3GPP TSG GERAN WG2 #35bis
G2-070322
Sophia Antipolis, France, 8-10 October 2007

Source: Nokia Siemens Networks

Time-based FANR clean-up and enhancements
Introduction

This paper presents and addresses some of the smaller details of RTTI and FANR that need to be cleaned up, or could be improved. It addresses the coding of the PAN, the use of EGPRS2, and the possibility to future-proof the PAN.
1. Time-based FANR: bitmap encoding

The current time-based FANR bitmap encoding uses a 2-bits-per-radio-block encoding. While straightforward, this is not the most efficient use of space in the bitmap for the following reasons:
- the use of 2 bits is required, even if there is only one RLC block in the radio block

- it does not exploit any correlation that may exist between the probability of decoding correctly each of the blocks when 2 (or more) RLC blocks are sent in each radio block

Taking into account the fact that the most likely scenario is that a block is received correctly (both blocks in the case of MCS 7-9), a more efficient coding can be specified as follows:

1
Block received correctly (MCS 7-9: both blocks received correctly)

00
Block received incorrectly (MCS 7-9: Both blocks received incorrectly)
011
(MCS 7-9 only) First block and header received correctly, second block in error

010
(MCS 7-9 only) Second block and header received correctly, first block in error

Since no codepoint is the start of another codepoint, the bit sequence can be decoded unambiguously. This is the principle of Huffman coding, as used in e.g. JPEG file encoding, which can be proven to be the most efficient form of coding if the probabilities of the various outcomes are known. In this case, the exact probabilities of the outcomes depend on the radio conditions and MCS in use, however, it is clear that the relative length of the codepoints specified above reflects the respective probabilities of the corresponding events.
Padding is done by inserting the beginning of any code value which has a length longer than the number of padding bits; at the receiver, any incomplete code is ignored. (e.g. 2 bits of padding would use the sequence '01'; since '01' is not a complete code, this will be ignored by the receiver).

This approach would significantly improve the efficiency of the coding of the PAN, meaning that more radio blocks could be reported in each PAN field.

In perfect radio conditions i.e. 0% BLER, the PAN could cover 20 radio blocks (this is the upper limit). This compares with a maximum of 10 using the existing (time-based) coding, and a maximum of 12 using SSN-based PAN (assuming MCS-6 or lower coding scheme).

For more realistic radio conditions, the efficiency is still a significant improvement on the current coding.
e.g. MCS-5, with 10% BLER, existing coding would use 2 bits per radio block. New coding would use (on average) 1.1 bits per radio block (= (0.9 x 1) + (0.1 x 2)), covering (on average) 18 radio blocks.
For higher modulation and coding schemes, with two RLC blocks per radio block, the exact efficiency depends on the correlation between errors in the two RLC blocks. In this paper we assume no correlation between the probability of correct reception of the two blocks, although some degree of correlation could be expected due to the common header: if the header is not decoded, then neither block will be decoded correctly, and/or slow fading in non-frequency hopping scenarios. (Note that any such correlation would lead to more efficient use of the PAN than indicated here)
Taking into account incremental redundancy (IR), the BLER applicable to a particular transmission could be as high as 30% (to yield a BLER after retransmission and IR of around 10%). In such a scenario, the 'reported' BLER (which could cover both initial transmissions and retransmissions) would fall somewhere in between these values. Taking the worst case of 30% BLER, assuming no correlation in errors, the new coding would result in an average of 1.93 bits per radio block, similar to the coding today. An evaluation of MCS-8 at 20dB C/I for first and second transmissions (using IR) is given in the Annex.
This improved coding could reduce the frequency with which PANs would need to be sent (in particular for purely positive acknowledgements required only in order to advance the transmit window) or, equivalently, could reduce the number of PDCHs on which PANs would have to be sent to cover a high multislot allocation or multiple allocations multiplexed on the same PDCHs with a given frequency. In either case, the net result would be improved performance, if PANs are piggy-backed onto fewer data blocks. In general, this coding will increase the applicability of the TB-FANR to scenarios where its use would be restricted by the coverage of the PAN field e.g. higher bandwidth applications or a multiplex of many low bandwidth applications/mobiles, and applications with slightly weaker latency requirements.

This is achieved without any negative impact of the performance of TB-FANR in latency-critical applications where fast-feedback (particularly of negative feedback) is essential. Even in these applications, some benefit could be gained due to overlapping coverage of the previous PAN, providing redundancy in the (combined) PANs.

