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1. Introduction

For RED HOT and HUGE work items, new training sequence codes (TSCs) should be considered to have both good autocorrelation and cross-correlation properties to improve channel estimation [1], [2] and longer training sequences (e.g., consisting of 31 symbols) should be designed for systems to support higher symbol rate [2], [3]. 

In this contribution, new binary periodic training sequences with the same periodic sequence structure as the legacy GSM/EDGE training sequences are proposed for RED HOT and HUGE.
In Section 2, the GSM/EDGE TSCs are evaluated with consideration of interferer delays. Section 3 describes the generation of new periodic TSCs which have optimal autocorrelation properties for any interferer delay of interest and are obtained by further optimizing their cross-correlations. Section 4 compares the correlation performance of the periodic TSCs proposed in this contribution with some of other proposed TSCs. Conclusions are summarized in Section 5.
2. Legacy GSM/EDGE TSCs
2.1 Sequence Structure of GSM/EDGE TSCs
In GSM/EDGE systems, TSCs listed in [4] are used to estimate channel impulse responses. A GSM/EDGE TSC 
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 of length N (=26) is constructed in a periodic fashion by copying the last 5 symbols of the reference sequence 
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 and augmenting these 5 symbols to the most significant positions as one guard sequence in 
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 and by copying the first 5 symbols of the reference sequence and appending these 5 symbols to the least significant positions as the other guard sequence in 
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, i.e.,
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The autocorrelation coefficients of the sequence 
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 satisfy:
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which are optimal for a range of non-zero shifts k of interest. Up to six channel tap coefficients can be estimated with a simple correlator.
2.2 Co-channel interference

To accurately estimate channel coefficients, it is desired that TSCs have both good autocorrelation and cross-correlation properties. 
For synchronous networks, as indicated in [5], there could exist a possible delay between a desired signal and an interfering signal, which could affect the autocorrelation and cross-correlation properties of training sequences. Note that the current GSM/EDGE TSCs are designed without optimizing their cross-correlation properties.

Consider fading channels with an L-tap channel impulse response.
 Through this contribution, an interferer delay D is considered to be uniformly distributed within [-1, 4] symbol durations [5] (D is assumed to be an integer).
 For the GSM/EDGE TSCs, with a give delay D, only 21 overlapped symbols (effective symbols) in the desired TSC and 21 overlapped symbols in the interfering TSC are employed for joint channel estimation. Fig. 1 illustrates the GSM/EDGE TSCs with consideration of interferer delays. Assume that sequences 
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 represent the desired sequence and the interfering sequence, respectively.
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(a) D = 0
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(b) D > 0
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(c) D < 0

Fig. 1 Consideration of delays D between the desired and interfering TSCs in GSM.

It can be verified that the autocorrelations of delayed version of GSM/EDGE TSCs satisfy:
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For all GSM/EDGE TSCs, optimal autocorrelation properties are kept for the interferer delays considered.
2.3 SNR degradation

Signal-to-noise ratio (SNR) degradation (
[image: image44.wmf]SNR
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 in dB) [6], which is related to mean square errors in detection of received signals, has been proposed to evaluate correlation properties among multiple sequences. The SNR degradation of sequences can be also used to evaluate designed training sequences for TDMA systems [1], [7]. As described in [6], SNR degradation is an approximate criterion for signal detection. The closer the inverse of a correlation matrix to be a diagonal matrix, the more accurate to use SNR degradation as a criterion to evaluate the detection performance. In general, a small value of 
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 is preferable. 

Consider the existence of only one dominant interferer for each cell in a communication system. Cross-correlation properties between TSC pairs should be optimized. Let L-tap channel impulse responses corresponding to the carrier signal and the interfere signal be 
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where 
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 is the conjugate transpose of 
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where 
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Based on Fig. 1 (a) and (b), for an interferer delay 
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and 
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Similarly, when D < 0 matrices 
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 and 
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 can be constructed based on Fig. 1 (c).

