

	
3GPP TSG-CT WG4 Meeting #90	C4-191475
Xi'an, P.R.China; 08th – 12th April 2019										revision of C4-191328
	CR-Form-v11.4

	CHANGE REQUEST

	

	
	29.501
	CR
	0053
	rev
	[bookmark: _GoBack]2
	Current version:
	15.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Criteria for non-backward compatible changes

	
	

	Source to WG:
	Nokia, Nokia Shanghai-Bell

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	2019-03-16

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Length discussions during the last CT3 and CT4 meetings whether CRs can be considered backward-compatible have shown a need to further clarify the criteria on which changes are backward compatible.
The corrections in this CR are based on the following considerations:
+ Backward compatibility is important because it expresses that a NF service consumer and NF service producer can interoperate with each other. This should be the overall criterion to decide on backward compatibility.
+ It is assumed that a mechanism for deprecating API versions, as suggested in C4-191109, is also introduced and such API versions will not be deployed.
+ Not only the syntax defined in the OpenAPI file, but also the related semantics and procedures defined for the API need to be considered.
+ Corrections to small fractions of the functionality with lower importance to the overall API functionality should be considered backward compatible as the major part of the API functionality can be provided between NF service consumer and NF service producer irrespective of that correction.
+ Corrections related to the functionality of a specific supported feature, i.e. optional parts of the API functionality, should also be considered backward compatible.
+ Obvious corrections in OpenAPI specifications that a smart implementor would have done with high probability anyway, for instance misspelled references, should be considered backward compatible.

One criterium for updating the major version is that "there are the first backward incompatible change(s) to the existing API while a 3GPP Release is under development (i.e. prior to the OpenAPI freeze for a given 3GPP Release)." However, draft versions are intended to allow any kind of changes for new added features under development without the need to update the major version. Only backward incompatibility against the latest version in the previous release needs to be considered.

	
	

	Summary of change:
	The criteria for backward compatible changes are updated following the principles in the above considerations.

In addition, the criteria for updating the major version is amnded to be that "there are the first backward incompatible change(s) to the existing API with respect to the latest version in the previous 3GPP Release while a 3GPP Release is under development (i.e. prior to the OpenAPI freeze for a given 3GPP Release)."

	
	

	Consequences if not approved:
	Changes might be unnecessarily considered as non-backward compatible according to the existing criteria although they do not significantly impact the interoperability of a NF service consumer and NF service producer. Consequently, the deployment of the corresponding API is severely complicated.

	
	

