3GPP TSG GERAN#62		GP-140351
Valencia, Spain		Agenda item 7.1.5.2.4
[bookmark: _Ref515183447]26th – 30th of May, 2014
Source: Ericsson
3GPP TSG GERAN#62		GP-140351
Training Sequence Design for NewToN
[bookmark: _Ref206493657]Introduction
In this contribution, a Training Sequence Code (TSC) set for NewToN is proposed.
In Section 2, a method for designing training sequences is described.
In Section 3, the proposed TSC set from Ericsson is presented.
Some small updates have been made compared to the document presented at the 3rd NewToN telco. Updates made are highlighted in red.
[bookmark: _Ref161065940]Training Sequence Design
The methodology used to design training sequences in this study is a modified version of the methodology used in [1].
The training sequence set candidate presented in this contribution has been found using the search based method described in this section.

Consider candidate training sequences, , of length N

and already decided training sequences, i.e. legacy training sequences and possibly already decided NewToN sequences, , of length N

.

Let and denote the rotated sequences. The :s are rotated according to desired modulation and the :s are rotated according to the modulation the sequence is defined for. Legacy sequences are rotated for all modulations, i.e. 16 GMSK + 8 8PSK + 8 16QAM + 8 32QAM = 40 rotated sequences. Also the GMSK dummy burst and possibly already decided NewToN sequences are rotated according to the modulation used.
Initial Search

Let denote cross correlation,

,
where
·
 is a suitable maximum considered lag
·

 is a suitable subset of all known
·
 denotes complex conjugate

An exhaustive search through all possible training sequences was performed and NL, a large number, sequences with the lowest , were selected using a suitably small value for .
Also, any candidate sequence not fulfilling the following three requirements where disqualified from the search.
·

Autocorrelation, , and must be small.

.
·

Possible Least Squares (LS) regression matrices must have a low matrix condition value (the ratio between maximum and minimum singular value).
.
where is the channel length used in LS. A high condition value is associated with high energy leakage from an interfering signal according to the maximum channel estimation error defined in Section 2.2.2.
·

The cross correlation against all known sequences must not be high for large . In this case is the set of all known rotated sequences, including the dummy burst and possibly already decided NewToN sequences.
[bookmark: _Ref386805501]Building the Cost Function
Auto Correlation Cost
A maximized and normalized SNR-degradation, Ψ(s), was calculated for each of the NL best sequences. The normalized SNR-degradation, Ψ(s,L), is a modified version of the SNR-degradation mentioned in [2]. The maximization and normalization is done with respect to the channel length, L.

,

where tr{.} denotes the trace operator and (.)H denotes complex conjugate transpose. in the denominator of the scale factor compensates for the L additions done by the trace operator. in the nominator of the scale factor compensates for the N-L+1 additions done for all elements in .
[bookmark: _Ref386805925]Cross Correlation Cost
[bookmark: _Ref387141801]Basic Principle
The cross correlation cost between two sequences was calculated as the maximum channel estimate error caused by the interfering training sequence when employing a least squares estimator. The maximum is with respect to channel length and time lag due to an unsynchronized interfering training sequence. Consider the received signal during the training period from user “k” and interferer “p”,

,
where hk and hp denotes the channel of interest and interfering channel, respectively. Given the received vector R, the least squares estimate of hk is given by,

,

where the error includes the contribution not captured by the model, i.e. thermal noise, model error, etc. The training sequences should be selected such that the energy leaked from an interfering signal is minimized, where . Assume a one branch receiver and that the covariance of the channel hp is equal to identity (corresponding to independent and identically distributed taps). Using the properties

and

yields

.
The expression is normalized with respect to the channel length and scaled in the same way as the SNR-degradation. If the interfering signal is unsynchronized, the sequences do not completely overlap. The error due to the interfering training sequence only depends on the overlapping part. This means that the non-overlapping parts of the sequences need to be removed from S.

Denote these truncated versions of S as S(μ), where μ is the time lag between user “k” and interferer “p”. Note that the least squares algorithm still remains the same, therefore the factors are unchanged. The maximum impact from an interfering sequence sp using the carrier sequence sk is denoted “cross correlation cost” and is defined as,

 in the denominator of the scale factor compensates for the L additions done by the trace operator. For lag equal to zero, , the N-L+1 additions for each element in the :s are compensated by the N-L+1 additions for each element in and . The scale factor compensates for the reduced number of additions in and for lags not equal to zero.
The auto correlation cost Ψ(s) and cross correlation cost Δb(sk,sp) for all NL sequences are stored in a matrix X.