Pairwise SNR degradation results of legacy GSM/EDGE TSCs without an interferer delay have been presented in Table 1 in [8], based on which the average 
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SNR degradation performance of legacy GSM/EDGE TSCs with consideration of non-zero interferer delays has been further investigated based on Fig. 1 above. For non-zero interferer delays, it is possible for a correlation matrix 
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 to be a singular matrix implying an infinite value of 
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Table 1 shows the pairwise average SNR degradation of GSM/EDGE TSCs obtained by averaging all SNR degradation values over interferer delays from -1 to 4. Through this contribution, assume that each TSC is equally treated as a desired sequence or as an interfering sequence.
The discussion above indicates that GSM/EDGE TSCs have very good autocorrelation properties for any interferer delay considered; in contrast, the cross-correlation properties of GSM/EDGE TSCs are sensitive to an interferer delay and need to be improved.
In the next section, new periodic TSCs are proposed which have good autocorrelation properties as the GSM/EDGE TSCs and the cross-correlation properties of new periodic TSCs are optimized by minimizing the average SNR degradation value.
Table 1  Average SNR degradation of GSM/EDGE TSCs over interferer delays (in dB).

	       TSC#

TSC#
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
	
	
	
	
	
	
	

	1
	7.29    
	
	
	
	
	
	
	

	2
	3.96
	3.81
	
	
	
	
	
	

	3
	3.81
	3.58
	7.29
	
	
	
	
	

	4
	5.43
	5.31
	6.12
	4.82
	
	
	
	

	5
	5.19
	5.25
	4.74
	6.00
	9.37
	
	
	

	6
	5.16
	5.65
	5.31
	5.43
	6.36
	Inf.
	
	

	7
	5.00
	4.69
	7.14
	7.13
	6.46
	Inf.
	Inf.
	


3. New periodic TSCs
3.1 Full-set periodic TSCs

Based on the discussion in [3], in this contribution, only binary training sequences are considered. To preserve good autocorrelation properties of the GSM/EDGE TSCs, new periodic TSCs adopt the same sequence structure as the GSM/EDGE TSCs as shown in (1), i.e.,
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where N is the sequence length and sequence 
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 is the reference sequence.

Through exhaustive computer search a full set of periodic TSCs candidates can be obtained, in which the autocorrelations of each sequence satisfy: 
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Note that only reference sequences of even lengths could satisfy (8). Available sequence lengths include N = 26 and N = 30 and the total numbers of full-set sequences of length 26 and 30 are 512 and 5440, respectively.

3.2 Optimization of periodic TSCs

A desired subset of TSCs can be obtained from the full-set TSCs by further optimizing the cross-correlations of TSCs with consideration of minimizing the average pairwise SNR degradation value over the subset of TSCs. Note that pairwise SNR degradation values in this contribution are obtained by considering effects of all interferer delays. 
Tables 2 and 4 list new periodic TSCs of lengths 26 and 30 (the TSC subset size is 8), respectively, which are generated based on (7) and (8), and are optimized to minimize the average SNR degradation. 
Tables 3 and 5 present the corresponding SNR degradation results of periodic TSCs shown in Tables 2 and 4. The average SNR degradation 
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 values are 3.99 dB and 2.72 dB for the optimized subset of periodic TSCs of lengths 26 and 30, respectively.

Table 2 List of optimized periodic TSCs of length 26 (subset size: 8)

	TSC#
	Binary Training Sequences

	0
	  1,-1,1,1,1,-1,-1,-1,-1,1,-1,-1,-1,1,-1,-1,1,-1,1,1,1,-1,-1,-1,-1,1

	1
	  -1,1,-1,-1,1,-1,-1,-1,-1,1,-1,1,1,1,-1,-1,-1,1,-1,-1,1,-1,-1,-1,-1,1

	2
	  -1,-1,-1,1,-1,-1,-1,1,-1,1,1,-1,1,1,1,1,-1,-1,-1,1,-1,-1,-1,1,-1,1

	3
	  -1,1,1,-1,1,-1,1,-1,-1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,-1,-1,1

	4
	  1,-1,-1,-1,-1,-1,1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,1,1,-1,1

	5
	  1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,1,-1,-1,1,1,1,-1,1,1,-1,-1,-1,-1,-1

	6
	  -1,-1,1,1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,1,-1,1,-1,1,1

	7
	  -1,1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,-1,-1,-1,-1,-1,-1,1


Table 3  SNR degradation values of periodic TSCs (N=26) (in dB).

