Page 1

3GPP TSG CT WG4 Meeting #86bis
C4-187570
Vilnius, Lithuania, 15th – 19th October 2018
was C4-187401

was C4-187157
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	29.501
	CR
	0020
	rev
	2
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:

	Resolve Editor's Note

	
	

	Source to WG:
	Huawei

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	2018-09-24

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)
Rel-15
(Release 15)
Rel-16
(Release 16)

	
	

	Reason for change:
	There are a number of open Editor's Note in TS 29.501. The following editor's notes are resolved with the reason provided below.
1. Clause 4.4.1

Editor's Note:
The use of an optional deployment-specific string is ffs.

It is better to provide some mechanism to define deployment specific naming in the API root for better management of API namespace by different operators. Hence it is proposed to remove this editor's note.

2. Clause 4.6.1.1.4 and 4.6.2.3

Editor's Note:
It is ffs whether "200 OK"may be returned on success and what the payload body of the DELETE response shall contain if so.

It should be noted that this EN was origianally added to keep it open for conveying server specific information in DELETE response, for use cases like conveying PCO information from SMF for PDU session release case. However for covering such use cases session releases are modelled using POST. DELETE is used only for use cases where just a resource deletion is needed. A detailed study of the use of DELETE in all the following specification is done and it is observed that in none of the cases 200 OK is used. Hence it is proposed to remove this editor's note and specify 204 No content as the only 2xx cause code for DELETE.

List of specifications checked:

29.502, 29.503, 29.504, 29.505, 29.507, 29.508, 29.509, 29.510, 29.511, 29.512, 29.513, 29.514, 29.518, 29.519, 29.520, 29.521, 29.522, 29.531, 29.540, 29.571,
29.551, 29.554, 29.561 and 29.573.
The EN in 4.6.2.3 is misplaced. The clause talks about POST notifications whereas the EN is about DELETE. So this can be removed straightaway.

3. Clause 4.9.6

Editor's Note: It is FFS on the definition of "small" and "large" of the resource representation size.

CT4 already agreed for the security requirements that the size of the JSON payload shall not exceed 128000 bytes. Considering this CT4 can define a limit of 64000 bytes to consider the JSON resource representation as small and anything between 64000 and 128000 as large. Correspondingly it is proposed to remove this EN.

4. Clause 4.9.6

Editor's Note: It is FFS whether the NF Service Consumer needs to indicate to the server that server can use server push, to ensure that the server does so only when really required (this is to avoid having the server to "speculate" on what the client may need). The use of the HTTP Server Push may need to be negotiated per API.

Clarify that in R15 server push mechanism for indirect delivery is not used. Add a guideline that if a server push mechanism for indirect delivery is deemed necessary, it shall only be done by a server if the client indicates that it is ready to accept server pushes. Correspondingly remove the EN.

	
	

	Summary of change:
	As clarified in the reason for change
1. Remove the EN in 4.4.1

2. Remove the EN in 4.6.1.1.4 and4.6.2.3

3. Clarify what is small payload and what is large payload in 4.9.6. Clarify that server push shall be used only if client indicates support and in this release server push is not used. Correspondingly remove the ENs.

	
	

	Consequences if not approved:
	Incomplete specification

	
	

	Clauses affected:
	4.4.1, 4.6.1.1.4, 4.6.2.3, 4.9.6, 6.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *

4.4.1
Resource URI structure

Resources are either individual resources, or structured resources that can contain child resources. It is recommended to design each resource following one of the archetypes provided in the Annex C.
A URI uniquely identifies a resource. In the 5GC SBI APIs the resource URI structure shall be specified as follows:

{apiRoot}/{apiName}/{apiVersion}/{apiSpecificResourceUriPart}

"apiRoot" shall be a concatenation of the following parts:

-
scheme ("http://" or "https://")

Editor's note: The choice of scheme depends on SA3 requirements.
-
authority (host and optional port) as defined in IETF RFC 3986 [9]

-
an optional deployment-specific string that starts with a "/" character.

"apiName" shall define the name of the API.

"apiVersion" shall indicate the 1st Field (MAJOR) of the version of the API. See also subclause 4.3.1.3.

While "apiRoot", "apiName" and "apiVersion" together define the base URI of the API, each "apiSpecificResourceUriPart" defines a resource URI of the API relative to the base URI.
* * * Next Change * * * *

4.6.1.1.4
Deleting a Resource

Procedures that allow a service consumer NF (client) to delete a resource from the server shall be specified to use the HTTP DELETE method (see IETF RFC 7231 [6]).

Figure 4.6.1.1.4-1 illustrates deleting a resource.

[image: image1.emf]NF service

consumer

NF service

producer

1. DELETE …/resource ()

2. 204 No Content ()

Figure 4.6.1.1.4-1: Deleting a resource

The resource that is to be deleted is identified by the request URI.