[bookmark: _Ref387073198]Used Model
Section 2.2.2.1 describes the basic principle used when searching for TSCs. However, for the NewToN work the basic principle was modified to include:
· Adjacent channel interference.
· Modulation rotations.
·

Cross correlation between different modulations and between NewToN candidates and legacy sequences. Thus, the training sequence code of the desired signal,, is not necessarily taken from the same TSC set or list as the training sequence code of the interfering signal, .

The channel hp is split into Tx-filter, , Rx-filter, and channel, .

[bookmark: _GoBack]An adjacent channel interferer with frequency offset is perceived as a rotated interferer with rotation , for .
The interfering signal after the Tx-filter is

.

After the combined channel and Rx-filter (), where * denotes convolution, the received signal is

,
i.e. a rotated received signal and a de-rotated channel z(t). The received signal in matrix notation is

,
where

.
The least squares estimate of hk is

.
Note that this least squares use rotated sequences, this is equivalent to using un-rotated sequences and de-rotating the received signal, this is shown in Annex A. Rotated sequences are used here for simplicity.

The training sequences should be selected such that the energy leaked from an interfering signal is minimized, where . Assume a one branch receiver, an unknown Rx-filter and that the covariance of the Rx-filter and channel are equal to identity (corresponding to independent and identically distributed taps).
Similarly as in Section 2.2.2.1

.

Because of the assumptions on G and h becomes independent of G, h and . The expression is normalized with respect to the total unknown channel length (Lh+Lg-1 = L-Ly+1) and scaled in the same way as the SNR-degradation. The resulting cost is cubed to increase the dynamic range to punish bad pairs.

If the interfering signal is unsynchronized, the sequences do not completely overlap. The error due to the interfering training sequence only depends on the overlapping part. This means that the non-overlapping parts of the sequences need to be removed from S’, denote these truncated versions of S’ as S’(μ), where μ is the time lag between user “k” and interferer “p”. Note that the least squares algorithm still remains the same, therefore the factors are unchanged. The maximum impact from an interfering sequence s’p (with some modulation) when using the carrier sequence s’k (with some modulation) is denoted “cross correlation cost” and is defined as,

Note that if L is smaller than Ly the length of the total unknown channel is 1 and the Tx-filter is truncated to its strongest taps. For scaling purposes the sum of the used Tx-filter taps should be equal to one.
The cost matrices when comparing candidate sequences of the same modulation for co-channel interference are

,
where the sub-scripted number denotes a unique sequence among the candidates.
The cost matrices when comparing sequences of different modulation, with adjacent channel interference or when comparing against legacy sequences are

,

where k and p denote two different sets of sequences and the super-scripted number denotes unique sequences in those sets. Each element in F is calculated as the maximum value of and ,

.
The cost function for co-channel interference becomes (including sensitivity)

for the relevant modulations (here only two are shown). “Legacy” includes the legacy sequences rotated for each modulation (including set 2 for GMSK) and the GMSK dummy burst. The cost functions for adjacent channel interference becomes

where “ADJ” indicates that when calculating .
The total cost function is

,

where bn is the number of desired sequences for NewToN set n and are weights.
The NewToN sequences are found by minimizing the cost function. The solution was found using a combination of the steepest descent method and a full search approach.
Performing the search

