3GPP TS 31.221 V0.1.0 (2008-05)
Technical Specification

3rd Generation Partnership Project;

Technical Specification Group Core Network and Terminals;

Contact Manager Application Programming Interface;

 Contact Manager API for Java™ Card
(Release 8)

[image: image1.jpg]
The present document has been developed within the 3rd Generation Partnership Project (3GPP TM) and may be further elaborated for the purposes of 3GPP.

The present document has not been subject to any approval process by the 3GPP Organizational Partners and shall not be implemented.

This Specification is provided for future development work within 3GPP only. The Organizational Partners accept no liability for any use of this Specification.
Specifications and reports for implementation of the 3GPP TM system should be obtained via the 3GPP Organizational Partners' Publications Offices.

Keywords

UMTS, smart card, Contact Manager, JavaTM API
3GPP

Postal address

3GPP support office address

650 Route des Lucioles - Sophia Antipolis

Valbonne - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Internet

http://www.3gpp.org

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© 2008, 3GPP Organizational Partners (ARIB, ATIS, CCSA, ETSI, TTA, TTC).
All rights reserved.

Contents

4Foreword

1
Scope
5
2
References
5
3
Definitions, symbols and abbreviations
6
3.1
Definitions
6
3.2
Symbols
6
3.3
Abbreviations
6
4
Contact Manager Internal Interface characteristics
7
4.1
Reference model
7
4.2
Events registration and deregistration
8
4.2.1
Overview
8
4.2.2
Definition of Events
8
4.3
Services Invocation
8
4.3.1
General
8
4.3.2
Services Invocation API description
9
Annex A (normative): JavaTM Card Contact Manager API
11
Annex B (normative): JavaTM Card Contact Manager API identifiers
12
Annex C (normative): JavaTM Card Contact Manager API package version management
13
Annex D (informative): Example of JavaTM Card Contact Manager API use
14
D.1
Application installation
14
D.2
Contact management
15
D.3
Field Management
16
D.4
Group management
17
Annex E (informative): Change history
19

Foreword

This Technical Specification has been produced by the 3rd Generation Partnership Project (3GPP).

The contents of the present document are subject to continuing work within the TSG and may change following formal TSG approval. Should the TSG modify the contents of the present document, it will be re-released by the TSG with an identifying change of release date and an increase in version number as follows:

Version x.y.z

where:

x
the first digit:

1
presented to TSG for information;

2
presented to TSG for approval;

3
or greater indicates TSG approved document under change control.

y
the second digit is incremented for all changes of substance, i.e. technical enhancements, corrections, updates, etc.

z
the third digit is incremented when editorial only changes have been incorporated in the document.
1
Scope

The present document defines the internal interface characteristics of the Contact Manager for 3GPP UICC applications [2].
The internal interface between the Contact Manager Server application on the UICC and the Contact Manager Client application on the UICC enables Java Card™ platform based applets, defined in [3], [4] and [5], to invoke and register to the Contact Manager Server services. In particular, the Contact Manager Java Card™ based API provides methods to:

-
Read/Update/Create/Delete contact(s) in the Contact Manager Server;
-
Manage group of contacts in the Contact Manager Server;
-
Search for a contact in the Contact Manager Server storage;
-
manage the contacts structure;

-
Register/Un-register the application to pre-defined events (e.g. application to be notified when contacts are modified in the Contact Manager Server).
This API allows to develop an application running together with a Contact Manager [2].

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.

[1]
3GPP TR 21.905: "Vocabulary for 3GPP Specifications".

[2]
3GPP TS 31.220: "Characteristics of the Contact Manager for 3GPP UICC applications".
[3]
Sun Microsystems Java Card™ Specification: "Java Card™ 2.2.2 Application Programming Interface", http://java.sun.com/products/javacard
[4]
Sun Microsystems Java Card™ Specification: "Java Card™ 2.2.2 Runtime Environment (JCRE) Specification", http://java.sun.com/products/javacard
[5]
Sun Microsystems Java Card™ Specification: "Java Card™ 2.2.2 Virtual Machine Specification", http://java.sun.com/products/javacard
[6]
3GPP TS 31.130: "(U)SIM API for Java™ Card".

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in TR 21.905 [1] and TS 31.130 [6] apply. A term defined in TS 31.130 [6] takes precedence over the definition of the same term, if any, in TR 21.905 [1].

3.2
Symbols

For the purposes of the present document, the following symbols apply:

||
Concatenation

3.3
Abbreviations

For the purposes of the present document, the abbreviations given in TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in TR 21.905 [1].

