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1 Introduction

Extended orbits have been proposed recently for Galileo in [1]. The ephemeris and clock correction data in [1] may have prolonged validity periods, and multiple time-aligned models for each satellite could be delivered to the MS. Those extended orbit and clock correction data may not be provided by the Galileo Open Service, but it is expected that an external service provider will deliver extended orbit data also for Galileo as it is currently the case for GPS.  
For Galileo (and similar for other GNSSs), the size of the ephemeris and clock correction data is about 430 bits per satellite. For a nominal satellite constellation of 27 satellites, delivery of the ephemeris and clock correction data for the complete constellation would require about 11610 bits to be transmitted to the MS. Assuming a single ephemeris and clock corrections data set can accurately model the orbit and clock for 24 hours, 7 data sets of 11610 bits each need to be delivered to the MS in order to describe the orbit for one week. This means, that about 81270 bits (or about 10159 octets) have to be delivered to the MS inside an RR Application Information message. For RRLP, the maximum PDU size is 242 octets. This means that about 42 RRLP components (one in each RRLP message) are needed to deliver this large amount of information! 
Note also, that this amount of data gets multiplied by the number of constellations which have to be supported. Considering Galileo and GPS for the time being, the amount of data required to support extended orbits using the ephemeris data would be doubled.

This contribution demonstrates that the amount of bits required for support of extended orbits can be reduced significantly by using the almanac information in the MS (natively supported by all GNSSs) together with correction data calculated at the SMLC instead of the ephemeris and clock correction data. 
In this contribution, we propose a very bit efficient method, “Almanac Corrections”, for sending extended orbit information [2, 3].  This paper describes some of the features of this proposal, and shows with an example the bit efficiency that can be achieved with this method.
2 Background

Satellite orbits can be modelled as a modified elliptical orbit with correction terms to account for various perturbations.  In a GPS or Galileo system (and similar for other GNSSs), the orbit of the satellite can be represented using either almanac or ephemeris parameters. The relative short-term ephemeris data provides a very accurate representation of the orbit of the satellite. In contrast, the long-term almanac data provides a truncated reduced precision set of the ephemeris parameters.  Consequently, raw satellite positions derived from almanac data tend to be much less accurate (~1km) than those derived from the detailed ephemeris data (~1m). In addition, the almanac provides truncated clock correction parameters. 

The almanac for GPS and Galileo requires only about 180 bits per satellite. Assuming a constellation of 27 satellites, about 4860 bits only would be required to deliver the almanac for a complete constellation to the MS.  

The satellite location and clock correction computed using almanac data are not useful to compute the location of the MS. However, the SMLC can calculate the difference between satellite locations and clock bias which have been computed using almanac data and (predicted) ephemeris data, and send only this information as “Almanac Corrections” to the MS. These “Almanac Corrections” will vary in time, but with proper choice of coordinate system the variation will be relatively smooth.  These corrections can then be characterized by a polynomial in time.  Finally, the set of polynomial coefficients can be expressed as coefficients of Normalized Legendre Polynomials which results in a very compact method of sending these coefficients to the mobile.
3 Almanac Corrections

The concept of Almanac corrections is illustrated in Figure 1 below.  A precisely predicted orbit track is shown in red.  The orbit track predicted by the broadcast Almanac is shown in blue.  At any instant in time, there is a spatial difference between where the almanac says the SV will be and where the precise predictions says it will be.  If the mobile already possesses a copy of the almanac, then that difference function can be sent to the mobile where it will be interpreted as a correction to the almanac.  The mobile can then create precise estimates of the orbit by adding the correction function to its own internally generated Almanac prediction:

Precise(t) = Alm(t) + Cor(t).

[image: image1]
Figure 1: Principle of Almanac Corrections.
3.1 RaAtXt Orthogonal Coordinate System

The spatial correction function is expressed in the RaAtXt orthogonal coordinate system which is defined in the following.  Ra, At, and Xt name the 3 axes of this system: Radial, Along Track, and Across Track.  Using this coordinate system it is possible to express the correction functions with sufficient precision using a smaller number of bits than if the correction function is presented in, for example, the more standard ECEF coordinate system.  In ECEF coordinate system, the correction functions in each of X, Y, and Z take large excursions, and must be quantized to a fairly precise level to preserve accuracy.  By contrast, in RaAtXt, the Ra correction function is smaller in magnitude than the At and Xt correction functions.  Further, as the ultimate goal is accurate fixes on the surface of the earth, we can use fewer bits to encode At and Xt corrections as these have reduced impact on final fix accuracy compared to Ra.  

