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EVM Uncertainty

1 Fundamentals

According to Draft ETSI EN 300 910 V8.5.0 Annex G the receive signal at the output of the measurement filter at symbol time 
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 can be modelled by
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where
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is the receive sequence at the output of the measurement filter at symbol time
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is the reference sequence at symbol time
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is the residual vector error on sample 
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is the complex gain,
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is the complex origin offset representing the carrier feedthrough and
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The factor 
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 is is the exponential loss factor per symbol and 
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 is the normalised frequency offset of the symbol frequency 
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With equation (1) the vector error follows as
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and the actual RMS EVM of the analysed burst is defined as
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where 
[image: image17.wmf]K

 are the symbols of the useful part.

At first the three complex parameters 
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 and also the timing phase 
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 are unknown to the measurement device (in order to prevent confusion the timing phase was left out in the equations, see also Annex G).

These parameters must be estimated by minimising the trial RMS EVM. In this TDOC estimates are generally indicated by a circumflex, e. g. 
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 is the estimate of 
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. Concerning to equation (2) the estimated vector error is given by
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and related to equation (3) the estimated RMS EVM is calculated by
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2 Simulation results

Due to the nature of minimum mean square estimation 
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 is always smaller than the actual 
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. This fact is demonstrated in figure 1 using an actual RMS EVM equal to 10 %. In this figure the estimates of 1000 monte-carlo simulations are shown. It can be seen that the estimated 
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 are smaller than the actual RMS EVM with a bias of 0.26 %. In figure 2 the simulation was repeated for a ten times smaller 
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. It can be seen that the bias is 0.024 %, i. e. the bias is also approximately reduced by the factor 10. Therefore, the bias of the estimate is proportional to RMS EVM. This statement is true for sufficient small 
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 of practical interest.
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Figure 1: Estimation of  RMS EVM = 10 %
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Figure 2: Estimation of RMS EVM = 1 %

The analytical derivation of the bias is extremely complicated and can only be done for estimation problems with one or few parameters to be estimated. Therefore, the bias was derived by simulations.

Generally following statements can be made concerning the
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where
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 describes the expectation operator:

· the bias is always positive,

· the bias is approximately proportional to 
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 (for sufficient small values),

· the bias increases with increasing number of parameters to be estimated,

· the bias decreases with increasing observation length 
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 and

· the bias depends on the autocorrelation of  the vector error 
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. For an uncorrelated error process 
[image: image38.wmf])

(

k

e

 the bias is minimal.

In figure 3 the bias is shown in dependence on the actual RMS EVM. The linear relation is confirmed and can be approximated by
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Figure 3: Bias of E{ RMS EVMest }

3 Proposal

What could be a useful proposal for the EVM uncertainty? Following facts should be considered:

· The uncertainty of the measurement device including for instance the non-ideal filter or the RF errors is assumed to be + 0.75 %  / -0.75 %.

· The simulation results have shown that for a high RMS EVM a remarkable bias leads to smaller estimates. Due to this fact an asymmetric uncertainty is desirable.

· According to equation 6 the bias is linearly dependant on the actual RMS EVM. This should also be considered in the measurement uncertainty.

In figure 4 these facts are summarized graphically. The resulting asymmetric uncertainty is easily derived by
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Finally with equation (6) the proposed asymmetrical uncertainty is given as
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Examples: 
With 
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with 
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Figure 4: Asymmetrical uncertainty

4 Conclusion

The minimum mean square estimation of the parameters leads to a bias of the estimated RMS EVM. Therefore, it is useful to define an asymmetrical measurement uncertainty. Furthermore, it was shown that the bias is proportional to the RMS EVM. Hence, an asymmetrical measurement uncertainty is proposed according to
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where the asymmetry linearly depends on the RMS EVM.
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