API
Application Programming Interface
4
Contact Manager Internal Interface characteristics

4.1
Reference model

The present section describes an API and a Contact Manager Runtime Environment that enables Java Card™ platform based applets, defined in [3], [4] and [5], to invoke and register to the Contact Manager Server services (e.g. retrieve/modify contact information). The Contact Manager Runtime Environment API is further described in annex A.
The internal interface is accessible through Java Card™ shareable interface mechanism. This shareable interface provides method for the services described in sections 4.2 and 4.3.

[image: image2.emf]

102 221 based

Applications

(

e.g. SIM

Applet or

USIM Applet)

ADF File

System Server

Other

Applications

not based on

102 221

Toolkit Applet

(

e.g. Toolkit

service,

Remote

Management

Applications,

Browser

Applications)

SCWS

uicc.system

package

uicc.toolkit

package

uicc.access

package

Java Card

TM

Packages

CAT Runtime

Environment

Contact Manager

Runtime Environment

Java Card

TM

 Runtime Environment

Items that are defined in this specification

SCWS

Runtime

Environment

uicc.scws

package

uicc.contactManager

package

Contact

Manager

Server

Figure 1: Internal interface reference model

Contact Manager Runtime Environment: An Extensions to the Java Card™ platform described in [3][4][5] and the (U)SAT Runtime Environment described in TS 31.130 [6] to facilitate the communications between Applets and the Contact Manager Server.

Applet: these derive from javacard.framework.Applet and provide the entry points: process, select, deselect, install as defined in the "Java Card™ 2.2.2 Runtime Environment Specification" [5].

Event Listener List of the Contact Manager: this is handling all the registration information of the event listener of the Contact Manager Server services. It is provided as a JCRE entry point object defined in [5]. The registry is part of the Contact Manager Runtime Environment.

Contact Manager API: consists of the package uicc.3GPPcm, provides the methods to register and unregister, to the Contact Manager events. It also provides methods to access the Contact Manager server data. This API is an extension to the "(U)SAT API" defined in TS 31 130 [6].

4.2
Events registration and deregistration

4.2.1
Overview

Registration and Deregistration to the Contact Manager Server is done through the register and unregister methods of the Contact Manager Runtime Environment interface. The events registration API is described in annex A.

To be notified, the client shall implement a ContactEventListener interface and register to the appropriate events. Then the Contact Manager Server will call the following methods when the corresponding event occurs:

 -
ContactEventListener.contactModified (int event, int contactIdentifier) of all registered client each time a contact is modified.

-
ContactEventListener.groupModified (int event, int groupIdentifier, int contactIdentifier) of all registered client each time a group is modified.

-
ContactEventListener.fieldDescriptorModified (int event, int fieldDescriptorIdentifier) of all registered client each time a field descriptor is modified.

4.2.2
Definition of Events

The following events can trigger an Applet:

Table 1: Contact Manager events list

	Event Name
	Reserved short value

	EVENT_CONTACT_ADDED
	1

	EVENT_CONTACT_MODIFIED
	2

	EVENT_CONTACT_REMOVED
	3

	EVENT_FIELD_DESCRIPTOR_ADDED
	9

	EVENT_FIELD_DESCRIPTOR_MODIFIED
	10

	EVENT_FIELD_DESCRIPTOR_REMOVED
	11

	EVENT_GROUP_ADDED
	4

	EVENT_GROUP_CONTACT_ADDED
	7

	EVENT_GROUP_CONTACT_REMOVED
	8

	EVENT_GROUP_REMOVED
	6

4.3
Services Invocation
4.3.1
General
The Contact Manager Server shall first be configured with the contacts structure. The contacts structure describes the fields that may be available in a contact. A contact field is described by:

-
its type (e.g. Name, phone number, postal address,..) and
-
its attributes (e.g. voice phone number).
Some fields such as a name or a postal address may be composed of several sub-fields.
The Contact Manager internal interface provides services to access and manage contacts, groups of contacts, list of contacts, list of groups, and contacts structure.
Each contact, field descriptor and group is identified by a unique identifier.

The following figure depicts an example of a Contact Manager Server data store.