	Clauses affected:
	4.3.1.2, B

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

Page 1

[bookmark: _Toc4121563][bookmark: _Toc4121668]1st Change
4.3.1.2	Rules for incrementing field values
The first version of a new API under development shall obtain the version number "1.0.0.alpha-1". At the first publication of the 3GPP Technical Specification defining the API after the OpenAPI freeze of the first 3GPP Release that contains the API, the version number of the API shall be set to "1.0.0".
When a new version of the 3GPP TS containing OpenAPI file(s) is published, the fields of the corresponding API version number(s) shall be incremented according to the following rules:
1st Field (MAJOR):
-	This numerical field shall be incremented when:
a)-	there are one or more backward incompatible changes to the API after the OpenAPI freeze for a given 3GPP Release; and
b)	there are the first backward incompatible change(s) to the existing API with respect to the latest version in the previous 3GPP Release while a 3GPP Release is under development (i.e. prior to the OpenAPI freeze for a given 3GPP Release).
EXAMPLE 1:	Assuming that 3GPP Rel-16 under development contains API version "1.1.0.alpha-2", and a backward incompatible change with respect to the latest version in the previous 3GPP Release is applied to that API before the OpenAPI freeze, the new Rel-16 API version is "2.0.0-alpha-1".
NOTE 1:	Subsequent changes in a given 3GPP Release under development do not lead to increment of the 1st Field (MAJOR) and 2nd Field (MINOR).
NOTE 2:	Rules for determining backward incompatible changes are provided in Annex B.
NOTE 3:	It is recommended to avoid backward incompatible change to the API after the OpenAPI freeze whenever possible, especially after OpenAPI freeze of a succeeding Release. It is preferable to introduce such changes only in the 3GPP Release under development.
-	If a backward incompatible change needs to be applied to several 3GPP Releases the following applies:
a)	If the 3GPP Releases contain different MAJOR versions of the same API, a new MAJOR API version shall be assigned to each 3GPP Release in the order of those 3GPP Releases in such a manner that the lowest of those 3GPP Releases shall obtain the first unassigned MAJOR version value.
EXAMPLE 2:	Assuming that 3GPP Rel-15 contains API version "1.0.0", and Rel-16 contains API version "2.0.0", and that the same backward incompatible change is applied to that API in both Releases, the new Rel-15 API version is "3.0.0" and the new Rel-16 API version is "4.0.0".
b)	If the 3GPP Releases contain the same MAJOR version but different MINOR versions of the same API, a single new MAJOR API version value shall be assigned for all those 3GPP Releases, unless other backward incompatible changes only applied to some of those Releases require the creation of separate MAJOR versions.
NOTE 4:	For each such Release a new MINOR version is assigned.
EXAMPLE 3:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and Rel-17 contains API version "1.2.0", and that the same backward incompatible change is applied to that API in all 3GPP Releases, the new 3GPP Rel-15 and Rel-16 API version is "2.0.0" and the new 3GPP Rel-17 API version is "2.2.0".
c)	If the 3GPP Releases contain the same API versions, a single new API version shall be assigned for all those 3GPP Releases, unless other changes only applied to some of those Releases require the creation of separate versions.
EXAMPLE 4:	Assuming that 3GPP Rel-15 and 3GPP Rel-16 contain API version "1.0.0", and that only the same backward incompatible change is applied to that API in both 3GPP Releases, the new 3GPP Rel-15 and Rel-16 API version is "2.0.0".
EXAMPLE 5:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and that the same backward incompatible change is applied to that API in both Releases and an additional backward compatible change is applied in 3GPP Rel-16, the new 3GPP Rel-15 API version is "2.0.0", and the 3GPP Rel-16 API version is "2.1.0".
EXAMPLE 6:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and that the same backward incompatible change is applied to that API in both Releases and an additional backward incompatible change is applied in 3GPP Rel-16, the new 3GPP Rel-15 API version is "2.0.0", and the 3GPP Rel-16 API version is "3.0.0".
2nd Field (MINOR):
-	This numerical field shall be incremented when:
a)	there are the first one or more backward compatible changes not corresponding to changes to earlier 3GPP Releases (i.e. changes introduced by 3GPP CR with other categories than "mirror") to the same API in a given 3GPP Release without any prior backward incompatible changes in that Release. If the same 1st Field (MAJOR) and the 2nd Field (MINOR) are assigned to n previous 3GPP Releases, a MINOR version number shall be reserved for each intermediate 3GPP Release for possible subsequent changes in that Release and the MINOR version number shall be incremented by n; and
EXAMPLE 7:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0" (because there were no changes to the API in Rel-16), and in Rel-17 the first backward compatible new feature is added before the OpenAPI freeze, the API version "1.2.0.alpha-1" is assigned to Rel-17.
b)	there are one or more subsequent backward compatible additions of features not corresponding to changes to previous 3GPP Releases to the API in a frozen 3GPP Release before a higher MINOR number has been allocated for the same MAJOR version (for a subsequent Release).
-	This field shall be reset to "0" if the 1st Field (MAJOR) is changed, unless a backward incompatible changes needs to be applied to several 3GPP Releases that already contain the same MAJOR but different MINOR API versions. In that case a single new major API version is assigned, and for each such 3GPP Release with an own MINOR version, a new MINOR version shall be assigned, starting with MINOR version "0" for the lowest such Release, and reserving a MINOR version number for each intermediate Release without an own MINOR version. (see Example 3)
NOTE 5:	In most cases the MINOR version is incremented when new backward compatible features are added in a 3GPP Release. In rare cases, where only backward compatible changes not corresponding to changes to previous 3GPP Releases are applied to a 3GPP Release, the MINOR version is also incremented. It is recommended to avoid such changes in 3GPP Releases without added functionality whenever possible.
NOTE 6:	Subsequent backward compatible changes in a given 3GPP Release before OpenAPI freeze do not lead to an increment of the 2nd Field (MINOR).
NOTE 7:	Changes corresponding to changes in previous 3GPP Releases do not lead to an increment of the 2nd Field (MINOR).
NOTE 8:	If two 3GPP Releases are under parallel development (because the work on Rel-X+1 has commenced before the OpenAPI freeze of Rel-X), the corresponding APIs will obtain distinct values of the 1st Field (MAJOR) or 2nd Field (MINOR).
EXAMPLE 8:	Assuming that an API was introduced with version "1.0.0" in Rel-15, and that the Rel-16 version is "1.1.0.alpha-5" because the OpenAPI is not yet frozen in Rel-16, and that a new backward compatible Rel-17 feature is added, the Rel-17 API version is "1.2.0.-alpha-1".
3rd Field (PATCH):
-	This numerical field shall be incremented:
a)	if the changes are only one or more backward-compatible corrections (but no changes requiring an update of the 1st Field (MAJOR) or of the 2nd Field (MINOR))are made to the API after the OpenAPI freeze of a 3GPP Release; and
b)	if one or more backward compatible additions of features, but no changes requiring an update of the 1st Field (MAJOR) or of the 2nd Field (MINOR), are made to the API after the OpenAPI freeze of a 3GPP Release and after the assignment of a MINOR version to a higher 3GPP Release.
-	This field shall be reset to "0" if the 1st Field (MAJOR) or 2nd Field (MINOR) is changed.
NOTE 9:	Before the OpenAPI freeze for a given 3GPP Release, the 3rd field will not be incremented.
NOTE 10:	If the 1st Field (MAJOR) and 2nd Field (MINOR) were not incremented between 3GPP Releases (because there were no added features and no backward incompatible changes), and the same backward compatible changes are then applied to those 3GPP Releases, the API files in those 3GPP Releases are identical and will obtain the same API version number.
NOTE 11:	In rare cases for which a new backward compatible functionality needs to be added in an older 3GPP Release after the OpenAPI freeze and work on that API already started in a later Release, the new functionality is exceptionally introduced as a PATCH correction and a new supported feature could be defined accordingly.
4th Field (DRAFT):
-	This field shall be supplied only before the OpenAPI freeze of a 3GPP Release.
a)	When the 1st or 2nd Field is incremented before the OpenAPI freeze of a 3GPP Release, this field shall obtain the value "alpha-1".
b)	The numerical value "n" within the field value "alpha-n" shall be incremented if one or more subsequent changes are made to the API under development.
If no change is applied to an API in a new published TS version, the API version number shall not be incremented unless the draft field needs to be removed at OpenAPI freeze. This also applies if the TS is published in a new 3GPP Release.
NOTE 12:	OpenAPI files can contain references to other OpenAPI files. Changes to referenced parts of such other OpenAPI files need to be considered when determining if and how to update an API version.
NOTE 13:	The API version number is incremented using 3GPP change requests.