In fact, for higher modulation schemes (that use 2 RLC blocks per radio block), the use of the TB-FANR could be significantly more efficient than an uncompressed bitmap in a Packet Uplink Ack/Nack message: CS-1 messages are coded with rate 0.5, and the bitmap uses 1 bit per RLC block, or 2 per radio block (i.e. coded bitrate of 4 bits per radio block); the PAN is coded with a rate of between 0.39 and 0.63 and could be expected to use around 1.5 bits per radio block (i.e. coded bit rate of 2.4 – 3.8 bits per radio block).
In terms of the impacts to the MS this would require a larger table of RLC block/radio block mappings to be stored to allow decoding of the bitmap. However, this increase is bounded, since the maximum number of radio blocks that can be covered by one PAN is 20.
2. Time-based FANR encoding for EGPRS2
EGPRS2 allows up to four RLC blocks to be included in one radio block.

The following three possibilities could be considered:

a. extending the existing coding, but using 4 bits per radio block

b. extend the variable-length coding in 1. above to indicate all possible cases

c. grouping blocks sent in the same radio block into two groups, and considering each 'group' as a 'block'; a group is reported as being successfully received only if both constituent blocks are received correctly (either the existing coding, or the proposal in 1. above would work)
A problem with a) is that 4 bits would be required for every radio block (regardless of the actual modulation used), since a mobile would know the MCS used only for its own transmissions and therefore could not decode the PAN if the coding was dependent on the MCS used.

With the second option, it is unlikely that such a scheme would be more efficient (i.e. use fewer bits per radio block on average) than a simple 4-bit per radio block scheme.
The third option is obviously efficient when most radio blocks contain only 1 or 2 RLC blocks, however, it is also relatively efficient when higher modulation and coding schemes are used. It does however suffer from the slight disadvantage that it does not permit single block granularity for these higher coding schemes, and may result in some unnecessary retransmissions. However, for this to be the case means that radio conditions were sufficiently good that the original MCS used 3 or 4 RLC blocks per radio block; therefore the retransmission of 1 RLC block would not significantly impact the overall bandwidth achieved.
3. Future-proofing the FANR bitmap
A time-based PAN is by definition a type of 'broadcast' message, which will be interpreted by all mobiles expecting to receive it. However, there is currently no method by which some future format of the PAN can be distinguished from the existing format.
It is proposed to therefore signal a 'version number' at the beginning of the PAN. This could either be a single dedicated bit, or (for the variable-length coding in 1. above) a specific codepoint applicable only to the first code in the PAN.

e.g.

11
Version 2 format PAN follows

10
Version 1: Both blocks received correctly

00
Version 1: Both blocks received incorrectly

011
Version 1: First block and header received correctly, second block in error

010
Version 1: Second block and header received correctly, first block in error

Conclusion
In this paper, three issues have been addressed relating to the time-based PAN. Regarding the coding, significant efficiency gains have been highlighted by means of a variable-length code, which uses only 1 bit per radio block in good radio conditions.

A method of adapting this to cope with EGPRS2 modulation and coding schemes has been proposed. This involves a tradeoff between PAN efficiency and simplicity and the possibility of extra retransmissions. It is proposed that in order to be fully backwards-compatible, RLC blocks are grouped in cases where it is not possible to indicate exactly which block(s) are received correctly.

Finally, it is proposed that the TB-FANR PAN be future-proofed by using a slightly different coding for the very first codepoint in the PAN, allowing an indication that some future, as-yet-to-be-defined, PAN format is in use.

Annex A – MCS 8 evaluation

MCS-8 at 20dB C/I: (Tu3idFH)
Header BLER is 0.0003 (i.e. negligible),

Data BLER after first transmission = 0.7223,

Data BLER after two transmissions (combined using IR) = 0.0075
For two initial transmissions (assuming no correlation between the two blocks, which is pessimistic):
 P { both okay } = 0.522
 P { both in error } = 0.077
 P { one in error, one not } = 0.402

Expected bits/block = (0.522 x 1) + (0.077 x 2) + (0.402 x 3) = 1.882 bits per block

For two retransmissions (again, making the pessimistic assumption that there is no correlation between blocks)
 P { both okay } = 0.9850

 P { both in error } = 0.0001

 P { one in error, one not } = 0.0149

Expected bits/block = (0.985 x 1) + (0.0149 x 3) + (0.0001 x 2) = 1.03 bits per block.
