Page 1

3GPP TSG-CT WG6 Meeting #81
C6-160416
Spain, Tenerife, 25 - 28 July 2016
	CR-Form-v11.1

	CHANGE REQUEST

	

	
	31.130
	CR
	0072
	rev
	5
	Current version:
	13.0.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	X
	ME
	
	Radio Access Network
	
	Core Network
	

	

	Title:

	Geo Location API corrections

	
	

	Source to WG:
	Gemalto, Giesecke & Devrient GmbH

	Source to TSG:
	C6

	
	

	Work item code:
	TEI-13
	
	Date:
	2016-09-12

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-13

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)
Rel-11
(Release 11)
Rel-12
(Release 12)
Rel-13
(Release 13)
Rel-14
(Release 14)

	
	

	Reason for change:
	3GPP 31.130 specifies the Javacard API for geo location features. Some API definitions are unclear or lead to unwanted behaviour.
AID is not defined in Annex C.

	
	

	Summary of change:
	Clarify the following API and modify the following API.
Add Geographical Location AID, Version in Annex C.

	
	

	Consequences if not approved:
	The implementation based on the existing specifications leads to unwanted behaviour on the Applet.

	
	

	Clauses affected:
	

	
	

	
	Y
	N
	
	

	Other specs
	
	x
	 Other core specifications

	TS/TR ... CR ...

	affected:
	
	x
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	x
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

1. Description of the issues and proposed changes to Annex A:

1. Issue: API is synchronous whereas Proactive command is asynchronous.

Proposed solution: Modify the API in order to implement a listener.

2. Issue: Which values to return for GeoLocationInfo.getLatitude() and GeoLocationInfo.getLongitude() when the requested GAD shape is Polygon since this shape provides multiple points.

Proposed solution: Clarify, in the API, the getLatitude() and getLongitude() as following:

When GAD shape is Polygon, the returned value is the Centroid of the Polygon which is the average points of all the latitude and longitude samples.

3. Issue: What has to be returned for GeoLocationInfo.getVelocity() when velocity format exceeds the integer size limit of 4 bytes?

Proposed solution:

GetVelocity() will return per field from the Velocity Data,all the fields fit in 4 byes. To identify which field to return, the bGetVelocityField input parameter is added GetVelocity method.

The method definition changes to:

	int
	getVelocity(byte bGetVelocityField)

To identify the possible fields, new constants are defined:

	public static final byte
	GET_HORIZONTAL_VELOCITY
	0

	public static final byte
	GET_VERTICAL_VELOCITY
	1

	public static final byte
	GET_HORIZONTAL_UNCERTAINTY_VELOCITY
	2

	public static final byte
	GET_VERTICAL_UNCERTAINTY_VELOCITY
	3

4. Issue: 3GPP TS 31.111 specifies ME may support GAD or NMEA format for Geo Location Data but the API is only managing the GAD shape format.

Proposed solution: Clarify, in the API, the getLatitude(), getLongitude(), getAltitude(), getVelocity() and getResponseBuffer() as following:

• getLatitude(), getLongitude(), getAltitude(), getVelocity():

When ME answer with NMEA format, the Latitude (resp. Longitude) (resp. Altitude) (resp. Velocity) shall be returned if present in the NMEA sentence.
Clarify Latitude and Longitude are in degrees extracted directly from the NMEA sentence.
Precison to whole second is applied for GAD and NMEA when extracting the Latitude and Longitud information.
Clarify for NMEA, the Altitude is calculated from Altitude w.r.t. Mean Sea Level and Geoidal Separation fields.

Clarify for NMEA, the only velocity field possible is GET_HORIZONTAL_VELOCITY.
Clarify calculations and Values return coding.
Clarify exceptions thrown.
• getResponseBuffer():

The byte buffer is formatted using GAD shapes as defined in TS 23.032 [14] or NMEA format as defined in IEC 61162-1depending on the format answered by the ME.

5. Issue: The 2 parameters Preferred NMEA sentences and Preferred Maximum Response Time shall be provided within the Geographical Location Request proactive command but can’t be set by the applet.

Proposed solution: Modify the API in order to add the 2 following methods and constant:

• void setPreferredNMEASentences (byte PreferredNMEASentences)

Set Preferred NMEA sentences parameter for this object as defined in 3GPP TS 31.111 [7].

• void setPreferredMaximumResponseTime (byte PreferredMaximumResponseTime)

Set Preferred Maximum Response Time parameter for this object as defined in 3GPP TS 31.111 [7].