	       TSC#

TSC#
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
	
	
	
	
	
	
	

	1
	2.97
	
	
	
	
	
	
	

	2
	3.69
	3.14
	
	
	
	
	
	

	3
	3.21
	5.18
	3.30
	
	
	
	
	

	4
	4.47
	3.77
	3.95
	3.67
	
	
	
	

	5
	4.65
	3.76
	4.75
	3.36
	3.99
	
	
	

	6
	4.74
	2.96
	5.32
	3.81
	3.92
	4.35
	
	

	7
	3.70
	5.44
	3.16
	5.21
	3.96
	4.49
	2.82
	


Table 4 List of optimized periodic TSCs of length 30 (subset size: 8)

	TSC#
	Binary Training Sequence

	0
	  1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1

	1
	  1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1

	2
	  1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,1,1,1

	3
	  1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1

	4
	  1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1

	5
	  -1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1

	6
	  1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,1

	7
	  -1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1


Table 5  SNR degradation values of periodic TSCs (N=30) (in dB).

	       TSC#

TSC#
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
	
	
	
	
	
	
	

	1
	2.22
	
	
	
	
	
	
	

	2
	2.60
	2.58
	
	
	
	
	
	

	3
	2.61
	2.75
	2.49
	
	
	
	
	

	4
	2.61
	2.75
	2.49
	3.03
	
	
	
	

	5
	2.74
	2.91
	2.84
	2.71
	2.65
	
	
	

	6
	2.74
	2.91
	2.84
	2.65
	2.71
	2.53
	
	

	7
	2.60
	3.13
	2.93
	2.73
	2.73
	2.81
	2.81
	


3.3 Extension of periodic TSCs

For high symbol rate, it is preferable that the length of TSCs be 31. Similar to the work in [9], an optimized periodic TSC of length 30 can be extended to a periodic TSC of length 31 by copying either the last 6 symbols or the first 6 symbols from the reference sequence to generate one of two guard sequences, i.e.,

Case A: 
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Case B: 
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Periodic length-31 TSCs listed in Table 36 (a) and (b) correspond to Case A and Case B, respectively, and can result in the same correlation properties as the corresponding periodic TSCs of length 30. 
Table 6 List of optimized periodic TSCs of length 31

(a)

	TSC#
	Binary Training Sequence

	0
	  (1,1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1)

	1
	  (-1,1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1)

	2
	  (1,1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,1,1,1)

	3
	  (-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1)

	4
	  (-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1)

	5
	  (-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1)

	6
	  (-1,1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,1)

	7
	  (1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1)


(b)

	TSC#
	Binary Training Sequence

	0
	  (1,-1,1,1,1,-1,-1,-1,-1,-1,1,1,-1,1,-1,1,1,-1,1,1,1,-1,1,1,1,-1,-1,-1,-1,-1,1)

	1
	  (1,1,-1,1,1,-1,1,-1,1,1,1,-1,1,1,1,1,1,-1,-1,-1,1,1,-1,1,1,-1,1,-1,1,1,1)

	2
	  (1,-1,1,-1,1,-1,-1,1,1,1,-1,-1,1,-1,-1,1,1,1,1,1,1,-1,1,-1,1,-1,-1,1,1,1,-1)

	3
	  (1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,-1,1,-1,1,-1,-1,1,1,-1,1,-1,-1,-1,-1,-1,-1,1)

	4
	  (1,1,-1,-1,-1,-1,-1,1,-1,-1,1,1,-1,1,-1,1,-1,-1,-1,-1,1,1,-1,-1,-1,-1,-1,1,-1,-1,1)

	5
	  (-1,-1,1,1,-1,-1,1,-1,1,-1,1,1,1,1,1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,-1,1)

	6
	  (1,-1,1,1,1,-1,-1,1,-1,1,-1,-1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,-1,1,-1,1,-1)

	7
	  (-1,-1,-1,-1,1,-1,-1,-1,-1,1,1,-1,-1,1,-1,1,1,1,-1,1,-1,-1,-1,-1,1,-1,-1,-1,-1,1,1)


With this extension of sequence length, detection performance of TSCs could be improved with the added one more symbol only when the delay between a desired burst and an interfering burst equals zero. For the cases of non-zero interferer delays, this added symbol will be considered only as a dummy symbol if the required length of TSCs for high symbol rate is 31.
Recall that the received signal samples at the receiver are: 
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2) for Case B, similarly to Case A, the received signal sample at 
[image: image93.wmf]11