2nd Change
Annex B (informative):
Backward Incompatible Changes
This Annex provides information about the changes in the API that are considered as backwards compatible and those that are considered as backwards incompatible. This list is to be considered informative and it may be expanded in future releases, when necessary.
Backward compatible changes are additions or changes in the API that do not break the existing Service Consumer behaviour. Examples of backward compatible changes include:
-	Adding a new, optional child resource/URI;
-	Supporting a new HTTP method;
-	Adding new elements to a resource representation;
-	Changing the order of fields in a resource representation;
-	Addition of a new status code:.
NOTE 1:	When a NF / NF Service receives a HTTP status code that it cannot recognize it will treat it as the corresponding x00 status code as specified in subclause 5.2.7.3 of 3GPP TS 29.500 [2].
-	Corrections of obvious errors in an OpenAPI file required to enable a correct parsing of the file such as misspelled references;
-	Corrections that only relate to smaller and optional parts of the functionality (e.g. a supported feature, see 3GPP TS 29.500 [2] subclause 6.6.2), even if the changes are backward incompatible with respect to that part of the functionality; and
NOTE 2:	It is recommended to only apply corrections which are also backward compatible with respect to such smaller and optional parts of the functionality. If this is not possible a new supported feature can be introduced to enable a negotiation of the support of the correction, and the old corresponding supported feature can be marked as "withdrawn" in the table defining the supported features of an API.
-	Backward-compatible changes related to the semantics (i.e. functional behaviour) specified for an API.
Backward incompatible changes are additions or changes in the API that break the existing Service Consumer behaviour. Here is a list of backward incompatible changes that shall require incrementing the 1st field (MAJOR) of the API version number unless they only relate to smaller and optional parts of the functionality (see above):
-	Removing a resource/URI:
-	Removing support for an HTTP method;
-	Renaming a field in a resource representation;
-	Adding mandatory parameters to a resource URI or resource representation;
-	Attribute data type changes;
-	Cardinality changes (NOTE 3); and.
NOTE 3:	Whether attribute cardinality changes are backward compatible depend on the type of change. Examples of non-backward compatibility changes include decreasing the upper bound of a cardinality range for attributes sent by the NF service consumer, changing the meaning of the default behavior associated to the absence of an attribute of cardinality 0..N, etc.
-	Backward incompatible changes related to the semantics (i.e. functional behaviour) specified for an API.
End of Changes