The search can be performed either by searching for all sequences at once or by searching in multiple iterations - one iteration for each new NewToN subset. The first iteration decides the NewToN GMSK sequences. The second iteration decides the 8PSK sequences, and so on. The decided sequences from the previous iterations are considered both in the initial search and in the resulting cost function. When calculating during the initial search only the legacy sequences up to the currently considered modulation is considered. For example when searching for a GMSK set, only legacy GMSK is considered and when searching for an 8PSK set, the legacy GMSK sets the new GMSK sets and the legacy 8PSK set are considered.
To optimize performance for VAMOS the resulting NewToN GMSK sequences are sorted to maximize the paired performance between set 3 and set 4 for GMSK. Also the best sequence in each pair is assigned to set 3 to maximize non-VAMOS GMSK performance.
[bookmark: _Ref162252335]Proposed Training Sequence Code Set
GMSK set 3 = [
0 1 0 1 1 1 0 0 1 0 1 0 0 0 0 0 0 0 1 1 0 0 1 0 0 0;
1 1 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 0 1 1 1 0 0 1 0 0;
1 1 1 0 0 1 0 1 1 1 0 0 0 0 1 1 0 1 1 1 1 0 1 0 1 0;
1 1 0 0 0 1 1 0 1 0 0 0 0 0 0 1 0 1 0 1 1 0 0 1 1 0;
0 0 1 1 0 1 1 0 0 0 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0;
1 0 0 0 0 1 0 0 0 1 0 1 1 1 0 0 0 0 1 0 1 0 0 1 0 0;
0 0 1 1 0 0 0 1 0 1 0 1 1 1 1 0 0 1 0 0 1 0 0 0 0 0;
0 0 1 1 0 0 0 0 1 0 1 0 0 1 1 0 0 0 0 0 1 0 1 1 0 0];
GMSK set 4 = [
0 1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0;
0 0 1 0 0 0 1 0 0 1 1 1 1 0 1 0 0 0 0 0 1 1 0 0 0 0;
1 0 1 1 1 1 0 0 1 0 0 0 1 1 0 1 0 0 0 1 0 0 0 0 0 0;
1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 1 0 0 1 0 1 1 1 1 1 0;
0 0 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 1 0 0 0 0 1 1 0;
0 1 0 1 1 1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 1 1 0;
1 1 0 0 1 0 0 0 1 1 1 1 1 0 1 1 1 0 1 0 1 1 0 1 1 0;
0 0 1 1 0 0 1 1 1 1 1 1 0 1 0 1 0 0 1 0 0 1 1 0 1 0];
8PSK = [
0 1 0 0 1 1 0 0 0 0 1 0 0 1 1 0 1 0 1 0 1 1 1 1 1 0;
0 1 1 0 0 0 1 1 0 1 1 1 0 1 1 0 1 0 1 1 1 0 0 0 0 0;
1 1 1 1 0 0 0 1 1 1 1 0 1 0 1 1 0 0 1 0 0 0 1 0 1 0;
0 0 0 1 1 0 1 0 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 1 0 0;
1 0 0 0 0 0 1 1 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 0;
0 0 0 1 0 0 1 0 0 1 1 1 0 1 0 1 0 0 0 0 1 1 0 1 0 0;
1 1 1 0 0 0 1 0 1 1 0 0 0 1 0 0 0 0 0 1 0 1 1 0 1 0;
1 0 0 1 1 1 0 1 1 1 1 1 0 0 0 1 0 1 0 0 1 0 0 0 1 0];
16QAM = [
0 1 0 1 1 1 0 1 0 0 0 1 0 0 0 0 1 0 1 1 0 1 1 0 0 0;
0 0 1 0 1 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 0 0 1 1 1 0;
0 0 1 0 0 1 0 0 0 1 0 1 0 1 1 0 1 1 1 0 0 0 1 1 1 0;
0 0 1 0 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 0 0;
1 1 1 0 0 1 0 1 0 0 0 0 1 1 0 0 1 0 1 1 1 0 1 0 0 0;
1 1 0 1 0 0 0 0 0 1 1 1 0 1 0 1 1 0 1 1 1 0 0 1 1 0;
1 0 0 0 0 0 0 1 0 1 0 0 1 1 0 0 0 1 0 1 1 1 0 1 1 0;
0 0 1 1 0 0 1 1 0 1 1 0 1 0 1 0 0 0 0 1 1 0 0 0 0 0];
32QAM = [
1 0 1 1 1 0 1 1 1 0 1 0 1 1 0 1 0 0 0 0 1 1 1 0 1 0;
0 0 0 0 1 0 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 0 0 0 0;
0 0 0 0 1 1 0 0 0 1 0 1 1 0 1 0 0 1 1 1 1 1 1 1 0 0;
1 0 0 0 1 0 0 0 0 0 1 0 1 0 1 1 0 0 0 1 1 1 0 1 1 0;
0 0 0 1 1 0 1 0 0 1 1 1 1 0 1 0 1 0 0 1 0 0 0 1 0 0;
1 1 0 1 1 0 0 1 1 1 1 1 0 1 0 1 0 1 1 0 0 0 0 1 0 0;
1 1 1 1 0 1 1 0 0 0 1 1 0 0 0 1 0 1 1 0 0 0 0 0 1 0;
0 1 1 0 0 1 1 0 0 1 0 0 0 0 1 1 0 1 0 1 1 1 1 1 1 0];
References
GP-070707, “Training Sequences for High Symbol Rate”, source Ericsson, TSG GERAN #34.
[bookmark: _Ref164666983]GP-062128, “Considerations of Designing Training Sequence Codes for Higher Order Modulations”, source Samsung, TSG GERAN #32.