The RaAtXt coordinate system is defined in terms of the Almanac position of the SV.  The RaAtXt system moves with each SV as its Almanac Position moves.  

Its origin of RaAtXt is the SV Position as calculated by Almanac.  
The Ra axis points from the origin towards the center of the earth (towards (0,0,0) in ECEF coordinates).  
The Xt axis is perpendicular to the Ra axis, and to the almanac predicted velocity vector of the SV.  A vector in the Xt direction can be found by taking the cross product of a vector in the Ra direction with the almanac predicted velocity vector of the SV:

Xt = Ra ( V.

Finally, the At axis is perpendicular to the Ra and Xt axes.  The At axis is close to parallel to the velocity of the SV, but the requirement that At be orthogonal to Ra forces it to make a slight angle with the velocity vector since the velocity of an SV in an elliptical orbit is slightly offset from  perpendicular to Ra.  

3.2 Expressing corrections as functions of normalized time
Consider the Ra component of the correction function.  In order to send this to the mobile, we will break it into sequential time intervals of a few hours each.  Considering one time interval, we will define a scaled time

x = 2*( t – TOF ) / S

where t is a time variable in units of seconds, TOF is the center of the interval being fitted, and S is the length of the interval being fitted expressed in seconds.  The scaled time ranges x = [-1, 1] across the fitted interval.  

We then express each correction function as an expansion in a set of basis functions.  Taking the Ra component of the correction function as an example:
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 is a set of basis functions defined on the x = [-1, 1] interval for n=0, 1, 2, …
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.  The expansions for the correction functions for At, Xt, and CB are similar.  
NRa+1 is the number of basis functions used in this particular fit.  Similarly, NAt + 1, NXt + 1, and NCB + 1 are the number of basis functions used to represent the other three correction functions which must be sent.  
3.3 Basis Functions: Normalized Legendre Polynomials

The choice of basis functions has a large impact on the number of bits which will be needed to encode corrections to within a desired accuracy.   Here we use Normalized Legendre Polynomials.  
These are based on what are commonly called Legendre Polynomials or Legendre Polynomials of the first kind [4].  Here is the equation from which the standard Legendre polynomial of any order can be generated:
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From the standard Legendre Polynomials, we find the Normalized Legendre Polynomials (NLPs):
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These are normalized in the sense that 
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 are an orthonormal basis set on the interval x = [-1,1]:
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where 
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 is the Kroenecker delta function, equal to 1 if m and n are equal, 0 otherwise.  

Writing each Normalized Legendre Polynomial basis function as a polynomial 
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we show rounded values of 
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 for the first 10 basis functions in Table 1 below.  Figure 2 shows plots of the first 10 basis functions.
Table 1: Normalized Legendre Polynomials
	M(
	n(
	0
	1
	2
	3
	4
	5
	6
	7
	8
	9

	0
	1
	0.707
	0
	-0.79
	0
	0.795
	0
	-0.80
	0
	0.797
	0

	1
	x
	
	1.225
	0
	-2.81
	0
	4.397
	0
	-5.99
	0
	7.585

	2
	x2
	
	
	2.372
	0
	-7.96
	0
	16.73
	0
	-28.7
	0

	3
	x3
	
	
	
	4.677
	0
	-20.5
	0
	53.92
	0
	-111

	4
	x4
	
	
	
	
	9.281
	0
	-50.2
	0
	157.8
	0

	5
	x5
	
	
	
	
	
	18.47
	0
	-119
	0
	433.9

	6
	x6
	
	
	
	
	
	
	36.81
	0
	-274
	0

	7
	x7
	
	
	
	
	
	
	
	73.43
	0
	-620

	8
	x8
	
	
	
	
	
	
	
	
	146.6
	0

	9
	x9
	
	
	
	
	
	
	
	
	
	292.7
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Figure 2: Plot of the first 10 Legendre Polynomials.

3.4 Summary of Method at Mobile
The 4 sets of basis function coefficients are sent to the MS, along with information to associate these coefficients with a particular SV, a particular time interval, and a particular broadcast almanac.  The MS will need to receive a new copy of broadcast almanac about once per week, and the SMLC must calculate the almanac corrections using a version of the almanac which the mobile already has, or can get. 