i

=

,  
[image: image94.wmf]*

11

y

, can be obtained by 
[image: image95.wmf]*

111131

()2

yyy

=+

.
Since length-31 periodic TSCs above result in the same average SNR degradation performance as the corresponding length-30 periodic TSCs and the ability of the additional symbol to improve channel estimation is limited, TSCs of length 30 could be an option for high symbol rate.
4. Some of other TSCs proposed for RED HOT/HUGE
4.1 TSCs proposed in [3] and [10]
In [3] and [10] several sets of TSCs have been optimized by taking both autocorrelation and cross-correlation properties into account. Compared to the periodic training sequences described in Section 3 above, with the same sequence length N and an interfering burst delay D, training sequences proposed in [3] and [10] have more effective symbols in the desired TSC and the interfering TSC (the number of effective symbols is a function of D and equals 
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) compared to periodic TSCs proposed in Section 3 above. This indicates that more received signal samples at the receiver can be employed for channel estimation. 
However, autocorrelation coefficients of TSCs proposed in [3] and [10] are not guaranteed to be zero for the all shifts considered. The non-optimal autocorrelation property of these TSCs may weaken the ability of TSCs for channel estimation and may also have an impact on the blind detection of delays between a desired burst and an interfering burst.
Tables 7 and 8 show the SNR degradation values of binary TSCs of lengths 26 and 31 proposed in [3] and [10], respectively. The corresponding average SNR degradation values are 3.33 dB for 
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 and 2.36 dB for 
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 which are 0.66 dB and 0.36 dB better than the periodic TSCs of lengths 26 and 30 (also 31), respectively. Note that SNR degradation is an approximate criterion for evaluation of detection errors.
Table 7  SNR degradation values of binary TSCs (N=26) (in dB) listed in Table 4 of [3].

	       TSC#

TSC#
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
	
	
	
	
	
	
	

	1
	3.38
	
	
	
	
	
	
	

	2
	3.72
	3.20
	
	
	
	
	
	

	3
	3.46
	3.12
	3.33
	
	
	
	
	

	4
	3.64
	3.58
	3.07
	2.99
	
	
	
	

	5
	2.99
	3.20
	3.37
	3.64
	3.05
	
	
	

	6
	3.12
	3.05
	3.67
	3.38
	3.20
	3.58
	
	

	7
	3.33
	3.67
	3.26
	3.72
	3.37
	3.07
	3.20
	


Table 8  SNR degradation values of binary TSCs (N=31) (in dB) listed in Table A.2 of [10].

	       TSC#

TSC#
	0
	1
	2
	3
	4
	5
	6
	7

	0
	
	
	
	
	
	
	
	

	1
	2.47
	
	
	
	
	
	
	

	2
	2.32
	2.23
	
	
	
	
	
	

	3
	2.17
	2.41
	2.51
	
	
	
	
	

	4
	2.43
	2.52
	2.44
	2.30
	
	
	
	

	5
	2.53
	2.13
	2.80
	2.18
	2.39
	
	
	

	6
	2.93
	2.30
	2.28
	2.23
	2.29
	2.13
	
	

	7
	2.14
	2.12
	2.24
	2.29
	2.37
	2.53
	2.33
	


4.2 TSCs proposed in [11]
Binary training sequences constructed based on complementary sequences have been proposed in [11]. The average SNR degradation values of these TSCs of lengths 26 and 30 with interferer delay 
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 are 3.70 dB and 2.83 dB, respectively [11]. However, similar to legacy GSM/EDGE TSCs, the correlation properties of these TSCs are sensitive to interferer delays. When a desired burst and an interfering burst are unsynchronized, some correlation matrices in calculation of pairwise SNR degradation become singular matrices.
5. Conclusions

New binary periodic training sequences have been proposed for RED HOT/HUGE. These TSCs preserve the sequence structure of the legacy GSM/EDGE TSCs and have optimal autocorrelation properties for any interferer delay considered. In addition, cross-correlation properties of the periodic TSCs have been optimized in terms of average SNR degradation. With this equivalent sequence structure, channel estimation with new periodic TSCs could be compatible with channel estimation in legacy GSM/EDGE and an additional cost in complexity with the introduction of new TSCs can be minimized.
The periodic TSCs of the same length result in better average SNR degradation performance than the legacy GSM/EDGE TSCs with zero interferer delay and comparable SNR degradation performance of TSCs proposed in [3] and [10]. Further evaluation on periodic training sequences is needed.
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� The set of TSCs has not been completely optimized with the Min-Max algorithm.


� Through this document oOnnly L=65 is considered in this document.


� A positive value of interferer delay means indicates that the interfering signal burst defers the carrier signalburst. 
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