 • Add the related constants: PREFERRED_NMEA_SENTENCE_RMC, PREFERRED_NMEA_SENTENCE_GGA, PREFERRED_NMEA_SENTENCE_GLL and PREFERRED_NMEA_SENTENCE_GNS

6. Issue: How to retrieve GeoLocationInfo from PLI command?

PLI removed as better to be managed by the Applet itself.
7. Issue: In TS 31.111 Coding of Preferred NMEA sentences, it only indicates four of the NMEA sentences (i.e. $--RMC, $--GGA, $--GLL, $--GNS) but according to IEC 61162-1 standard, we can have more NMEA sentences apart from the four.

Proposed solution: Clarify in the API, support only the NMEA sentences stated in TS 31.111 (i.e. $--RMC, $--GGA, $--GLL, $--GNS).

• getResponseBuffer(): only NMEA sentences stated in TS 31.111 (i.e. $--RMC, $--GGA, $--GLL, $--GNS) are copied in the buffer. If in case two of these sentences are available in geolocation reporting envelope, we will only get the first NMEA sentence given in the envelope. If none of these NMEA sentences are in the envelope, return 00.

• getLatitude(), getLongitude(), getAltitude(), getVelocity(): Retrieve data on the NMEA sentence stated in TS 31.111, whichever was given first in the geolocation reporting envelope. If none of these NMEA sentences are in the envelope, throw GeoLocationException.INCORRECT_INFORMATION.

8. Issue: When empty data was returned in Geographical Location reporting envelope (i.e. Geographical Location Reporting Tag, Length, and Device Identities only)

Proposed solution: Clarify in the API, the following:

• getResponseBuffer(): return 00 and write nothing on the buffer.

• getLatitude(), getLongitude(), getAltitude(), getVelocity(): Throw GeoLocationException.INCORRECT_INFORMATION.
9. Issue: Constants defined the velocity type are not correct according to 31.111
Proposed Solution: Clarify the naming in the constants and correct the value for UNCERTAINTY_OF_VERTICAL_VELOCITY_REQUESTED.
Final list proposed will be:
	public static final byte
	HORIZONTAL_VELOCITY_REQUESTED
	1

	public static final byte
	VERTICAL_AND_HORIZONTAL_VELOCITY_REQUESTED
	3

	public static final byte
	HORIZONTAL_VELOCITY_REQUESTED_WITH_UNCERTAINTY
	5

	public static final byte
	VERTICAL_AND_HORIZONTAL_VELOCITY_REQUESTED_WITH_UNCERTAINTY
	15

These constants would be used by SetVelocity
10. Issue: API is missing how to define Alpha Identifier parameter
Proposed Solution: Add setAlphaIdentifier in GeoLocation Interface.
11. Issue: API is missing how to define Icon Identified parameter

Proposed Solution: Add setIconIdentifier in GeoLocation Interface
12. Remove input parameters in method buildGeoLocation(). Not needed.
13. Clarify interface name GeoLocationEvent
Proposed Solution: Change Interface name to GeoLocationEventListener

Change Method Defintion:
void processGeoLocationEventListener(GeoLocationInfo geoLocInfo) extends Shareable
14. Remove exception definition UNABLE_TO_ACHIEVE_ACCURACY. Not used anymore.
15. Issue: Terminal Profile bit coding for Geographical Location Reporting Support is different between Standard 31.111 and Java API – USATTerminalProfile

Proposed Solution: The support in the terminal profile can be done in the applet.

Terminal Profile Bit coding should be corrected.

Modify performGeoLocationRequest Method for the exception:

UNABLE_TO_PROCESS_COMMAND in case the ME is not equipped with a positioning feature or Terminal Profile specified that GeoLocationApi not supported.
2. Proposition

It is porposed to adopt the above described changes as defined in attached document.
-X-X-X START OF CHANGES X-X-X-
GeoLocationInfo.java
package uicc.usim.geolocation ;

/**

 * An object implementing this interface gives access to the Geo Location information
 received from the ME.

 */

public interface GeoLocationInfo {

 /**

 * Gives the Latitude of the geographical location in Degrees, Minutes and Seconds.

 * Precison to whole second is applied for GAD and NMEA when extracting the Latitude information.

 * When GAD shape is Polygon,
 * The returned value is the Centroid of the Polygon which is the average point of all the latitude and longitude samples,

 * as described in described in TS 23.032 [14] section 7.3.4 Polygon.

 * The Centroid of a non-self-intersecting closed polygon is defined by n vertices (x0,y0), (x1,y1), ..., (xn-1,yn-1) is the point (Cx, Cy),

 * where:

 * Cx = (x0+x1+x2+---------+xn)/n

 * Cy= (y0+y1+y2+-----------+yn)/n

 * Where x and y are the longitude and latitude of each points respectively.

 * Absolute latitude(X) is obtained using the formula specified TS 23.032 [14] Section 6.1 Point.

 * Using the Absolute Latitude X:

 * DD = Integer degrees are equal to the integer part of the decimal degrees

 * MM = