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1 Introduction

One main goal for REL-5 is to introduce spectral efficiency enhancing features for GSM/EDGE.  To date, the feasibility study for such radio related enhancements has seen few suggestions.  This contribution proposes that turbo coding be considered as a potential capacity enhancing feature for EPGRS data.  The benefits of turbo coding is well documented [1-6] and turbo codes have already been standardized for other cellular wireless technologies (e.g. UMTS [7]).  This contribution discusses how turbo coding can be applied to EGPRS and provides some preliminary performance studies demonstrating the potential benefits.  Section 2 discusses the idea behind turbo coding and how it can be applied to EGPRS.  Section 3 discusses the simulation assumptions used and provides some preliminary performance results of turbo coding for MCS5.  Section 4 concludes.
2  Turbo Coding Idea

It is well known that for sufficiently long block lengths, random codes are optimal.  However, random codes are not practical because they are unstructured and are very complex to decode.  Turbo codes, however, can approach the performance of random codes through the use of parallel concatenation of multiple convolutional codes and by introducing pseudorandom interleaving of the input blocks to each convolutional encoder.  

To understand how turbo coding can be applied to EGPRS, consider MCS5 coding shown in Fig. 1.  Note that the USF, Header and Data fields are each coded independently.  This allows decoding of the USF and Header information without knowledge of the coded Data bit steam.  As noted above, turbo codes can provide improved performance provided the input block size is large enough (~400 bits).  Due to their small input block size, turbo codes are unlikely to provide much benefit for the USF and Header fields.  Consequently, this document suggests turbo coding only for the Data field.  This is illustrated in Fig. 2.  

Fig. 1 shows that for MCS5, the output bits from a rate 1/3 convolutional mother code are punctured to produce an effective rate 3/8 convolutional code.  This document proposes to replace the rate 1/3 convolutional mother code with a rate 1/3 turbo code.  Note that this proposed scheme shown in Fig. 2 minimizes the required standards and implementation changes by keeping the input and output block lengths the same as for the current MCS5 coding scheme  (i.e. the effective turbo coding rate is also 3/8).  It’s also possible to maintain the same puncturing pattern with proper ordering of the output bits from the turbo code.  However, puncturing optimized specifically for the turbo code is likely to provide additional performance gains.

Currently, EGPRS uses non-systematic convolutional codes for providing error correction capability.  This means that the input bit stream is not identically part of the output bit stream.  Thus, for MSC5 the coded output bits are generated from three separate polynomial generators as shown in the top of Fig. 3.  The proposed turbo coding scheme for MCS5 replaces the non-systematic rate 1/3 convolutional code with the parallel concatenation of two recursive systematic 
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Figure 1.

  Coding for MCS5.


rate ½ convolutional codes plus an interleaver between the input bit streams to each coder.  This is shown in the bottom of Fig. 3.  Note that since the interleaver table is known and fixed, it is not necessary to send the systematic bits for the second convolutional coder (i.e. they can be derived from the systematic output bits from the first convolutional coder).  Thus, the three coded bit streams from the original rate 1/3 convolutional coder shown in the top of Fig. 3 are replaced with the systematic output bits from the first rate ½ convolutional coder and the parity bits from both rate ½ convolutional coders.  
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Turbo Coding for MCS5.
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Fig. 4 shows the decoding process for the turbo code.  The systematic received data is input to each convolutional decoder.  In addition, each convolutional decoder provides a posteriori probability (APP) information for each bit input to the other convolutional decoder in an iterative fashion.  Improved performance is achieved with increasing number of iterations.  In order to limit complexity, the constraint length used for the rate ½ convolutional codes would typically be less than that used for the rate 1/3 convolutional code for MCS5.  The next section will describe the assumptions made for simulating the performance of the turbo coding scheme discussed in this section.


[image: image4.wmf]Convolutional

 

Decoder

#1

Convolutional

 

Decoder

#2

Interleaver

Interleaver

Deinterleaver

Systematic

    Data

     

Parity

Data for first

 

Conv

.

 Coder

APP

APP

Decodeed

 Bits

       

Parity

Data for second

 

  Conv

.

 Coder

Figure 4.

  Iterative decoding of turbo codes.

 


3 Simulation Studies

This section provides preliminary simulation performance results for the turbo coding scheme shown in Fig. 2 and the bottom of Fig. 3.  The results are preliminary in that time was not spent to optimize the coding, interleaving and puncturing schemes.  Instead, the turbo code defined in UMTS [7] was used.  This code uses two rate ½ convolutional codes of constraint length K=4 to generate the turbo code.  Note that since the convolutional code for MCS5 uses constraint length K=7, four iterations of the turbo code is approximately equal in complexity to a single iteration of the MCS5 convolutional code.  The puncturing was performed similarly to MCS5 puncturing, however the turbo code required 6 fewer tail bits.  Therefore, the puncturing was modified to take this into account.

Fig. 5 shows the BLER vs. C/I performance of this turbo code as a function of the number of iterations assuming a TU3 channel model with ideal frequency hopping.  This figure shows that 10 iterations of the turbo code provides about .5 dB gain compared to MCS5 coding.  Although this gain is small, larger gains are expected through optimization of the turbo coding parameters (i.e. puncturing, interleaving, etc.).  Also recall that turbo coding gains increase as the input block size increases.  Thus, larger gains are expected for other MCS rates that have larger input block sizes (e.g. MCS6).  For MCS rates with very small coding gain (e.g. MCS8-9), one might expect the gains of turbo coding to diminish due to the heavy puncturing used in these coding schemes.  However, turbo coding can be easily combined with Incremental Redundancy (IR) in order to provide performance gains even for MCS7-9.  The performance of optimized turbo codes for all MCS coding schemes is FFS.  

Finally, the performance with turbo codes could be greatly improved by considering longer input block sizes (possibly by combining multiple MCS input blocks prior to coding).  This idea is FFS.
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4 Conclusion

This contribution has introduced the idea of turbo coding for providing improved EGPRS capacity and/or throughput performance.  This document has shown how turbo coding can replace the current MCS coding schemes with minimal standards and implementation impact.  Although the gains of turbo coding shown in this document for MCS5 are marginal, the puncturing and interleaving was not optimized.  Nevertheless, these preliminary results did show a performance improvement demonstrating that turbo codes have potential for providing spectral efficiency enhancements for EGPRS.  It is proposed that optimized turbo coding schemes (including IR) and turbo schemes with larger input block sizes be investigated further for potential inclusion into REL-5.
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