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Graceful RACH Overload Relief
1 Introduction

When an EGPRS capable mobile station wants to request resources in a GERAN network it will do so by e.g. sending an EGPRS PACKET CHANNEL REQUEST on the Random Access Channel (RACH).  This RACH channel operates within a TDMA frame structure consisting of approximately 217 TDMA frames (aka RACH slots) per second. These access attempts sent on the RACH are not explicitly scheduled by the network, but rather a collision-based approach is used according to a procedure as defined 3GPP TS 44.081 (See ref. [1]). 

The RACH channel can thus be described as a so-called Slotted Aloha channel, for which the accessing users/devices apply a re-attempt strategy (in case the first access attempt fails) which includes a pseudo-random waiting time used to determine when a new access attempt can be made. This waiting time shall be randomly drawn from a uniform distribution defined by system parameters which are broadcasted on the BCCH in the cell, and is currently the same for all PS related access attempts by all users/devices in the cell. These parameters consist of a minimum waiting time which is S TDMA frames, and a width of the uniform distribution of the pseudo-stochastic part of the waiting time which is T TDMA frames. Also, there is a parameter M which defines the maximum total number of access attempts that shall be performed by each user/device before aborting the access procedure.

The RACH may however, because of it’s collision-based nature, in certain situations become overloaded, so that a large fraction (sometimes all) access attempts for any kind of service will fail because of too many simultaneously accessing devices. As pointed out in [2] and , there is especially a risk that so-called “smart meters” may generate their RACH attempts at, or around, the same time, and thereby contribute to such an overload-situation. Thus measures must be taken to resolve such a situation. The current means to avoid this situation are however, as is discussed in this paper, not effective enough in some situations - especially in the context of MTC and smart meters.
2 Problem Description

The problem that arises is when there are many devices trying to access the RACH channel simultaneously, or almost simultaneously. Normally this is not a problem, as there are approximately 217 RACH frames per second and with human controlled devices a reasonable assumption to make is that the RACH access attempts are not synchronized between the various users/devices. Thus, in these situations, the capacity of the RACH becomes more of a dimensioning issue since it is possible to have up to 4 RACH channels in one cell.

Even so, the main problem is however that if many synchronized devices, e.g. electricity meters from power-companies that upload the electricity consumption once a day at a given time, try to make an access to the system via the RACH simultaneously. Even if these access attempts are not individually synchronized to a 5 ms level, the sheer amount of devices will result in a substantial amount of synchronized access attempts.  This problem was highlighted in [2] and also to some extent discussed in [3].
Now, having a retry scheme where the users wait a random period of time, where the randomness as per the existing solution in 3GPP TS 44.081 (See ref. [1]) is picked from a uniform distribution, will therefore provide problems when there is a large “spike” in the number of users trying to access the RACH at the same time. The risk is quite large in these situations that the users/devices which collided at the initial access attempt will also continue colliding at any subsequent access attempt. This in turn may cause “outage periods” where the RACH, and thus the whole system, is totally inaccessible with a periodicity approximately corresponding to the implicitly broadcasted parameter S. (See “

Appendix A – Analysis of the Existing Procedure
” later for more details).

To further illustrate the problem, the probabilistic behaviour over time is shown in Figure 1 below for the case when 100, 300 and 1000 users attempt to access the system via the RACH when T=50, S=55 (non-combined CCCH) and M=4. Figure 1 shows the expected number access attempts per RACH slot when all performing the first access attempt at air frame number 0. Every time the values in the graph exceeds the value 1 (as marked in the figure) there are in average more than one access attempt per RACH slot, whereupon the RACH and thus the cell will in practice be inaccessible during these instances. (This value 1 corresponds to the maximum-utilization-peak of a Slotted ALOHA channel as depicted in e.g. [3].)

[image: image1.png]
Figure 1 - 
Probabilistic behaviour over times using the existing procedure defined in Ref. [1] for the simultaneous access attempts of 100 users (left), 300 users (middle) and 1000 users (right) when T=50, S=55 (non-combined CCCH) and M=4.

After the first waiting period (55-1 TDMA frames) as much as 362 TDMA frames are needed before all access attempts are successful or the corresponding user has aborted the access procedure after reaching the maximum 4 access attempts. For the case of 100 users.237/362≈65% of the RACH slots experience collisions. The corresponding values for the 300 user case is 300/362≈83% and for the 1000 user case 323/362≈89%. 