[bookmark: _Ref387134149]Equivalence of rotational approaches
The most straight-forward way to model cross correlations between sequences of different modulation (or same modulation) is to:
a) Rotate carrier according to carrier modulation and interferer according to interfering modulation and de-rotate the received signal according to the carrier modulation. Use least squares with un-rotated sequences.
For simplicity in this case it is more convenient to:
b) Rotate carrier according to carrier modulation and interferer according to interfering modulation, do not de-rotate. Use least squares with sequences rotated according to carrier modulation.

For the purpose of calculating a) and b) are equivalent, this is shown below.

Let be the carrier modulation rotation and be the interferer modulation rotation.
The rotated carrier can be expressed as:

Similarly the rotated interferer can be expressed as:

Some useful identities (valid both for and):

The model for b) is

,

where is the combined channel and Rx-filter which is assumed unknown and is omitted based on results in Section 2.2.2.2.
Similarly as in Section 2.2.2.1

.
Using the identities shown above yields

which corresponds to

and the received signal

.

The term is the de-rotation with the rotation of the carrier, hence the model above is a).

Which proves that when calculating a) and b) are equivalent.

1(11)
[bookmark: _Toc458939174]5(11)
oleObject1.bin

oleObject49.bin

image44.wmf
y

oleObject50.bin

image45.wmf
g

oleObject51.bin

image46.wmf
h

oleObject52.bin

image47.wmf
ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

ú

ú

ú

û

ù

ê

ê

ê

ë

é

-

=

)

1

(

)

0

(

,

)

1

(

)

0

(

,

)

1

(

)

0

(

h

g

y

L

h

h

h

L

g

g

g

L

y

y

y

M

M

M

oleObject53.bin

image48.wmf
YGh

h

p

=

image2.wmf
î

í

ì

-

=

¹

=

otherwise

N

n

n

s

,

0

1

,...,

0

,

0

)

(

oleObject54.bin

image49.wmf
)

(

,

)

1

(

0

0

)

1

(

0

)

0

(

)

1

(

0

)

0

(

)

1

(

0

0

0

)

0

(

g

y

y

y

y

N

N

L

y

L

y

y

L

y

y

y

y

Y

´

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

=

L

M

O

O

M

M

O

O

M

O

M

M

M

O

oleObject55.bin

image50.wmf
)

(

,

)

1

(

0

0

)

1

(

0

)

0

(

)

1

(

0

)

0

(

)

1

(

0

0

0

)

0

(

h

g

g

g

g

L

N

L

g

L

g

g

L

g

g

g

g

G

´

ú

ú

ú

ú

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ê

ê

ê

ê

ë

é

-

-

-

=

L

M

O

O

M

M

O

O

M

O

M

M

M

O

oleObject56.bin

image51.wmf
ï

î

ï

í

ì

-

+

+

=

=

-

+

+

=

-

+

=

-

+

=

2

2

1

1

h

g

y

y

h

g

y

g

y

y

h

g

g

L

L

L

N

L

L

L

L

N

L

N

L

L

N

oleObject57.bin

image52.wmf
kHz

f

200

±

=

D

oleObject58.bin

image53.wmf
n

j

nT

f

j

e

e

65

96

2

±

=

D

p

oleObject2.bin

oleObject59.bin

image54.wmf
s

T

6

48

13

10

1

=

oleObject60.bin

image55.wmf
(

)

ï

î

ï

í

ì

±

=

-

¢

=

å

-

=

channel

co

channel

adjacent

k

y

k

n

s

e

n

y

L

k

p

n

j

,

0

,

65

96

,

)

(

)

(

1

0

p

f

g

f

oleObject61.bin

image56.wmf
)

(

)

(

)