[image: image3.emf]

Group

Work

Group

Family

Groups

List

Contacts

List

FieldsDesc

riptors

List:

Contact

strucure

Contact 1

Joe

Contact 2

Steve

Field Name: Joe

Field Tel: 061155

Field Email: Joe@go.com

FieldsDescriptors List:

Contact structure

FieldDescriptor 1

st

 Email

FieldDescriptor Name

FieldDescriptor Cellular

Phone

Contact 3

Steve

Figure 2: Example of a Contact Manager Server data store
4.3.2
Services Invocation API description
The invocation of the Contact Manager Server services is done through methods corresponding to the Contact Manager Server Runtime Environment interface.
The Services Invocation API is made up of several classes, which are described hereafter.
-
The ContactManager class is the main factory that provides:

-
methods to get an instance of the UICC Contact Manager, an instance of the Contacts List, an instance of the Groups list and an instance of the Fields Descriptors list. An application needs to create an instance of each different list to access it at runtime.
-
The FieldsDescriptorsList class provides:

-
an enumeration scheme to list the fields that may be present in a contact (i.e. the contact structure);
-
methods to create, delete a field descriptor.
-
The FieldDescriptor class provides:

-
methods to set and retrieve a field type and attribute;
-
methods to set and retrieve a field label;
-
methods to set and retrieve a field maximum size.
Note: The FieldsDescriptorsList class and the FieldDescriptor class may be used at application installation in order to define the contacts structure.
-
The ContactsList class provides:

-
methods to create and delete a contact;
-
an enumeration scheme to retrieve the list of contacts;
-
an enumeration scheme with filtering criteria to find and retrieve contacts matching the filtering criteria.
-
The Contact class provides:

-
an enumeration scheme to retrieve the fields of a contact;
-
an enumeration scheme with filtering criteria to find and retrieve contact fields matching the filtering criteria.
-
The Field class provides:

-
methods to retrieve and update an unformatted or formatted field value (binary, or Phone number, or name or Address).
-
The Group class extends the ContactsList class. In addition to the ContactsList methods, the Groups class provides:

-
methods to retrieve and set a group name.

-
The GroupsList class provides:

-
methods to create and delete a group;

-
an enumeration scheme to retrieve the list of groups;

-
an enumeration scheme with filtering criteria to find and retrieve groups matching the filtering criteria.
Annex A (normative):
JavaTM Card Contact Manager API
The attached files "31221_Annex_A_Java.zip", and "31xyz_Annex_A_HTML.zip" contains source files and html documentation for the Java Card™ Contact Manager API.
Annex B (normative):
JavaTM Card Contact Manager API identifiers

The attached file "31221_Annex_B_Export_files.zip" contains the export files for the uicc.contactManager.* package.
Annex C (normative):
JavaTM Card Contact Manager API package version management
The following table describes the relationship between each TS 31.221 specification version and its packages AID and Major, Minor versions defined in the export files.

Table 1

	TS 31.221
	uicc. contactManager package

	
	AID
	Major,

Minor

	
	TBC
	1.0

The package AID coding is defined in ETSI TS 101 220 [1]. The Contact Manager API packages' AID are not modified by changes to Major or Minor Version.

The Major Version shall be incremented if a change to the specification introduces byte code incompatibility with the previous version.

The Minor Version shall be incremented if a change to the specification does not introduce byte code incompatibility with the previous version.
Annex D (informative):
Example of JavaTM Card Contact Manager API use

D.1
Application installation

//During application installation, the application creates and stores all necessary objects to use during application runtime.
//create an instance of the Contact Manager:
ContactManager contactManager = ContactManager.getContactManager();

//create an instance of the Contacts list:
contactsList = contactManager.getContactsList();

//create an instance of the Fields Descriptors list:
fieldsDescriptorsList = contactManager.getFieldsDescriptorsList();

//create an instance of the Groups List:
groupsList = contactManager.getGroupsLists();
//create a contact object for contacts enumeration:
contact = ContactsList.getContactInstance();

//create a field object for fields enumeration:
field = Contact.getFieldInstance();
//create group object for objects enumeration:
group = GroupsList.getGroupInstance();
//create field descriptor object for fields descriptors enumeration:
fieldDescriptor = FieldsDescriptorsList.getFieldDescriptorInstance() ;

/*************************************

 * Application could also define if needed a contact structure by creating a basic field description

 *************************************/

//create name field:
fieldDescriptor.setType(Field.TYPE_NAME) ;

fieldDescriptor.setAttributes(Field.ATTR_ANY) ;

fieldDescriptor.setLabel(...);

name = fieldsDescriptorsList.addFieldDescriptor(fieldDescriptor) ;

