3GPP TSG GERAN#36

GP-071779
Vancouver, Canada

November 12th-16th, 2007

Source: Telefon AB LM Ericsson

Agenda item 7.1.5.3
3GPP TSG GERAN#36

GP-071779

Data puncturing for UBS-12
1 Introduction

Data puncturing for UBS-12 is not defined in 3GPP TS 45.003 [1]. In this contribution, such puncturing is proposed.
2 Proposed patterns without PAN
The code rates after one, two and three transmissions of UBS-12 without PAN are shown in Table 1.
	Number of transmissions
	1 (P1)
	2 (P1+P2)
	3 (P1+P2+P3)

	Code rate
	612/635 ≈ 0.96
	612/1270 ≈ 0.48
	612/1905 ≈ 0.32


Table 1. Code rate versus number of transmissions for UBS-12.

The approach followed for the other MCS of HUGE was to first find the best puncturing pattern for the first transmission (P1), then find the best pattern P2 not overlapping P1, and so on. However, for UBS-12, the code rate of the first transmission is close to 1. At that code rate, the choice of puncturing pattern is not very critical for a convolutional code. This is illustrated by the simulation results in Figure 1, showing BLER versus C/I for the first transmission of UBS-12 with 26 different puncturing patterns. All evaluated patterns have good distance properties.
[image: image1.png]
Figure 1. BLER versus C/I for first transmission of UBS-12 with different puncturing patterns.

Instead, the approach taken here is to first find the best puncturing pattern after the second transmission (i.e., P1+P2), and to split this into P1 and P2 in the best possible way.

The code rate after two transmissions, 612/1270, can be approximated by 12/25. In other words, 12*3=36 encoded bits are punctured to 25.
Of all the 6e8 possible puncturing patterns of period 36, only twelve gives a free distance of 10. One of these patterns is shown below. The other eleven are cyclic shifts of this pattern and have the same distance properties.
	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35


Figure 2. Puncturing pattern with dfree = 10.
One observation is that this pattern has 25 ones and hence cannot be split into two (P1 and P2). Therefore, the puncturing pattern is doubled, giving the pattern in Figure 3:
	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71


Figure 3. Doubled puncturing pattern.

This pattern is now divided into P1 and P2. As shown above, the split is not critical. The following patterns are proposed for P1 and P2:

	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71


Figure 4. Basic puncturing pattern P1 for UBS-12.

	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71


Figure 5. Basic puncturing pattern P2 for UBS-12.

The third puncturing pattern (P3) should cover all the remaining bits. The pattern in Figure 6 is proposed:
	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71


Figure 6. Basic puncturing pattern P3 for UBS-12.

Using these basic puncturing patterns, the number of bits after puncturing is shown in Table 2. To get the desired 635 bits, reduced patterns are needed to puncture another 2 or 3 bits.
	Puncturing pattern
	P1
	P2
	P3

	Number of bits after puncturing with basic pattern
	638
	637
	638

	Additional puncturing
	3
	2
	3


Table 2. Number of bits after puncturing with basic patterns.

The reduced patterns are spread as evenly as possible, puncturing additional bits in positions where two encoded bits are unpunctured in the basic pattern. The resulting puncturing patterns for UBS-12 without PAN are shown in Figure 7, Figure 8 and Figure 9:

	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71

	
	Punctured in addition:

72*[4 13 22]+2


Figure 7. Puncturing pattern P1 for UBS-12 without PAN.

	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71

	
	Punctured in addition:

72*[7 16]+38


Figure 8. Puncturing pattern P2 for UBS-12 without PAN.

	Polynomial
	Puncturing pattern

	G4
	0
	3
	6
	9
	12
	15
	18
	21
	24
	27
	30
	33
	36
	39
	42
	45
	48
	51
	54
	57
	60
	63
	66
	69

	G7
	1
	4
	7
	10
	13
	16
	19
	22
	25
	28
	31
	34
	37
	40
	43
	46
	49
	52
	55
	58
	61
	64
	67
	70

	G5
	2
	5
	8
	11
	14
	17
	20
	23
	26
	29
	32
	35
	38
	41
	44
	47
	50
	53
	56
	59
	62
	65
	68
	71

	
	Punctured in addition:

72*[1 10 19]+18


Figure 9. Puncturing pattern P3 for UBS-12 without PAN.

3 Puncturing patterns with PAN

When a PAN is included, another 20 bits will be punctured per RLC data block, giving 615 bits after puncturing. Again, reduced puncturing patterns are needed to remove the additional 20 bits, preferably by puncturing additional bits in positions where two encoded bits are not punctured in the basic pattern. It is proposed to puncture the following bits:
P1: [0 1 2 5 6 7 8 9 10 11 14 15 16 17 18 19 20 23 24 25]*72+2

P2: [0 1 2 3 4 5 8 9 10 11 12 13 14 17 18 19 20 21 22 23]*72+38

P3: [2 3 4 5 6 7 8 11 12 13 14 15 16 17 20 21 22 23 24 25]*72+18
4 Conclusion

The following puncturing patterns are proposed for UBS-12:

	
	Always punctured
	Punctured only if a PAN is included

	P1
	C(72*k+j) for k=0,…,24, j=1, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33, 35, 37, 38, 39, 41, 43, 44, 45, 47, 49, 50, 51, 53, 55, 56, 57, 59, 61, 62, 63, 65, 67, 68, 69 and 71; and

C(72*25+j) for j=1, 3, 5, 7, 8, 9, 11, 13, 14, 15, 17, 19, 20, 21, 23, 25, 26, 27, 29, 31, 32, 33 and 35; and

C(72*k+2) for k=4, 13 and 22.
	C(72*k+2) for k=0, 1, 2, 5, 6, 7, 8, 9, 10, 11, 14, 15, 16, 17, 18, 19, 20, 23, 24 and 25.

	P2
	C(72*k+j) for k=0,…,24, j=0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 32, 34, 35, 36, 40, 41, 42, 44, 46, 47, 48, 50, 52, 53, 54, 56, 58, 59, 60, 62, 64, 65, 66, 68, 70 and 71; and

C(72*25+j) for j=0, 2, 4, 5, 6, 8, 10, 11, 12, 14, 16, 17, 18, 20, 22, 23, 24, 26, 28, 29, 30, 32, 34 and 35; and

C(72*k+38) for k=7 and 16.
	C(72*k+38) for k=0, 1, 2, 3, 4, 5, 8, 9, 10, 11, 12, 13, 14, 17, 18, 19, 20, 21, 22 and 23.

	P3
	C(72*k+j) for k=0,…,24, j=1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33, 34, 37, 38, 39, 40, 42, 43, 45, 46, 48, 49, 51, 52, 54, 55, 57, 58, 60, 61, 63, 64, 66, 67, 69 and 70; and

C(72*25+j) for j=1, 2, 3, 4, 6, 7, 9, 10, 12, 13, 15, 16, 19, 21, 22, 24, 25, 27, 28, 30, 31, 33 and 34; and

C(72*k+18) for k=1, 10 and 19.
	C(72*k+18) for k=2, 3, 4, 5, 6, 7, 8, 11, 12, 13, 14, 15, 16, 17, 20, 21, 22, 23, 24 and 25.


5 References

[1] 3GPP TS 45.003, “Channel coding”




1(5)
5(5)