(

t

h

t

g

t

z

*

=

oleObject62.bin

image57.wmf
(

)

(

)

å

å

å

å

å

-

=

-

=

-

-

=

-

=

-

-

=

-

-

¢

=

=

-

-

¢

=

-

=

1

0

1

0

1

0

1

0

)

(

1

0

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

)

(

z

y

z

y

z

L

m

L

k

m

j

p

n

j

L

m

L

k

p

m

n

j

L

m

e

m

z

k

y

m

k

n

s

e

m

z

k

y

m

k

n

s

e

m

z

m

n

n

r

f

f

f

g

oleObject63.bin

image58.wmf
noise

Gh

Ye

S

e

h

S

R

p

k

k

+

¢

+

¢

=

-

+

image3.wmf
)

(

n

x

oleObject64.bin

image59.wmf
ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

¢

-

¢

-

¢

¢

¢

-

¢

-

¢

=

¢

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

-

+

-

-

-

-

-

+

)

(

)

1

(

)

1

(

)

(

)

0

(

)

2

(

)

1

(

0

0

0

0

0

0

,

0

0

0

0

0

0

)

2

(

1

0

)

(

1

0

L

N

s

N

s

L

s

L

s

s

L

s

L

s

S

e

e

e

e

e

e

e

e

h

g

L

L

j

j

j

L

N

j

j

j

L

L

M

O

M

M

L

L

O

O

M

M

O

L

L

O

O

M

M

O

L

f

f

f

f

f

f

oleObject65.bin

image60.wmf
(

)

error

Gh

Ye

S

e

S

S

S

h

h

p

H

k

k

H

k

k

k

+

¢

¢

¢

¢

+

=

-

+

-

1

ˆ

oleObject66.bin

oleObject67.bin

image61.wmf
(

)

Gh

Ye

S

e

S

S

S

h

p

H

k

k

H

k

k

p

-

+

-

¢

¢

¢

¢

=

1

,

oleObject68.bin

image62.wmf
[

]

(

)

(

)

{

}

Y

S

e

S

S

S

S

S

S

e

S

Y

tr

h

h

E

p

H

k

k

H

k

k

H

k

k

H

p

H

k

p

k

p

¢

¢

¢

¢

¢

¢

¢

¢

=

+

-

-

+

*

1

1

*

,

,

oleObject69.bin

oleObject3.bin

oleObject70.bin

image63.wmf
-

e

oleObject71.bin

image64.wmf
(

)

1

-

¢

¢

k

H

k

S

S

oleObject72.bin

image65.wmf
{

}

{

}

{

}

(

)

(

)

{

}

3

1

1

*

)

1

,

1

max(

10

6

,...,

6

10

,...,

3

)

(

)

(

)

(

)

(

1

log

10

)

,

,

,

(

)

,

,

,

(

max

)

,

(

2

1

1

÷

÷

ø

ö

ç

ç

è

æ

÷

÷

ø

ö

ç

ç

è

æ

¢

¢

¢

¢

¢

¢

¢

¢

+

=

¢

¢

D

¢

¢

D

=

¢

¢

D

+

-

-

+

+

-

÷

ø

ö

ç

è

æ

î

í

ì

-

Î

Î

-

+

-

+

-

Y

S

e

S

S

S

S

S

S

e

S

Y

tr

L

s

s

L

s

s

s

s

p

H

k

k

H

k

k

H

k

k

H

p

H

L

L

p

k

p

k

L

p

k

y

L

N

L

N

m

m

m

m

m

m

m

m

oleObject73.bin

image66.wmf
ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

Y

¢

¢

D

¢

¢

D

¢

¢

D

Y

¢

¢

D

¢

¢

D

¢

¢

D

Y

=

¢

-

-

-

-

-

-

-

)

(

)

,

(

)

,

(

)

,

(

)

(

)

,

(

)

,

(

)

,

(

)

(

)

(

1

2

1

0

1

1

2

1

0

1

1

0

1

0

0

L

L

L

L

L

L

L

N

N

N

N

N

N

N

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

D

L

O

M

M

L

oleObject74.bin

image67.wmf
ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

¢

¢

D

¢

¢

D

¢

¢

D

¢

¢

D

¢

¢

D

¢

¢

D

¢

¢

D

¢

¢

D

¢

¢

D

=

¢

¢

-

-

-

-

-

-

-

-

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

~

)

