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PAPR Reduction for Precoded EGPRS2 DL
1. Introduction

Precoded EGPRS2 DL (PCE2) [1] is a new feature currently under study in 3GPP GERAN to improve the link level performance of EGPRS2 by applying the Inverse Discrete Fourier Transform (IDFT) precoding on the burst. PCE2 can be considered as an Orthogonal Frequency Division Multiplexing (OFDM) technique. 
However, a major drawback in including IDFT precoding at the transmitter is a resulting significant increase in the peak-to-average power ratio (PAPR). This increase in PAPR results in a large backoff of the average transmit power with respect to the maximum transmit power supported by the power amplifier and/or result in distortion of transmitted signals due to a limited linear range of the power amplifier. Since PCE2 is expected to satisfy the current requirements for spectrum, it is likely that a large backoff is needed to achieve this. A large backoff will reduce the coverage of the services using PCE2 and if used on BCCH with high backoff, this might also have an impact on cell reselection performance. Hence, techniques to reduce the peak-to-average power ratio of the PCE2 signal should be investigated. High peak-to-average power ratio is a well known problem in OFDM and a number of techniques have been in literature to reduce the PAPR of an OFDM signal. Several techniques to reduce the PAPR values in PCE2 have been also proposed in [1], [2]. 
This contribution introduces an approach to reduce the PAPR in PCE2 by using multiple pilot sequences.
2. PAPR of PCE2 signals
2.1 Burst format of PCE2
As shown in Fig. 1, in general PCE2 preserves the channel coding, burst formatting and symbol mapping processes in EGPRS2. 
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Fig. 1 Block diagram of a PCE2 transmitter. 
Each burst of EGPRS2-A or EGPRS2-B consists of 142 or 169 symbols respectively, in which 26 or 31 training sequence symbols are located in the middle of the burst. Assume that a PCE2 burst has the same number of data and pilot (training) symbols as EGPRS2. Data symbols and pilot symbols in each PCE2 burst are allocated to the designated subcarrier positions before IDFT operation. Unlike EGPRS2, pilot symbols in a PCE2 burst are spread through the whole burst in the frequency domain. Fig. 2 shows an example of data and pilot symbol allocation in a PCE2-A burst where a legacy EGPRS2 training sequence of 26 symbols is reused as the pilot sequence 
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Fig.2 Burst format of PCE2 in frequency domain (before IDFT operation).
2.2 PAPR
Assume a length-N symbol burst of PCE2 to be 
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 with both data and pilot symbols. The IDFT of a PCE2 burst 
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After Tx filtering (with oversampling rate L), the output signal 
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 is generated. And the PAPR of signal 
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Fig. 3 shows the complementary cumulative density function (CCDF) of PAPR for 8-PSK, 16-QAM, 32-QAM and 64-QAM modulated PCE2-A signals. CCDF is defined as the probability when the PAPR value of an OFDM symbol is larger than a reference PAPR level PAPR0. Note that LGMSK transmit filter is applied to the IDFT precoded signals 
[image: image13.wmf]n

x

. Fig. 3 shows that the PAPR performance of PCE2-A signals with different modulation types is similar. A PAPR value is higher than 11.7 dB with a probability lower than 10-4. Compared to EGPRS2 [1], PCE2 significantly increases the PAPR.  
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Fig. 3 CCDF of PAPR in PCE2-A with LGMSK transmit filter).
3. PAPR reduction with pilot sequences
3.1 Linearity of DFT operation

Decoupling a PCE2 burst 
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. As presented in Fig. 4a and Fig. 4b, in frequency domain 
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Fig. 4a Data burst 
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Fig. 4b Pilot burst 
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where 
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3.2 PAPR reduction using multiple pilot sequences
Based on (3), given a data burst 
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, can be modified with the IDFT of the pilot burst 
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 depends only on the given pilot sequence and the pilot burst structure as shown in Fig. 4b and is independent of the corresponding data burst in the same PCE2 burst. Therefore, the IDFTs of multiple length-N pilot bursts 
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) may be pre-calculated and stored in memory at the transmitter. 
This method for PAPR reduction using multiple pilot sequences is called multi-pilot-sequence-aided (MPSA) PAPR reduction. The block diagram of the PCE2 transmitter with MPSA PAPR reduction is shown in Fig. 5. 
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Fig. 5 Block diagram of a PCE2 transmitter with PAPR optimization using pilot sequence.

In MPSA, after symbol mapping, as described in Fig. 4a, 
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 data symbols are mapped on to the data subcarrier positions (e.g., D1 to D116) to generate a data burst 
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Similar to modulation detection in a receiver, the pilot sequence used in a burst can be blindly detected in conjunction or independently with the channel estimation. 

To simplify the implementation of the transmitter/receiver in MPSA PAPR reduction, the following two methods are considered for generation of the IDFTs of multiple pilot bursts.
3.2.1 Circular-shifted pilot sequences (CSPS) for MPSA PAPR reduction
Training sequences used in EGPRS2 [3] are well-designed with good correlation properties. An EGPRS2 training sequence and its circular-shifted versions can be considered to generate multiple pilot bursts in PCE2. This can reduce implementation complexity since the storing of only one pilot sequence is needed at the receiver. Nevertheless, IDFTs related to the multiple pilot sequences in CSPS must still be pre-calculated and stored.
Simulations show that for precoded DAS with 16-QAM modulation for given M CSPS, cir-M, the PAPR performance for all eight training sequences TSC0, …, TSC7 defined in [3] is similar.

