3GPP TSG GERAN #7

Cancún, Mexico

November 26th-30th, 2001

Tdoc GERAN GP 012623

Agenda Item 7.2.5.6

Source: Nokia

3 (1)

Handling of RLC memory for multiple TBFs

1. Introduction

The support of multiple TBFs in Rel5 raises the problem of memory consumption in the mobile station
 when several RLC instances run in parallel. In particular, for EGPRS mode TBFs, the memory dedicated to incremental redundancy is critical as it will dictate its performance. Dimensioning properly this resource is however implementation specific and should not be addressed in a specification. Instead, this paper concentrates on the RLC memory, which for a TBF can be referred to as the RLC window size. In order for a TBF to offer good RLC performance, the RLC window size should be big enough to fully benefit from the resources allocated to this TBF. This is why for EGPRS the window size was defined according to the number of timeslots allocated to a TBF
 (see 44.060 §9.1.9.2 and Appendix I: copied in appendix of this document). Supporting multiple TBFs can be seen as expanding the memory requirements, but due to implementation limitations, the memory available for RLC might not be increased drastically. Rather, an intelligent memory management scheme should be designed that would allow for sharing dynamically among multiple TBFs, a common and limited memory resource.

2. Assumptions

It is possible today in EGPRS to increase on-fly the RLC window size of a TBF. However, it cannot be reduced, as it may lead otherwise to dropping RLC blocks that are not yet acknowledged. In order to share a common memory resource, it may be beneficial, nonetheless, to be able to either increase or decrease the memory allocated to a TBF. But, before considering how the memory management should work and what mechanisms it should offer, a few basic assumptions need to be taken.

In order to design a realistic scheme, it is proposed not to change today's minimum requirement for the RLC window size of a TBF: 64. I.e. the MS may have a TBF running provided a RLC window size of 64 can be allocated for this TBF. Assuming this, it is proposed that the MS informs within its MS RAC the network about either:

· the maximum number of TBFs it can support (complying with its multislot class)

· or preferably the total RLC memory it has (in the same way as a window size is calculated today)

The latter one is preferred as it poses less restriction to MS implementation while allowing the network to have a direct and full control of what it can allocate to the MS. The first proposal in fact would assume that the maximum RLC window size can be used for all the TBFs the MS can support. Note that the latter proposal embeds the first one.

In order to allow for an EGPRS TBF in Rel5 at least as good performance as for an EGPRS TBF in Rel99, the MS shall support in Rel5 a common RLC memory that equals to at least the maximum RLC window size corresponding to its multislot capability (i.e. 1024 if the MS is capable of 8 timeslots in one direction).

3. RLC MEmory Management

3.1 General

The figure below illustrates different possible stages and evolution of a common memory resource (size=256) shared among several TBFs. The first case (a) depicts a non-full RLC memory in which a new TBF (TBF3) is introduced, provoking a1) the reduction of the free space and a2) the filling of the RLC memory. The second case (b) represents the introduction of a new TBF in a full memory working below its TBF capacity. The last case (c) is the memory working at full TBF capacity
. Note that although not represented here, the increase of the RLC window size is possible. In any case, the RLC window size value shall be set according to 44.060 (see appendix of this document).

[image: image7.emf]Time-distribution histogram of V(S)-V(A)

0

1

2

3

4

5

6

0 50 100 150 200

V(S)-V(A)

seconds

Figure 1. Memory handling

As can be seen, as long as the memory is not working at full TBF capacity, new TBFs may be introduced provided the memory is not full, or if it is, the RLC window size of one or more TBFs can be reduced, offering a room of at least 64.

3.2 Reduction (increase) of an RLC window size and Window sliding

The figure below depicts the reduction of the RLC window size with or without window sliding (cases a) and b) respecitvely). In order to be able to decrease by n the RLC window size of a TBF, at least n blocks must be free at the end of the RLC window. At least n free blocks are available at the end of the window provided: RLC window size – active window size is bigger than n. Note that the window size resolution is 32 as in EGPRS (see the table in appendix) therefore the RLC window size may be changed by a multiple of 32 blocks. If felt needed, a smaller resolution could be defined.

The decrease (as well as increase) of a window size requires one signalling message (network to MS) to communicate the new window size value. This signalling must be sent before transmission of any new blocks, as illustrated below. As the mechanism is under control of the transmitter, there is no risk that even though the receiver would not have received the command of reduction due to e.g. bad channel conditions, a block be sent that would be out of the RLC window. In other words, the receiver may only reduce its RLC window size if so ordered by the transmitter. The increase of the RLC window size should however be acknowledged by the receiver before new blocks are transmitted, else these new blocks might fall out of the receiver's RLC window, hence be automatically nack'ed.