,

(

1

1

2

1

0

1

1

2

1

1

0

1

1

0

1

0

0

0

L

L

L

L

L

L

L

L

N

p

N

k

N

p

N

k

p

N

k

N

p

N

k

p

k

p

k

N

p

k

p

k

p

k

p

k

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

F

L

O

M

M

L

image4.wmf
î

í

ì

-

=

¹

=

otherwise

N

n

n

x

,

0

1

,...,

0

,

0

)

(

oleObject75.bin

image68.wmf
)

,

(

p

k

s

s

¢

¢

D

oleObject76.bin

image69.wmf
)

,

(

k

p

s

s

¢

¢

D

oleObject77.bin

image70.wmf
(

)

)

,

(

),

,

(

max

)

,

(

~

k

p

p

k

p

k

s

s

s

s

s

s

¢

¢

D

¢

¢

D

=

¢

¢

D

oleObject78.bin

image71.wmf
(

)

(

)

(

)

(

)

(

)

...

1

,

1

,

,

2

2

1

1

2

2

1

1

2

2

2

1

1

1

+

¢

+

¢

+

+

¢

¢

+

¢

+

¢

=

-

Legacy

s

F

a

Legacy

s

F

a

a

s

s

F

a

a

s

D

a

a

s

D

a

Cost

Mod

H

Mod

Mod

H

Mod

Mod

Mod

Mod

H

Mod

Mod

Mod

H

Mod

Mod

Mod

H

Mod

channel

co

oleObject79.bin

image72.wmf
(

)

(

)

(

)

(

)

(

)

...

1

,

1

,

,

,

,

2

2

1

1

2

2

1

1

2

2

2

2

1

1

1

1

+

¢

+

¢

+

¢

¢

+

+

¢

¢

+

¢

¢

=

-

Legacy

s

F

a

Legacy

s

F

a

a

s

s

F

a

a

s

s

F

a

a

s

s

F

a

Cost

Mod

ADJ

H

Mod

Mod

ADJ

H

Mod

Mod

Mod

Mod

ADJ

H

Mod

Mod

Mod

Mod

ADJ

H

Mod

Mod

Mod

Mod

ADJ

H

Mod

channel

adj

oleObject4.bin

oleObject80.bin

image73.wmf
0

¹

f

oleObject81.bin

image74.wmf
(.,.)

D

oleObject82.bin

image75.wmf
(

)

{

}

{

}

-

-

-

+

-

+

-

ï

î

ï

í

ì

-

=

Î

=

+

+

å

=

channel

adj

adj

channel

adj

adj

channel

co

co

N

i

i

a

b

i

a

a

Cost

w

Cost

w

Cost

w

a

L

n

n

i

n

1

,...,

0

,

1

,

0

)

(

:

min

arg

~

oleObject83.bin

image76.wmf
x

w

oleObject84.bin

oleObject85.bin

image5.wmf
)

(

n

s

¢

oleObject86.bin

image77.wmf
f

oleObject87.bin

image78.wmf
j

oleObject88.bin

image79.wmf
-

+

=

¢

Û

=

¢

f

f

f

k

k

n

j

k

k

S

S

e

s

n

s

)

(

oleObject89.bin

image80.wmf
ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

=

-

-

-

-

+

0

)

2

(

)

1

(

)

(

1

0

0

0

0

0

0

0

,

0

0

0

0

0

0

f

f

f

f

f

f

f

f

j

L

j

L

j

L

N

j

j

j

e

e

e

e

e

e

L

O

O

M

M

O

L

L

O

O

M

M

O

L

oleObject90.bin

image81.wmf
-

+

=

¢

Û

=

¢

j

j

j

p

p

n

j

p

p

S

S

e

s

n

s

)

(

oleObject5.bin

oleObject91.bin

image82.wmf
f

oleObject92.bin

image83.wmf
j

oleObject93.bin

image84.wmf
*

1

*

1

,

-

-

-

+

-

+

=

=

f

f

f

f

oleObject94.bin

image85.wmf
(

)

*

*

+

-

-

+

=

=

¢

f

f

f

f

H

H

H

S

S

S

oleObject95.bin

image86.wmf
(

)

(

)

(

)

(

)