The payload body of the DELETE request shall be empty.

On success, "204 No Content" should be returned and then the payload body of the DELETE response shall be empty.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the DELETE response body (see subclause 4.8).
* * * Next Change * * * *

4.6.2.3
Notifications

The HTTP method for the notification that corresponds to an explicit subscription shall be POST (see IETF RFC 7231 [6]).

NOTE:
Subclause 5.3.7 describes how to encode Notifications in OpenAPI specification files.
Figure 4.6.2.3-1 illustrates a notification.

[image: image2.emf]NF service consumer

(taking the role of a

HTTP server)

NF service producer

(taking the role of a

HTTP client)

1. POST {callback_ref} (Notification)

2. 204 No Content

Figure 4.6.2.3-1: Notification

1.
The callback reference provided during creation of the subscription resource, or otherwise known from implicit subscription, is used as the request URI. The callback reference for implicit subscriptions are obtained from the NRF. When an NF / NF service registers with the NRF, the default notification subscriptions along with the callback URI for receiving those notifications may be provided (see subclause 6.1.6.2.3 of 3GPP TS 29.510 [18]).

The payload body of the POST request shall contain the notification payload.

2.
On success, "204 No Content" shall be returned and the payload body of the POST response shall be empty.

On failure, the appropriate HTTP status code indicating the error shall be returned and appropriate additional error information should be returned in the PUT response body (see subclause 4.8).

* * * For Information Only * * * *

4.9.5
Indirect Delivery with HTTP/2 Server Push

A NF Service Producer may use HTTP/2 Server Push, if HTTP/2 Server Push is supported in the PLMN.
To use HTTP/2 Server Push, the NF Service Producer shall send PUSH_PROMISE frames in the HTTP response, with each PUSH_PROMISE frame containing a GET request targeting the URI of one resource to be transferred and the reserved stream identifier to be used for transferring the resource. Then the NF Service Producer shall send Push Responses via the corresponding reserved streams, with each Push Response containing the representation of the associated resource. The NF Service Producer shall also send links with the URIs of the resources in DATA frame(s) of the response message.
A NF Service Consumer may disable HTTP/2 Server Push by sending SETTINGS_ENABLE_PUSH parameter with value "0" on HTTP level, as specified in IETF RFC 7540 [13].

[image: image3.emf]NF Service Consumer

NF Service Producer

2. Detects of sending

multiple resources and

choose to use Server

Push

Stream: <streamId1>

1. Ask for resources (HTTP GET /resource-path?query-parameters)

3. HTTP 200 OK

PUSH_PROMISE frame 1

(:path=<resourceUri1>,stream id=<streamId1>)

PUSH_PROMISE frame 2

(:path=<resourceUri2>,stream id=<streamId2>)

…

...

PUSH_PROMISE frame N

(:path=<resourceUriN>,stream id=<streamIdN>)

Response HEADERS frame & DATA frames

(List of URIs of the resources)

4.1 Push response

(body: data representation of <resourceUri1>)

Stream: <streamId2>

4.2 Push response

(body: data representation of <resourceUri2>)

Stream: <streamIdN>

…

...

4.n Push response

(body: data representation of <resourceUriN>)

5. Get Single Resource Request

(:path=<resourceUriX>)

5.a. Get Single Resource Response

(body: data representation of <resourceUriX>

Figure 4.9.5-1 Indirect Delivery with HTTP/2 Server Push

1.
A NF Service Consumer sends a HTTP request to get resources(s) to the NF Service Producer, e.g. a query of a collection of resources.

2.
The NF Service Producer detects that multiple resources are to be returned and choose to indirectly deliver the resources with the Server Push mechanism.

3.
The NF Service Producer returns multiple PUSH_PROMISE Requests before HEADERS frame and DATA frames(s) to the NF Service Consumer. Each PUSH_PROMISE Request contains the URI of one resource to be transferred and the identifier of the reserved stream used for transferring the resource. The NF Service Producer shall also send links with the URIs of the resources in DATA frame(s) of the response message.

4.1-4.n. The NF Service Producer sends Push Reponses via corresponding reserved streams. Each Push Response contains the representation of the associated resource.

5. If the NF Service Consumer does not successfully receive a resource in time, it may send a request to get that resource, using the resource URI previously received from the Push Request.

5.a. The NF Service Producer returns the data of the requested resource in the response.

* * * Next Change * * * *

4.9.6
Criteria for choosing the transfer method

The following considerations may be used to determine which method to use transfer multiple resources to a NF Service Consumer.

If the size of the representation of each resource is small, direct delivery is preferred. If the number of resources to be returned is large, the NF Service Producer may choose iterative delivery.
NOTE 1:
For this release of this specification, a JSON payload size less than 64000 octets is considered as not large and a JSON payload size larger than 64000 octets is considered as large.
If the size of the representation of each resource is large, indirect delivery is preferred. If the NF Service Producer supports HTTP/2 Server Push, then:

-
when SETTINGS_ENABLE_PUSH parameter with value "1" has been received from the NF Service Consumer, as specified in IETF RFC 7540 [13], it should choose HTTP/2 Server Push to deliver the resource.