Once the MS has the polynomial coefficients and time of applicability, the mobile can generate accurate predictions of SV position and clock bias.  For any particular time during the period of applicability of the corrections, the mobile can find the accurate SV position and clock bias as follows:

1) Generate almanac predicted SV position in ECEF coordinates using its copy of broadcast almanac, call this PosAlm.

2) Generate the spatial correction to almanac by plugging in the current time to the polynomials defined by the coefficients it has received.
3) Convert the corrections found in 2 to ECEF coordinates, call these PosCor.
4) Then the MS predicts satellite location in ECEF coordinates:
PosSat = PosAlm + PosCor.  

The same steps are performed to determine accurate clock bias.
3.5 Summary of Method at SMLC
The Almanac Corrections are described as basis function coefficients. Those polynomial coefficients are calculated by the SMLC. The SMLC could perform the following steps in order to calculate the almanac corrections: 

1) The SMLC obtains precise predictions of GNSS extended orbits from an external source. 
2) The SMLC obtains the current broadcast almanac in the format supported by the particular GNSS.

3) The SMLC divides the orbit and clock bias predictions into N hour time periods.  For each of the N hour period the following steps are performed to generate polynomial fits:
a. The precise orbit predictions are used to form a time series of satellite position in ECEF coordinates.  These satellite positions are defined as PosSat.  

b. The broadcast almanac is used to predict the satellite positions in ECEF coordinates at these same times. These satellite positions are defined as PosAlm.

c. PosCor = PosSat – PosAlm defines the almanac correction vectors in ECEF coordinates.

d. The Almanac positions PosAlm are used to calculate Ra, At, and Xt unit vectors for the RaAtXt coordinate system described in section 3.1 above.

e. The time series of the component of correction along the radial axis Ra is obtained by calculating the dot product: RaCor = PosCor · Ra/|Ra|.

f. Similarly, the time series of the cross track and along track corrections XtCor and AtCor are calculated.  

g. The almanac correction for the clock bias is calculated as CBCor = CBSat – CBAlm, where CBsat and CBalm are the clock corrections using the precise clock model and almanac clock model, respectively. 
h. The Time Of Fit, TOF, is defined as the time expressed in seconds at the center of the N hour interval for which the corrections have been calculated.  

i. A scaled time coordinate is defined: x = 2*N*(t – TOC)/3600.  x is a unitless number ranging from -1.0 to 1.0 across that N hour interval.  

j. Find polynomial coefficients for the radial corrections so that 
                         RaCor = Ra0 + Ra1*x + Ra2*x2 + Ra3*x3 + …(up to NRath term)
is a good approximation to RaCor. The coefficients should be chosen so that the polynomial approximates RaCor with minimum mean square error.  

k. Similarly find polynomial coefficients for the At, Xt, and CB corrections.  
l. Convert polynomial coefficients to coefficients of Normalized Legendre Polynomials.

m. Pack it all in a message and send it to the mobile.
4 Performance of 12 hour fits
To demonstrate the bit efficiency and accuracy of this method, we find fits to a 7 day extended orbit (+ clock bias) prediction in the GPS system.  We fit the period in 12 hour fit periods.  The extended orbit prediction used for this example was generated on 6 December 2006.  The GPS Broadcast Almanac used is the one for GPS week 1404, which was issued on around 3 December 2006.
4.6 Bits Required for 12 hour fits with 1 m RMS Pseudorange Error
The bits required and scaling used for the corrections coefficients is shown in Table 2 below.
Table 2: Performance in GPS w/ 12 hour Fit Interval

	Which
	Coeff Scale
	NumCoeffs
	Bits
	RMS error (m)

	Ra
	0.5 m
	12
	119
	0.51

	At
	4 m
	13
	105
	3.98

	Xt
	4 m
	13
	103
	4.38

	CB
	0.5 m
	2
	17
	0.29

	Total
	
	40
	332
	

	Pseudorange RMS from fitting errors
	0.99


Each set of coefficients using 332 bits describes the orbital and clock model for 1 GPS SV for 12 hours of orbit.  

Ra and CB coefficients are sent with 0.5 m resolution.  By contrast, At and Xt are quantized to only 4.0 m resolution, saving at least 100 bits per model than if all 3 spatial dimensions required RMS errors < 0.5 m.  The higher RMS error in At and Xt corrections are tolerable because their effect on pseudorange measurements at the earth’s surface are geometrically diluted.   