-

-

-

-

-

+

+

-

-

-

+

-

-

-

+

-

-

-

=

=

=

¢

¢

=

¢

¢

f

f

f

f

f

f

f

f

f

f

1

*

*

1

*

1

*

*

1

1

1

S

S

S

S

S

S

S

S

S

S

H

H

H

H

H

image6.wmf
)

(

n

x

¢

oleObject96.bin

image87.wmf
(

)

ï

î

ï

í

ì

¢

¢

¢

¢

=

+

¢

+

¢

=

+

-

+

Yz

S

e

S

S

S

h

noise

Yz

S

e

h

S

R

b

p

sequences

LS

rotated

H

k

k

H

k

k

p

p

k

k

4

4

3

4

4

2

1

1

,

:

)

oleObject97.bin

image88.wmf
z

oleObject98.bin

image89.wmf
-

e

oleObject99.bin

image90.wmf
[

]

(

)

(

)

{

}

Y

S

e

S

S

S

S

S

S

e

S

Y

tr

h

h

E

p

H

k

k

H

k

k

H

k

k

H

p

H

k

p

k

p

¢

¢

¢

¢

¢

¢

¢

¢

=

+

-

-

+

*

1

1

*

,

,

oleObject100.bin

image91.wmf
[

]

(

)

(

)

{

}

(

)

(

)

{

}

Y

S

e

S

S

S

S

S

S

e

S

Y

tr

Y

S

e

S

S

S

S

S

S

e

S

Y

tr

h

h

E

p

H

k

k

H

k

k

H

k

k

H

p

H

p

H

k

k

H

k

k

H

k

k

H

p

H

k

p

k

p

-

+

+

+

-

-

+

+

+

-

-

+

+

+

-

-

-

-

-

-

-

-

+

+

+

-

*

=

=

j

j

f

f

j

j

j

j

f

f

f

f

f

f

f

f

j

j

*

1

1

*

*

*

*

*

1

*

1

*

*

*

*

,

,

oleObject6.bin

oleObject101.bin

image92.wmf
(

)

Yz

S

e

S

S

S

h

p

sequences

LS

rot

un

H

k

k

H

k

k

p

-

+

+

+

-

-

=

j

j

f

*

.

1

,

~

4

3

4

2

1

oleObject102.bin

image93.wmf
{

noise

Yz

S

e

h

S

noise

Yz

S

e

h

S

R

terf

in

rot

p

k

k

p

h

k

k

k

+

+

=

+

+

=

-

+

+

+

-

+

+

+

-

+

+

3

2

1

.

.

*

*

~

*

~

~

j

j

f

j

j

f

f

f

f

oleObject103.bin

image94.wmf

oleObject104.bin

image95.wmf
*

+

f

oleObject105.bin

image96.wmf
(

)

ï

î

ï

í

ì

=

+

+

=

-

+

+

+

-

-

+

+

+

Yz

S

e

S

S

S

h

noise

Yz

S

e

h

S

R

a

p

H

k

k

H

k

k

p

p

k

k

j

j

f

j

j

f

*

1

,

*

~

~

~

:

)

image7.wmf
)

(

n

s

oleObject106.bin

oleObject107.bin

oleObject7.bin

image8.wmf
)

(

n

x

oleObject8.bin

image9.wmf
)

(

s

F

oleObject9.bin

image10.wmf
{

}

÷

ø

ö

ç

è

æ

-

¢

¢

=

F

å

¥

-¥

=

*

î

í

ì

Î

¢

-

Î

n

X

x

K

K

k

k

n

x

n

s

s

)

(

)

(

max

)

(

,...,

oleObject10.bin

image11.wmf
K

oleObject11.bin

image12.wmf
X

oleObject12.bin

image13.wmf
)

(

n

x

¢

oleObject13.bin

image14.wmf
*

(.)

oleObject14.bin

oleObject15.bin

image15.wmf
K

oleObject16.bin

image16.wmf
)

(

s

A

oleObject17.bin

image17.wmf
(

)

1

s

r

oleObject18.bin

image18.wmf
(

)

2

s

r

oleObject19.bin

image19.wmf
å

å

-

=

*

-

=

-

=

=

1

2

1

1

)

(

)

(

)

(

,

)

(

)

(

N

k

n

s

N

k

s

k

n

s

n

s

k

r

k

r

s

A

oleObject20.bin

image20.wmf
{

}

{

}

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

=

=

Î

)