The effective utilization of the RACH is thus very poor during this time and, perhaps more importantly, the RACH and thus any access to the cell is unavailable throughout the entire time, 362 TDMA frames (≈1.7 seconds)

An estimate of the number of users that will get admitted can be made by summation of the graphs in . Figure 1 over the interval where the expected number of users is less than or equal to one. Thus for 100 users approximately 52 will be admitted, for 300 users approximately 17 will be admitted and for 1000 users approximately 10 users will be admitted. 
3 Proposed Solution

As was discussed in the previous Section 2, having a retry scheme as defined today in 3GPP TS 44.081 (See ref. [1]) where the users wait a random period of time, where the randomness is picked from a uniform distribution, will provide problems when there is a large spike in the number of users trying to access the RACH simultaneously. As stated there, the risk is quite large in these situations that the users/devices which collided at the initial access attempt will also continue colliding at any subsequent transmission attempt. As seen, this will in turn cause “outage periods” where the RACH, and thus the whole cell or system, is totally inaccessible with a periodicity approximately corresponding to the broadcasted parameter S or even S*M;

The proposal is to modify the existing procedure as given by 3GPP TS 44.081 (See ref. [1]) in the following manner:

1. Introduce a new parameter i, which defines the spreading of the probability density function for each successive access attempt.  (See Section B.1 for details)
2. Let the accessing user/device use a random wait time for the j-th retry to access the RACH as a function of i and j. (See Section B.1 for details)
3. Optionally – introduce another parameter r stating if an initial random delay should be applied, as is already the case today when the device is requesting resources for a CS connection or for a PS connection in response to a paging message. (See Section B.2 for details)
4. Optionally – introduce yet another a parameter u controlling if the system should aim at maximizing the peak RACH load capacity or at minimizing the access delay for MTC devices. 
(See Section B.3 for details)
To illustrate the benefit of the here proposed procedure, again the same probabilistic behaviour over time as shown in Figure 1 is shown for the new proposed procedure in Figure 2 below. Again for the case when 100, 300 and 1000 users attempt to access the system via the RACH when T=50, S=55 and M=4. Figure 2  shows the expected number access attempts per RACH slot when all performing the first access attempt at air frame number 0. Every time the values in the graph exceeds the value 1 (as marked in the figure) there are in average more than one access attempt per RACH slot, whereupon the RACH and thus the cell will in practice be inaccessible during these instances. (This value 1 corresponds to the maximum-utilization-peak of a Slotted ALOHA channel as depicted in e.g. [3].)
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Figure 2 -  Probabilistic behaviour over times for the here proposed procedure for the simultaneous access attempts of 100 users (left), 300 users (middle) and 1000 users (right) when T=50, S=55, M=4 and j=10.

Naturally, it takes longer before all users are served, but it is possible to avoid the peaks associated with the aggregated distribution even after the third access attempt. Further, there really is no need for a fourth access attempt with i=10, since that would require some 25000 users arriving exactly simultaneous (with the current parameter setting). For each of the scenarios the following happens:

100 users: All are served on the second access attempt. During the second access attempt they occupy approximately 20% of the RACH slots. Thus the RACH channel is only completely blocked during 0.23 s (access attempt 1).

300 users: All are served on the second access attempt, during the second access attempt they occupy approximately 60 % of the RACH slots, Thus the RACH channel is only completely blocked during 0.23 s (access attempt 1) and still has a limited capacity of 40 % during an additional 2.5 s.

1000 users: All are served on the third access attempt, during the third attempt they occupy approximately 4 % of the resources. Thus there is still 96% of the capacity available. The RACH channel is pretty much completely blocked during 2.73 s (access attempt 1 and 2). The third access attempt takes place during ~112s.

What is important is that we are able to avoid the extreme peaks and outages of the RACH by employing a random distribution which is spreading the access attempts more for each subsequent access attempt. As pointed out earlier it is possible to rearrange the order of the distributions, thus greatly increasing the delay of MTC devices but making the impact on the RACH channel for other users minimal.

4 Discussion

The problems discussed in Section 2 are based on what is currently defined by 3GPP TS 44.081 (See ref. [1]) when the device is requesting resources for a PS connection other than in the case of sending a paging response. In all other cases, such as when e.g. the device is requesting resources for a CS connection or for a PS connection in response to a paging message, then already the first initial access attempt on the RACH shall be randomly distributed according to the herein described procedure but with S having the value 0 for this first attempt. Thus, the principal behaviour for this case will still be exactly the same if applied to the traffic situation of an access “spike” as considered here, but with the difference being that what is herein described as “retransmission j” rather shall be seen as “transmission j” (or “ retransmission j-1”). Thus, the end results as presented here wrt both problems and solution will still be valid also for this case. Therefore, e.g. re-introducing this behaviour also for the case when the device is requesting resources for a PS connection other than in the case of sending a paging response, will not solve anything at all.
5 Conclusion
This paper has shown that when more users try to access the system than the width of the random delay value specified (i.e. the parameter T), then any subsequent use of the same distribution will still result in collisions on the RACH. This also applies even if a random wait time with uniform distribution is introduced before any MTC users/devices can make their first RACH access attempt. Therefore the existing procedures as define in 3GPP TS 44.018 (See Ref. [1]) will not be sufficient for these cases.