-
when SETTINGS_ENABLE_PUSH parameter with value "0" has been received from the NF Service Consumer, as specified in IETF RFC 7540 [13], it must not choose HTTP/2 Server Push to deliver the resources.

-
when SETTINGS_ENABLE_PUSH parameter has not been received from the NF Service Consumer, as specified in IETF RFC 7540 [13], it may decide whether to use HTTP/2 Server push or not, depending on other factors, e.g. operator policy, whether the client and server pertain to the same PLMN, etc.
An NF Service Producer shall use Indirect Delivery with HTTP/2 Server Push only if the NF Service Consumer (client) indicated support for accepting server pushed resource representations, via the Supported Features negotiation as specified in subclause 6.6.2 of 3GPP TS 29.500 [2].
NOTE 2:
In this release the Indirect Delivery with HTTP/2 Server Push is not used by 3GPP service based interface APIs.

* * * Next Change * * * *

6.2
General
The following requirements are intended as general guidance for 3GPP Stage 3 work in order to specify secure protocols and APIs. As such, these guidelines are independent of the specific technology and shall be followed at all times.

-
The valid format and range of values for each IE, when applicable, shall be defined unambiguously.

NOTE 1:
Explicitly defining format and range of values not only helps to improve the security of a certain implementation, but also allows for reliable interoperability between different protocol implementations. Example: Defining a "lowercase string variable of length 10 and range [a..z]" is much more explicit that just defining a "string of length 10". There are known vulnerabilities such as a denial of service (resulting in the parser converting from a string representing an integer – an attacker can pass in an arbitrarily large integer and trigger an unhandled exception) and such leading to a heap corruption and crash (proof-of-concept available), or potentially remote code execution (no proof-of-concept known). Unicode literals also require special treatment when doing string comparisons to ensure that equivalent strings return true when compared.
-
For each message the number of leaf IEs shall not exceed 16000.

-
The maximum size of the JSON body of any HTTP request shall not exceed 124000 octets.

-
The maximum nesting depth of leaves shall not exceed 32.

NOTE 2:
There are resource exhaustion attacks on JSON parsers. Defined maximum numbers of IEs, sizes and nesting depths allow implementations to know an upper bound of required ressources. It also allows validation of incoming messages. Recursively processing nested objects leads to stack exhaustion and a denial of service bug.

-
For data structures where values are accessible using names (sometimes referred to as keys), e.g. a JSON object, the name shall be unique. The occurrence of the same name (or key) twice within such a structure shall be an error and the message shall be rejected.

NOTE 3:
Serialization schemes (e.g. JSON) can leave the handling of repeated names (keys) up to the implementer's discretion. For example, for a repeated name an error can be raised, the pair can be ignored, or the first or last value read can be used, though there is no canonical order in which a parser should treat the data it receives. Failure to adhere to consistent handling rules can lead to vulnerabilities. From a security perspective rejecting objects with repeated names, rather than accepting according to some rule, is the more robust solution, and aids in identification of potentially malicious activity. There are known attacks with specially crafted malicious messages that are designed to confuse implementations of NFs to get fraudulent messages into a PLMN.

* * * End of Changes * * * *

_1599289658.vsd
NF service consumer
(taking the role of a HTTP server)

NF service producer
(taking the role of a HTTP client)

1. POST {callback_ref} (Notification)

2. 204 No Content

_1601126416.vsd
NF Service Consumer

NF Service Producer

2. Detects of sending multiple resources and choose to use Server Push

Stream: <streamId1>

	5. Get Single Resource Request
	(:path=<resourceUriX>)

1. Ask for resources (HTTP GET /resource-path?query-parameters)

	3. HTTP 200 OK
	 PUSH_PROMISE frame 1
	 (:path=<resourceUri1>,stream id=<streamId1>)

	 PUSH_PROMISE frame 2
	 (:path=<resourceUri2>,stream id=<streamId2>)

	 …
	 ...
	 PUSH_PROMISE frame N
	 (:path=<resourceUriN>,stream id=<streamIdN>)

	 Response HEADERS frame & DATA frames
	 (List of URIs of the resources)

	4.1 Push response
	(body: data representation of <resourceUri1>)

Stream: <streamId2>

	4.2 Push response
	(body: data representation of <resourceUri2>)

Stream: <streamIdN>

	…
	...	
	4.n Push response
	(body: data representation of <resourceUriN>)

	5.a. Get Single Resource Response
	(body: data representation of <resourceUriX>

_1599289653.vsd
NF service consumer

NF service producer

1. DELETE …/resource ()

2. 204 No Content ()