(

)

1

(

)

1

(

)

(

)

0

(

)

2

(

)

1

(

,

)

(

max

)

(

10

,...,

3

L

N

s

N

s

L

s

L

s

s

L

s

L

s

S

S

S

cond

s

C

H

L

L

L

M

O

M

M

L

oleObject21.bin

image21.wmf
L

oleObject22.bin

oleObject23.bin

oleObject24.bin

oleObject25.bin

image22.wmf
{

}

{

}

[

]

{

}

(

)

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ë

é

-

-

-

-

-

=

+

=

Y

Y

=

Y

-

+

-

Î

)

(

)

1

(

)

1

(

)

(

)

0

(

)

2

(

)

1

(

1

log

10

)

,

(

,

)

,

(

max

)

(

1

1

10

10

,...,

3

L

N

s

N

s

L

s

L

s

s

L

s

L

s

S

S

S

tr

L

s

L

s

s

H

L

L

N

L

L

L

M

O

M

M

L

oleObject26.bin

image23.wmf
L

oleObject27.bin

image24.wmf
1

+

-

L

N

oleObject28.bin

image25.wmf
S

S

H

oleObject29.bin

image26.wmf
noise

h

S

h

S

R

p

p

k

k

+

+

=

oleObject30.bin

image27.wmf
(

)

error

h

S

S

S

S

h

h

p

p

H

k

k

H

k

k

k

+

+

=

-

1

ˆ

oleObject31.bin

image28.wmf
[

]

k

p

k

p

h

h

E

,

,

*

oleObject32.bin

image29.wmf
(

)

p

p

H

k

k

H

k

k

p

h

S

S

S

S

h

1

,

-

=

oleObject33.bin

image30.wmf
[

]

{

}

{

}

[

]

×

=

×

tr

E

E

tr

oleObject34.bin

image31.wmf
{

}

{

}

{

}

CAB

tr

BCA

tr

ABC

tr

=

=

oleObject35.bin

image32.wmf
[

]

(

)

(

)

{

}

p

H

k

k

H

k

k

H

k

k

H

p

k

p

k

p

S

S

S

S

S

S

S

S

tr

h

h

E

1

1

,

,

-

-

*

=

oleObject36.bin

image33.wmf
(

)

1

-

k

H

k

S

S

oleObject37.bin

image34.wmf
{

}

{

}

{

}

(

)

(

)

(

)

(

)

{

}

(

)

p

H

k

k

H

k

k

H

k

k

H

p

L

L

N

L

N

p

k

b

p

k

b

L

p

k

b

S

S

S

S

S

S

S

S

tr

L

s

s

L

s

s

s

s

)

(

)

(

)

(

1

log

10

)

,

,

,

(

)

,

,

,

(

max

)

,

(

1

1

1

2

1

1

10

6

,...,

6

10

,...,

3

m

m

m

m

m

m

m

m

-

-

-

+

-

+

-

î

í

ì

-

Î

Î

+

=

D

D

=

D

oleObject38.bin

oleObject39.bin

image35.wmf
0

=

m

oleObject40.bin

image36.wmf
(

)

1

-

S

S

H

oleObject41.bin

image37.wmf
p

H

k

S

S

oleObject42.bin

image38.wmf
k

H

p

S

S

oleObject43.bin

image1.wmf
)

(

n

s

image39.wmf
(

)

2

1

1

m

-

+

-

+

-

L

N

L

N

oleObject44.bin

image40.wmf
p

H

k

S

S

oleObject45.bin

oleObject46.bin

image41.wmf
ú

ú

ú

ú

ú

û

ù

ê

ê

ê

ê

ê

ë

é

Y

D

D

D

Y

D

D

D

Y

=

-

-

-

-

-

-

-

)

(

)

,

(

)

,

(

)

,

(

)

(

)

,

(

)

,

(

)

,

(

)

(

1

2

1

0

1

1

2

1

0

1

1

0

1

0

0

L

L

L

L

L

L

L

N

N

N

b

N

b

N

N

b

b

N

b

b

s

s

s

s

s

s

s

s

s

s

s

s

s

s

s

X

L

O

M

M

L

oleObject47.bin

image42.wmf
)

(

n

s

k

oleObject48.bin

image43.wmf
)

(

n

s

p