Figs. 6a-d present the CCDF of PAPR of 8-PSK, 16-QAM, 32-QAM and 64-QAM modulated PCE2-A signals respectively. TSC 3 of each modulation type [3] is used as the initial pilot sequence without an offset. The PAPRs of PCE2 signals using 1, 4, 8 and 16 circular-shifted pilot sequences are evaluated at the probability of 10-4 and compared in Table 1.
Table 1 shows that with 4 circular pilot sequences, compared to the PAPR of the normal PCE2 (denoted as cir-1 in the figures) the PAPR value at the probability of 10-4 can be reduced to between 1.0 ~ 1.5 dB; while with 8 circular pilot sequences, the PAPR value at the probability of 10-4 can be reduced to between 1.5 ~ 2.1 dB.
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Fig. 6a PAPR CCDF of PCE2-A signals with CSPS 

(8-PSK).
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Fig. 6b PAPR CCDF of PCE2-A signals with CSPS

(16-QAM).
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Fig. 6c PAPR CCDF of PCE2-A signals with CSPS

(32-QAM).
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Fig. 6d PAPR CCDF of PCE2-A signals with CSPS (64-QAM).


Table 1 Comparison of PAPR at 10-4 of PCE2 signals using CSPS (in dB).

	Modulation 
	PCE2 PAPR (cir-1)
	PCE2 PAPR (cir-4)
	PCE2 PAPR (cir-8)
	PCE2 PAPR (cir-16)

	8-PSK
	11.7
	10.7
	10.2
	9.9

	16-QAM
	11.6
	10.3
	9.6
	9.3

	32-QAM
	11.6
	10.3
	9.7
	9.3

	64-QAM
	11.5
	10.0
	9.4
	9.0


3.2.2 Circular-shifted IDFTs of pilot sequences (CSIPS) for MPSA PAPR reduction
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Figs. 7a-d show the CCDF of PAPR of 8-PSK, 16-QAM, 32-QAM and 64-QAM modulated PCE2-A signals using multiple CSIPS, respectively. TSC 3 of each modulation type is used as the initial pilot sequence [3]. The PAPRs of PCE2 signals using 1, 4, 8 and 16 circular-shifted IDFTs of pilot sequences are evaluated at the probability of 10-4 and compared in Table 2.

Table 2 demonstrates that with 4 circular-shifted IDFTs of pilot sequences, compared to the PAPR of the normal PCE2 (denoted as shift-1 in the figures), the PAPR value at the probability of 10-4 can be reduced between 1.2 ~ 1.6 dB; while with 8 circular pilot sequences, the PAPR value at the probability of 10-4 can be reduced between 1.6 ~ 2.4 dB. Further PAPR reduction can be achieved by employing more circular-shifted versions of the IDFTs of the initial pilot sequence.
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Fig. 7a PAPR CCDF of PCE2-A signals with CSIPS 

(8-PSK).
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Fig. 7b PAPR CCDF of PCE2-A signals with CSIPS

(16-QAM).
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Fig. 7c PAPR CCDF of PCE2-A signals with CSIPS

(32-QAM).
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Fig. 7d PAPR CCDF of PCE2-A signals with CSIPS (64-QAM).


Table 2 Comparison of PAPR at 10-4 of PCE2 signals using CSIPS.

	Modulation 
	PCE2 PAPR (shift-1)
	PCE2 PAPR (shift-4)
	PCE2 PAPR (shift-8)
	PCE2 PAPR (shift-16)

	8-PSK
	11.7
	10.5
	10.1
	9.7

	16-QAM
	11.6
	10.1
	9.5
	9.1

	32-QAM
	11.6
	10.2
	9.5
	9.1

	64-QAM
	11.5
	9.9
	9.1
	8.8


4. Summary
· Multi-pilot-sequence-aided (MPSA) PAPR reduction employs the linearity of IDFT. Therefore, data burst and pilot burst can perform IDFT operation independently. Multiple versions of IDFT precoded burst can be generated using only one IDFT calculation for the data burst (the IDFTs of multiple pilot bursts can be pre-calculated and stored);
· Both CSPS and CSIPS can effectively reduce PAPR. It seems that CSIPS results in more gains than CSPS. Also for CSIPS, only one IDFT of a pilot burst needs to be stored. Other IDFTs can be generated by circularizing the stored IDFT.
· For MPSA, no redundancy is added and no signaling is required. MPSA does not distort the precoded signal;
· Unlike hard/soft clipping, MPSA does not have any impact on EVM. The spectrum of PCE2 signals using MPSA remains unchanged.
· MPSA can effectively reduce the PAPR of PCE2 signals. The complexity increase at the transmitter is minimal because the IDFTs of the pilot sequences can be pre-calculated and stored. MPSA may be combined with other PAPR reduction techniques to further reduce the PAPR of PCE2 signals;

· Performance of blind detection for multiple pilot sequences and the complexity is FFS.
· PAPR performance of different data symbol and pilot symbol allocations is FFS.
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