The proposal made in this paper provides a way of creating a set of wait time distributions applied over more than one access attempt to spread the users approximately uniformly over time (contrary to today’s solution). This in turn will free up system resources faster and thus increase the availability of the RACH. This could also be described as that the RACH will not be blocked for such long periods of time compared to today’s solution when a considerable amount of MTC users/devices arrive simultaneously.

Bearing this in mind, it is proposed that TSG GERAN consider this proposed procedure in the context of the ongoing work on Machine-Type-Communications.
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Appendix A – Analysis of the Existing Procedure 

As said earlier, the RACH channel can be described as a so-called Slotted Aloha channel, for which the accessing users/devices apply a re-attempt strategy (in case the first access attempt fails) which includes a pseudo-random waiting time used to determine when a new access attempt can be made. This waiting time shall be randomly drawn from a uniform distribution defined by system parameters which are broadcasted on the BCCH in the cell, and is currently the same for all PS related access attempts by all users/devices in the cell. These parameters consist of a minimum waiting time which is S TDMA frames, and a width of the uniform distribution of the pseudo-stochastic part of the waiting time which is T TDMA frames. Also, there is a parameter M which defines the maximum total number of access attempts that shall be performed by each user/device before aborting the access procedure.

Thus, given these parameters S and T, let the discrete stochastic variable X denote the time a user has to wait after an failed access attempt (an access attempt will here be considered failed if two or more users/devices try to access the same RACH slot) before making a new access attempt. The probability density function for X can be described as
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 as depicted in Figure 3 below.


[image: image4]
Figure 3 - Discrete probability density function

Let us assume that there are in total 
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users attempting to access simultaneously on one and the same RACH slot. For the sake of simplicity we have assumed that the total number of users is a multiple of T. Thus the access attempts by these users can be described as a unit impulse in time,
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Let h(j) describe how the users are distributed in time at the j-th retransmission attempt. After the first retransmission event
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Figure 4 below depicts the distribution of users at the first retransmission attempt.


[image: image8]
Figure 4 - Distribution after first access attempt

Clearly, if k > 1 more than one user/device will try to access each RACH slot in the interval [S, S+T-1], and as a consequence no users/devices will be served due to the collisions that thereby will occur. For T or fewer users this will not be a problem as all users will be served (given that they are evenly distributed, but how to ensure that is out of the scope of this document).

If, on the other hand, k > 1 then for sure another access attempt will occur. After this second access attempt event the users are distributed according to
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Figure 3 below depicts how the users are distributed after the second access attempt.
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Figure 5 - Distribution after second access attempt

Since k > 1 all users can not be served (as the peak of the distribution is k). If the case is that k > T , then obviously no users will be served. This corresponds to that the total amount of users is
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Now, assuming that (1) is fulfilled, there will be a third access attempt. From this point on no exact distributions of the users will be given in this document for the sake of simplicity. Instead what will be provided is a lower bound on the number of users that can be served. That is, the minimum number of users which will be served after the j-th access attempt.

After the third access attempt the users will now be distributed according to:
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 as sketched in Figure 6 below:


[image: image13]
Figure 6 - Distribution after third access attempt

Although possible, no exact expressions for the distribution h(3)[n] are provided here. Instead, an upper bound is provided.

First, in this case we only consider odd values T, but a similar bound can be provided for even T. It shall further also be noted that the value of MaxP depends on whether T is even or odd as per:


[image: image14.wmf](

)

(

)

(

)

even

T

odd

T

T

T

T

MaxP

ï

ï

î

ï

ï

í

ì

ú

û

ù

ê

ë

é

+

-

-

-

-

=

2

1

1

3

,

2

1

1

3

2

1

3

,

where the even case includes that there are two maximum values of h(3)[n]. 

The peak value of the distribution is 
[image: image15.wmf]k
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. Note that this inequality will not be tight if inequality (1) does not hold. What can be done instead is to approximate how many users that will not be served in the situation depicted in Figure 5. A rough estimation can be done by assuming that the distribution is a continuous function and thereafter calculate the integral in the interval where h(2)[n] >1, denote this area ACA, and compare it to the total integral, AT. In this manner the percentage of users that will not be served at the second access attempt can then be approximated by
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where KR2 denotes the number of users not served by the second access attempt event. Thus we can approximate MaxA as: 
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It should be noted that the left and right limits of the distribution h(3)[n] in Figure 6 are affected if 
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, but as the aim here is to only provide an upper bound we assume the bounds left and right limit are kept intact as depicted in this figure. 