Table 3: Comparison of bits used for orbital models
	Models
	Bits per model
	Bits per SV 
per Hour
	Bits for 28 SVs, 
24 Hours
	Relative Scale

	12 hour Almanac Corrections
	332
	28
	18592
	0.26

	GPS Ephemeris, (4 hours)
	422
	106
	70896
	1.00

	GPS Delta Almanac, 6 hours [5]
	293
	49
	32816
	0.46


Table 3 above compares the number of bits used for the orbital models.  Header bits are not counted here for this comparison.  The Almanac Corrections model shown here use 74% fewer bits than standard GPS broadcast ephemeris models.  It uses 43% fewer bits than another compression scheme proposed in [5].  
The bits for each coefficient are shown in Table 4 below.
Table 4: Bits Used for each coefficient w/ 12 hour Fit interval

	
	Ra
	At
	Xt
	CB

	0
	13
	12
	9
	11

	1
	12
	10
	11
	6

	2
	12
	10
	11
	

	3
	12
	9
	10
	

	4
	11
	9
	9
	

	5
	11
	9
	9
	

	6
	10
	9
	7
	

	7
	9
	8
	7
	

	8
	8
	7
	7
	

	9
	7
	6
	6
	

	10
	5
	5
	5
	

	11
	4
	4
	5
	

	12
	
	4
	4
	

	Bits
	114
	102
	100
	17

	Grand Total
Bits
	332


The bits per coefficient are found by calculating the fit coefficients for 28 GPS SVs over a 7 day period, 392 orbital models in all, and then determining the number of bits required to send them with the stated scaling.  The advantage of specifying the number of coefficients and the scaling and size of each coefficient in the header of the message is seen most strongly when a long period of orbital information will be sent.  The SMLC can set these parameters so that all models are representable with minimal excess bits in the message.  Where total message size is a constraint, the SMLC can choose either rougher approximation of the correction functions, or it could truncate the distance into the future for which models are being sent.  
4.7 Accuracy of Fits
We define the accuracy of a fit in terms of its effect on a theoretical pseudorange measurement at some location on the Earth’s surface.  We postulate a perfect Extended orbit prediction and a perfect GPS receiver which would then show no residual errors for pseudorange measurement on the Earth’s surface.   We then calculate what the residual errors are when using the Almanac Corrections approximation to the extended orbit prediction.  
Overall, this fit was optimized to use the smallest number of bits possible achieving 1 m RMS pseudorange error in a 12 hour fitting interval.  The RMS error for the fit parameters described here is 0.99 m.  The distribution of errors is shown in Figure 2 below.
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Figure 2: Residual Pseudorange Error from Almanac Corrections.

5 Bit Count vs Fit Interval and RMS Error

This method allows the application designer to trade off message size (number of bits per SV per fit) against required accuracy.  A broad range of fit parameters were tried.  The “efficient” fits are defined as those that achieve the lowest RMS pseudorange error for a given number of bits used.  We plot the results in Figure 3 and Figure 4.  
In particular, the parameters explored in this section are:

1) Coefficient Scale: we consider 0.1 m, 0.25 m, 0.5 m, 1 m, 2 m, 4 m, and 8 m scaling.  We consider all of those values for each of Ra, At, Xt and CB.  

2) The number of coefficients used in the expansion of Ra, At, Xt and CB error functions.  We allow from 1 up to 40 coefficients for each of these.

Once all possible combinations of scaling and coefficient count for each of the 4 error function is tried across all 4 axes, only the “efficient” combinations are kept.  A combination is “efficient” if it has a lower pseudorange error than any other combination using at least as many bits as this combination uses.  
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Figure 3: Bits vs Pseudorange Error for 3 fit intervals
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Figure 4: Bits/SV/Hour vs Pseudorange Error for 3 fit intervals

Figure 4 shows two important performance features of this method.  First, consider the choice of fit interval, 6 hour, 12 hour, or 24 hour.  Figure 4 shows that in terms of bits per hour of fit, there is an advantage of using a longer fit interval rather than a shorter one.  The figure also shows that all 3 fit intervals provide similar bits vs. pseudorange error tradeoff.   
6 Conclusion and Recommendation

This contribution describes features and performance of employing almanac corrections for UE-Based GNSS positioning in general through demonstrating the performance of a GPS system.  This approach requires a significantly smaller number of bits to carry this information than any other method presented.  Further, this combination allows a tradeoff to an even smaller message when less positioning accuracy is desired, with great flexibility in the tradeoff between pseudorange error accuracy and bit count.  
Therefore, we recommend acceptance of the associated CRs [2, 3] for including Almanac Corrections in GANSS and GPS positioning.  
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