*}
\underline{\mathrm{V}}_{\underline{v}}=\{1, \mathrm{j},-1,-\mathrm{j}\} \tag{5}
\end{equation*}
$$

In equation 5 the letter j denotes the imaginary unit. A complex scrambling code \underline{i} is generated from the binary $\underline{\text { scrambling codes } v}=\left(v_{1}, v_{2}, \ldots, v_{16}\right)$ of length 16 shown in Annex A. The relation between the elements \underline{i} and $\underline{i ́}$ is given by:

$$
\begin{equation*}
\underline{v}_{i}=(\mathrm{j})^{i} \cdot v_{i} \quad v_{i} \in\{1,-1\}, \mathrm{i}=1, \ldots, 16 \tag{6}
\end{equation*}
$$

Hence, the elements \underline{v}_{i} of the complex scrambling code \underline{i} are alternating real and imaginary.

The length matching is obtained by concatenating $\mathrm{Q}_{\mathrm{MAX}} / \mathrm{Q}_{\mathrm{k}}$ spread words before the scrambling. The scheme is illustrated in figure 3 below and is described in more detail in section 6.4. The applicable serambling codes are shown in Annex A.

Figure 2: Spreading of data symbols

6.4 Spread signal of data symbols and data blocks

The combination of the user specific channelisation and cell specific scrambling codes can be seen as a user and cell specific spreading code $\mathbf{S}^{(k)}=\left(s_{p}^{(k)}\right)$ with

$$
S_{p}^{(k)}=c_{1+\left[(p-1) \bmod Q_{k}\right]}^{(k)} . \underline{\underline{i}}_{1+\left[(p-1) \bmod Q_{M A X}\right]} S_{p}^{(k)}=c_{1+\left[(p-1) \bmod Q_{k}\right]}^{(k)} . i_{1+\left[(p-1) \operatorname{mot} Q_{M A X}\right]}, \mathrm{k}=1, \ldots, \mathrm{~K}, \mathrm{p}=1, \ldots, \mathrm{~N}_{\mathrm{k}} \mathrm{Q}_{\mathrm{k}} .
$$

With the root raised cosine chip impulse filter $\mathrm{Cr}_{0}(\mathrm{t})$ the transmitted signal belonging to the data block $\underline{\mathbf{d}}^{(k, 1)}$ of equation 1 transmitted before the midamble is

$$
\begin{equation*}
\underline{d}^{(k, 1)}(t)=\sum_{\mathrm{n}=1}^{N_{k}} \underline{d}_{n}^{(k, 1)} \sum_{q=1}^{Q_{k}} s_{(n-1) Q_{k}+q}^{(k)} \cdot C r_{o}\left(t-(q-1) T_{c}-(n-1) Q_{k} T_{c}\right) \tag{6}
\end{equation*}
$$

and for the data block $\underline{\mathbf{d}}^{(k, 2)}$ of equation 1 transmitted after the midamble

$$
\begin{equation*}
\underline{d}^{(k, 2)}(t)=\sum_{\mathrm{n}=1}^{N_{k}} \underline{d}_{n}^{(k, 2)} \sum_{q=1}^{Q_{k}} s_{(n-1) Q_{k}+q}^{(k)} \cdot C r_{0}\left(t-(q-1) T_{C}-(n-1) Q_{k} T_{c}-N_{k} Q_{k} T_{c}-L_{m} T_{c}\right) . \tag{7}
\end{equation*}
$$

where L_{m} is the number of midamble chips.

6.5 Modulation

The complex-valued chip sequence is QPSK modulated as shown in Figure 3 below.

Figure 3: Modulation of complex valued chip sequences

7 Synchronisation codes

7.1 Code Generation

The Primary code sequence, C_{p} is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.

Letting $a=\left\langle x_{1}, x_{2}, x_{3}, \ldots, x_{16}\right\rangle=\langle 0,0,0,0,0,0,1,1,0,1,0,1,0,1,1,0\rangle$ and
$\mathrm{b}=\left\langle x_{1}, \ldots, x_{8}, \bar{x}_{9}, \ldots, \bar{x}_{16}\right\rangle=\langle 0,0,0,0,0,0,1,1,1,0,1,0,1,0,0,1\rangle$
The PSC code is generated by repeating sequence ' a ' modulated by a Golay complementary sequence.

Letting $y-<a, a, a>$

The definition of the PSC code word C_{p} follows (the left most index corresponds to the chip transmitted first in each time slot):
$C_{p}=\langle y(0), y(1), y(2), \ldots, y(255)\rangle$.
Let the length 256 mask sequence z be given as, $\mathrm{z}=<b, b, b, \bar{b}, b, b, \bar{b}, \bar{b}, b, \bar{b}, b, \bar{b}, \bar{b}, \bar{b}, \bar{b}, \bar{b}>$.
Then the Secondary Synchronization code words, $\left\{\mathrm{C}_{0}, \ldots, \mathrm{C}_{15}\right\}$ are constructed as the position wise addition modulo 2 of a Hadamard sequence and the sequence z.