(E)GPRS works in such a way that retransmissions are prioritary over new transmissions. However, due to the window size resolution of 32 blocks, in order to facilitate the reduction of the window size and limit the signalling, it may be beneficial to prevent sometimes the transmission of any new block even if the window is not stalled and rather only retransmit the non-correctly (or pending) received blocks, in order to allow for a bigger window sliding, hence reduce the active window size.

[image: image2.wmf]b) No Window Sliding

Ack

Nack

Nack

Ack

Ack

Ack

Ack

Nack

Nack

Nack

Ack

RLC Window

New blocks may

be transmitted

if

the window is

not

stalled

3

RLC RX Window (Active Window)

³

32

Ack

Ack

Ack

Ack

Nack

Nack

Nack

1

Reduction

a) Window sliding

³

32

Ack

Ack

Ack

Ack

Ack

Nack

Nack

Nack

Ack

RLC Window

New blocks may

be transmitted

if

the window is

not

stalled

3

Ack

Ack

Nack

Nack

Nack

Ack

RLC RX Window (Active Window)

³

32 or <32

Window Sliding

1

Ack

Ack

Nack

Nack

Nack

Ack

2

Reduction

Figure 2. Reduction of RLC window size

Note that in case a) steps 1 and 2 could be swapped provided there are enough free blocks (i.e. at least the resolution of the memory size: here, 32) at the end of the window so that reduction can occur first. However, sliding the window before reducing it potentially allows for a larger reduction.

SIMULATION RESULTS

The figures below show the performance of a single TBF (DBPSCH) with the following assumptions:

· TU3 iFH

· An acknowledgement fits in one block (no compression)

· PACCH corrupted (Same C/I for PACCH as was used for PDTCH in the other direction)

· Incremental Redundancy

[image: image1.wmf]TBF1

64

TBF2

64

TBF3

64

TBF4

64

c) full capacity

TBF1

128

TBF2

128

TBF3

m+n>=64

TBF1

128-n

TBF2

128-m

1

2

b) full RLC memory

TBF3

64

TBF1

64

TBF2

64

TBF1

64

TBF2

64

unused

1

2

a1) non-full RLC memory

256

unused

TBF3

128

TBF1

64

TBF2

64

TBF1

64

TBF2

64

unused

1

2

a2) non-full RLC memory

Simulation time
10 minutes

WS
192

Max continuous time during which V(S)-V(A) > WS-32
0.56 seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
0.3%

Mean [V(S)-V(A)]
71

Standard deviation
24

Figure 3. Single slot; WS=192; MCS-5; 10dB

[image: image4.emf]Time-distribution histogram of V(S)-V(A)

0

2

4

6

8

10

12

14

0 50 100 150 200

V(S)-V(A)

seconds

Simulation time
10 minutes

WS
96

Max continuous time during which V(S)-V(A) > WS-32
1.7seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
1.5 %

Mean [V(S)-V(A)]
33

Standard deviation
12

Figure 4. Single slot; WS=96; MCS-5; 5dB

[image: image5.emf]Time-distribution histogram of V(S)-V(A)

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

0 50 100 150 200

V(S)-V(A)

seconds

Simulation time
4 minutes

WS
192

Max continuous time during which V(S)-V(A) > WS-32
1.8 seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
5.2%

Mean [V(S)-V(A)]
93

Standard deviation
35

Figure 5. 4-timeslots; WS=192; MCS-5; 5dB

[image: image6.emf]Time-distribution histogram of V(S)-V(A)

0

5

10

15

20

25

30

0 20 40 60 80 100

V(S)-V(A)

seconds

Simulation time
4 minutes

WS
192

Max continuous time during which V(S)-V(A) > WS-32
0.2 seconds

Total proportion of simulation time during which V(S)-V(A) > WS-32
0.3%

Mean [V(S)-V(A)]
77

Standard deviation
23

Figure 6. 4-timeslots; WS=192; MCS-5; 10dB

These figures show that reducing the RLC window size could make sense, provided the polling policy is adjusted accordingly.

4. REDUCED Maximum RLC RX Window

The following proposal comes from the simple observations below:

· In case the BLER is high, it is better to retransmit blocks rather than transmitting new blocks that will certainly fail (i.e. rather than storing many uncorrectly received RLC PDUs, it is better to try and get them through little-by-little)

· In case the BLER is 0%, the maximum amount of memory needed for RLC PDUs is the size of the RLC SDU to which the RLC PDUs belong (when all the PDUs have been received correctly, they can be recombined for transmission to upper layer).

While the reduction of the RLC window size tends at shortening dynamically the gap (unused window) between active window (RLC Rx window) and RLC window, for an optimized use of the memory resources, it is possible to further limit the memory consumption by allowing the MS to allow a maximum active window size smaller than the RLC window size
. This is depicted on Figure 7 below. In fact, at any point of time, in the MS, the amount of physical memory –RX buffer– needed for RLC data of a TBF is the active window size. The active window size can be controlled approximately by the network by means of polling, as the more the amount of polling, the less the chances to stall the RLC window because retransmissions occur more often.