//create home phone number field:
fieldDescriptor.setType(Field.TYPE_TEL);

fieldDescriptor.setAttributes(Field.ATTR_HOME);

fieldDescriptor.setLabel(...);

tel1 = fieldsDescriptorsList.addFieldDescriptor(fieldDescriptor);
//create cell and work phone number field:
fieldDescriptor.setType(Field.TYPE_TEL) ;

fieldDescriptor.setAttributes(Field.ATTR_WORK|Field.ATTR_CELL) ;

fieldDescriptor.setLabel(...);

tel2 = fieldsDescriptorsList.addFieldDescriptor(fieldDescriptor) ;

//create email field:
fieldDescriptor.setType(Field.TYPE_EMAIL);

fieldDescriptor.setAttributes(Field.ATTR_ANY);

fieldDescriptor.setLabel(...);

email = fieldsDescriptorsList.addFieldDescriptor(fieldDescriptor);

D.2
Contact management

//The ContactsList class allows the management of all phonebook contacts:

//List all contact:
contactsList.startEnumeration();

while(contactsList.hasMoreContact())

{

contactsList.nextContact(contact) ;

.....

}
//Find a contact with specific value. Find a contact with phone number end bye "0603"
byte pattern[] = {'*','0','6','0','3'} ;

contactsList.startEnumeration();

contactsList.nextContact(contact, Field.TYPE_TEL, Field.ATTR_ANY,

pattern, (short)0, (shrot)pattern.length) ;

//Create a Contact

contactsList.addContact(contact) ;

int contactId = contact.getContactIdentifier();

//Delete a contact

contactsList.removeContact(contactId);

D.3
Field Management

// The Contact object provides access to contact fields.
//Read fields of a contact

byte buffer[] = new byte[60];

contact.startEnumeration() ;

while(contact.hasMoreField())

{

contact.nextField(field) ;

switch(field.getType())

{

case Field.TYPE_TEL:

field.readPhoneNumber(buffer, (short)0,

 (short)buffer.length)

break;

case Field.TYPE_NAME:

// get family name

field.readFormattedName(Field.NAME_FAMILY,buffer,

 (short)0, (short)buffer.length) ;

break;

default:

field.readBinary(buffer, (short)0,

 (short)buffer.length);

}

}

//Update a field

//Update email of the contact

contact.getField(field, email) ;

//or

contact.startEnumeration() ;

contact.nextField(field, Field.TYPE_EMAIL, Field.ATTR_ANY, null, (short)0, (short)0) ;

// then update

byte newMail[] = {'j','o','e','@','g','o','.','c','o','m'};

field.updateBinary(newMail, (short)0, (short)newMail.length) ;

D.4
Group management

//Create a group

byte group1[]={'g','r','o','u','p','1'} ;

// set group name

group.setGroupName(group1, (short)0, (short)group1.length) ;

// add new group

int groupId = groupsList.addGroup(group) ;

//Delete a group

groupsList.removeGroup(groupId) ;

//Add a contact to the group

group.addContact(contact) ;

// remove contact from a group

group.removeContact(contact.getContactIdentifier()) ;

//Enumerate all group

groupsList.startEnumeration() ;

while(groupsList.hasMoreGroup())

{

groupsList.nextGroup(group) ;

....

}

//Enumerate all group of a contact

groupsList.startEnumeration() ;

while(groupsList.hasMoreGroup())

{

groupsList.nextGroup(group,contact.getContactIdentifier()) ;

....

}

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	6-05-2008
	
	C6-080xxx
	
	
	Version 0.1.0 submitted to 3GPP CT6#47
	0.0.0
	0.1.0

	
	
	
	
	
	
	
	

_1269773528.doc

102 221 based

Applications

(

e.g.

SIM

Applet or

USIM Applet)

ADF File

System Server

Other

Applications

not based on

102 221

Toolkit Applet

(

e.g. Toolkit

service,

Remote

Management

Applications,

Browser

Applications)

uicc.scws

SCWS Runtime Environment

SCWS

uicc.system

package

uicc.toolkit

package

uicc.access

package

Java Card

TM

Packages

CAT Runtime Environment

Contact Manager

Server

package

package

Contact Manager Runtime Environment

uicc.contactManager

Java Card

TM

 Runtime Environment

Items that are defined in this specification

_1270568286.doc

Contact 2 Steve

Field Name: Joe

Contact 1 Joe

Contacts List

FieldsDescriptors List: Contact strucure

Groups List

Group Family

Contact 3 Steve

Group Work

FieldDescriptor Cellular Phone

FieldDescriptor Name

FieldDescriptor 1st Email

FieldsDescriptors List: Contact structure

Field Email: Joe@go.com

Field Tel: 061155