The Hadamard sequences are obtained as the rows in a matrix H_{8} constructed reeursively by:

$$
\begin{gathered}
H_{0}=(0) \\
H_{k}=\left(\begin{array}{cc}
H_{k-1} & \frac{H_{k-1}}{H_{k-1}}
\end{array}\right) \quad k \geq 1 \\
H_{k-1}
\end{gathered}
$$

The rows are numbered from the top starting with row 0 (the all zeros sequence), h_{0} -
The Hadamard sequence h depends on the chosen code number n and is denoted h_{n} in the sequel.
This code word is chosen from every $16^{\text {th }}$ row of the matrix H_{8}, which yields 16 possible codewords $n=0,1, \ldots, 15$.
Furthermore, let $h_{t r}(i)$ and $z(i)$ denote the i : th symbol of the sequence h_{t} and z, respectively.
The definition of the n :th SCH code word follows (the left most index correspond to the chip transmitted first in each slot):

$$
\mathrm{C}_{\mathrm{SCH}, \mathrm{n}}=\left\langle\mathrm{h}_{\mathrm{n}}(\theta)+\mathrm{z}(0), \mathrm{h}_{\mathrm{n}}(1)+\mathrm{z}(1), \mathrm{h}_{\mathrm{n}}(2)+\mathrm{z}(2), \ldots, \mathrm{h}_{\mathrm{n}}(255)+\mathrm{z}(255)\right\rangle
$$

All sums of symbels are taken modulo 2.
These PSC and SSC binary code words are converted to real valued sequences by the transformation
${ }^{\prime} 0$ ' $>{ }^{\prime}+1$ ', ' 1 ' $>{ }^{\prime} 1^{\prime}$.
The Secondary SCHeode words are defined in terms of $\mathrm{C}_{\mathrm{SCH}, \mathrm{n}}$ and the definition of $\left\{\mathrm{C}_{\theta}, \ldots, \mathrm{C}_{15}\right\}$ now follows as:

$$
\mathrm{C}_{\mathrm{i}}=\mathrm{C}_{\mathrm{SCH}, i}, \mathrm{i}=0, \ldots, 15
$$

The Primary code sequence, $\mathrm{C}_{\underline{p}}$ is constructed as a so-called generalised hierarchical Golay sequence. The Primary SCH is furthermore chosen to have good aperiodic auto correlation properties.
$\left.\underline{\text { Define } a=\left\langle x_{1}, x_{2}, x_{3}\right.} \underline{2}_{2} \ldots, x_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,1,-1,1,-1,1,-1,-1,1\rangle$
The PSC code word is generated by repeating the sequence ' a ' modulated by a Golay complementary sequence and creating a complex-valued sequence with identical real and imaginary components.

The PSC code word C_{p} is defined as $C_{p}=\langle y(0), y(1), y(2), \ldots, y(255)\rangle$
where $y=(1+\mathrm{j}) \times<a, a, a,-a,-a, a,-a,-a, a, a, a,-a, a,-a, a, a>$
and the left most index corresponds to the chip transmitted first in each time slot.
The 16 secondary synchronization code words, $\left\{\mathrm{C}_{\underline{0}} \ldots, \mathrm{C}_{\underline{15}}\right\}$ are complex valued with identical real and imaginary components, and are constructed from the position wise multiplication of a Hadamard sequence and a sequence z , defined as

$$
\begin{aligned}
& \underline{\mathrm{z}}=\langle b, b, b,-b, b, b,-b,-b, b,-b, b,-b,-b,-b,-b,-b\rangle \\
& \underline{\mathrm{b}=}\left\langle x_{1}, \ldots, x_{8},-x_{9}, \ldots,-x_{16}\right\rangle=\langle 1,1,1,1,1,1,-1,-1,-1,1,-1,1,-1,1,1,-1\rangle
\end{aligned}
$$

The Hadamard sequences are obtained as the rows in a matrix $H_{\underline{8}}$ constructed recursively by:

$H_{0}=(1)$
$H_{k}=\left(\begin{array}{cc}H_{k-1} & H_{k-1} \\ H_{k-1} & -H_{k-1}\end{array}\right), \quad k \geq 1$

The rows are numbered from the top starting with row 0 (the all zeros sequence).
Denote the n :th Hadamard sequence as a row of $\underline{H}_{\underline{8}} \underline{\text { numbered from the top, } \mathrm{n}=0,1,2, \ldots, 255, \underline{\text { in }} \text { the sequel. }}$
Furthermore, let $h_{\underline{m}}(i)$ and $z(i)$ denote the i :th symbol of the sequence $h_{\underline{m}}$ and z, respectively where $i=0,1,2, \ldots, 255$ and $i=0$ corresponds to the leftmost symbol.

The i:th SCH code word, $\mathrm{C}_{\text {SCH, }, \mathrm{i}}, \mathrm{i}=0, \ldots, 15$ is then defined as

$$
\underline{\mathrm{C}}_{\underline{\text { SCH }, \mathrm{i}}}=(1+j) \times\left\langle h_{\underline{m}}(0) \times z(0), h_{\underline{m}}(1) \times z(1), h_{\underline{m}}(2) \times z(2), \ldots, h_{\underline{m}}(255) \times z(255)>,\right.
$$

where $m=(16 \times i)$ and the leftmost chip in the sequence corresponds to the chip transmitted first in time .
This code word is chosen from every $16^{\text {th }}$ row of the matrix $H_{\underline{g}}^{\underline{0}}$, which yields 16 possible codewords.
The Secondary SCH code words are defined in terms of $\mathrm{C}_{\underline{S C H}, \mathrm{i}}$ and the definition of $\left\{\mathrm{C}_{0}, \ldots, \mathrm{C}_{\underline{15}}\right\}$ now follows as:
$\underline{\mathrm{C}}_{\underline{i}}=\mathrm{C}_{\underline{S C H}, \mathrm{i}}, \underline{i=0, \ldots, 15}$