Having this, the RLC window on RX side would likely never stall, as the maximum size of the active window would never reach the RLC window size. However, the RX buffer could stall, and an indication must be sent in this case to the network. This may be done with one bit in ack/nack message (PACKET DOWNLINK ACK/NACK) saying whether or not the RX buffer is stalled. Several RX buffers can share the common memory pool. Therefore if one RX buffer is stalled but the others are not, the received PDUs can still be stored to RLC memory. The blocks that have been received in case when all RX buffers are full will of course be negatively acknowledged which is the impact of this proposal, and which should be minimized.

When the RX buffer size equals RLC window size and the window is stalled then the transmitter starts sending pending blocks i.e. blocks that have been sent once but that have not been acked or nacked. In this case the number of blocks that are retransmitted unnecessarily are the ones that are in fact already received correctly. On the other hand when RX buffer size is less than RLC window size and RX buffer stalls then the transmitter still sends new blocks. In this case, the number of these blocks that are sent unnecessarily i.e. wasting capacity are the ones that would be correctly received but cannot be stored.

[image: image3.wmf]RLC Rx Window

RLC Window: Size=WS

Maximum Active

Window Size

a) RX buffer not stalled

RLC Window: Size=WS

RLC Rx Window

Maximum Active

Window Size

b) RX buffer stalled: inform the network

Figure 7. RX buffer stall indication

5. ConclusionS

In this paper are presented some mechanisms to optimize the memory consumption in the MS due to the RLC protocol. Namely, first a solution is proposed that allows for changing dynamcially the RLC window size of a TBF to accommodate multiple TBFs (RLC instances) over a limited amount of memory, second a simple proposal is made that intends at defining an MS's RLC RX buffer smaller than the RLC window size and indicating the network when this buffer is full.

It is proposed to adapt the RLC connection according to the information the MS provides about its available memory size and/or status. The MS's memory status may either be reported before the RLC connection starts using radio access capabilities or during the connection indicating memory full. The good behaviour of the proposal (like RLC protocol today) relies on a polling policy that takes into account the available mechanisms for handling RLC memory.

Appendix: EGPRS RLC window sizes

The table below is taken from §9.1.9.2 in 44.060 and shows the allowed window sizes in EGPRS TBF mode, for different multislot allocations.

Window size
Coding
Timeslots allocated (EGPRS multislot capability)

1
2
3
4
5
6
7
8

64
00000

96
00001

128
00010

160
00011

192
00100
Max

224
00101

256
00110

Max

288
00111

320
01000

352
01001

384
01010

Max

416
01011

448
01100

480
01101

512
01110

Max

544
01111

576
10000

608
10001

640
10010

Max

672
10011

704
10100

736
10101

768
10110

Max

800
10111

832
11000

864
11001

896
11010

Max

928
11011

960
11100

992
11101

1024
11110

Max

Reserved
11111
x
x
x
x
x
x
x
X

NOTE: The shaded cells represent the allowed window sizes

Although for each multislot allocation, the selected window size could preferably be the maximum, a smaller window size may be selected in order to optimize e.g. the number of (multislot) users and network memory consumption.

However, for each MS, in order to meet a performance which corresponds to the number of timeslots allocated to this MS, the selected window size shall not be smaller than a minimum window size for this particular multislot allocation.

For each network, the round-trip delay has a direct implication on the performance, hence on the definition of the minimum window sizes. Consequently, no generic minimum window sizes are suggested. However, for information, the table below lists the window size ranges recommended with a round-trip delay of about 120ms.

Window size
Coding
Timeslots allocated (Multislot capability)

1
2
3
4
5
6
7
8

64
00000
Min

96
00001

Min

128
00010

160
00011

Min
Min

192
00100
Max

224
00101

Min

256
00110

Max

288
00111

320
01000

Min

352
01001

Min

384
01010

Max

416
01011

448
01100

480
01101

512
01110

Max

Min

544
01111

576
10000

608
10001

640
10010

Max

672
10011

704
10100

736
10101

768
10110

Max

800
10111

832
11000

864
11001

896
11010

Max

928
11011

960
11100

992
11101

1024
11110

Max

Reserved
11111
x
X
x
x
x
x
x
X

� On network side, there is no memory increase compared to today, due to the same maximum number of TBFs per PDCH as today.

� An MS shall support the maximum window size corresponding to its multislot capability: see 44.060. For GPRS, the window size is fixed.

� Having an RLC memory of size S, the TBF capacity is (int)(S/64).

� In GPRS today, the maximum size of the active window is equal to the RLC window size.