Further, let the number of users/devices which still has not been served after the third access attempt be denoted KR3. If after the third access attempt 
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still no users have been served, then KR3 = K. On the other hand, if 
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, then the upper bound can still be used to approximate how many users will not get served out of the total number of users using simple summation.
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where 
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A similar argument can be made for access attempt event 4, R4, where MaxA can be approximated by
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Assume that access attempt event R4 is the last access attempt event, as determined by the on the BCCH broadcasted parameter M. It then becomes critical that MaxA is smaller than k, otherwise all user will not be served. Thus we should avoid the situation where 
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Further, it is desirable to serve all users so that they don’t occupy future system resources, thus we desire that for all users to be served that
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Appendix B – Analysis of the Proposed Modified Procedure 

As was done previously, let the total number of users/devices trying to access one and the same RACH slot be
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As one RACH slot can serve only one user without risking any collisions, then ideally we would like to spread the subsequent access attempts uniformly, so that after a collision the user waiting time (again let us denote it by the stochastic variable X) will be distributed as:
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, which is depicted in Figure 7 below.
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Figure 7 - Ideal desired discrete density function

B.1 Spreading the probability density for each successive attempt

As it obviously is not possible to in advance know how many devices that are trying to access one RACH slot simultaneously, a better approach is to create a probability density distribution for a pseudo-random wait timer, denoted it pXi,j, which approximates the ideal distribution well enough after say j access attempts. That is


[image: image30.wmf][

]

[

]

x

p

x

p

p

p

ideal

X

j

j

i

X

i

X

i

X

»

*

*

*

4

4

4

3

4

4

4

2

1

K

,

2

,

1

,

.

Now, let the first access attempt be given, as previously, by pX[x]. Let us thereafter create an interleaved uniform probability density function consisting of T unit impulses (normalized to amplitude 1/T) separated i in time, that is
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[image: image32]
Figure 8 - Interleaved uniform density function

The interleaved density function is depicted in Figure 8. The convolution between pX[x] and pX(i)[x] can be divided into two different cases, 
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The distribution of K users for 
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after the second access attempt can be depicted as in Figure 9.


[image: image36]
Figure 9 - Distribution after second access attempt, special case i = T

Note that in Figure 9 the special case i = T is depicted, if i > T there will be (i-T) zeros after each consecutive T impulses.

The distribution of K users for i<T can be upper bounded as in Figure 10.
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Figure 10 - Distribution after second access attempt, i<T
Note 1: The left limit of where MaxA first is obtained is given by 
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, thus an upper bound on the distribution is obtained.

Note 2: The right limit of where MaxA last is obtained can in a similar way be upper bounded by 
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Otherwise, the MaxA value can be approximated by 
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Thus compared to the existing solution we are able to avoid any further collisions after the second access attempt if 
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, where i is a design parameter, which can possibly be a new system parameter broadcasted on the BCCH.

The density distribution function h(2,i)[x] can be upper bounded by the box function with amplitude MaxA and length ((T-1)i + T). Let
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The case 
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really is of no interest as we then are increasing the delay without increasing the number of users that can be served. Let us assume 
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 and thus that 
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there will be a third access attempt. Let the users be distributed accordingly to the density function
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. This will guarantee that the third convolution will not result in a spike, instead flatten out the distribution of users over time after the third access attempt event accordingly to Figure 11 below.
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Figure 11 - Distribution after third access attempt

The value of 
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Note: The value of MaxA’ is approximative as the choice of i’ will result in convex bumps. If instead setting 
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If 
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there will be a fourth retry for RACH access. The same method of spreading the users can be applied be distributing them with the probability density function
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For more access attempts we can define the setting of the parameter 
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B.2 
Optional – initial random delay

An optional parameter r distributed by the BCCH carrier can be introduced that specifies if the systems MTC users/devices should employ a random delay before making a first access attempt to the RACH.

Let r = 1 denote that MTC users/devices should employ an initial random wait time before trying to access the system. The wait time should in such a case be chosen from the distribution 
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 as specified in section B.1. If there still are collisions the first access retry delay should be picked from the distribution 
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 and so forth.
 If r = 0 no initial random wait time is employed. 

This optional functionality might as well be combined with the optional functionality described in section B.3.

B.3 
Optional – system performance tuning w. regard to RACH

An optional parameter u distributed by the BCCH carrier can be introduced that specifies if the system should prioritize either to maximize the peak RACH load capacity or to always minimize the access delay. This can be performed by changing the order of how the random waiting times are picked. 

Let u = 1 be to optimize peak capacity. In such a case let the first random wait time be given by the distribution defined by
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, the second wait time be defined by
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 and so forth. Here we assume that we have only four access attempts on the RACH and if more attempts are desired use the distribution with the largest spread over time first, the second largest the second time and so forth.

This scheme will introduce a larger average delay for the MTC users/devices but on other hand the entire RACH will not be blocked for periods of time when a large amount of MTC users/devices try to access the system.

If u = 0 it is set to always minimize the access delay the wait time distributions should be set as defined in Section B.1.
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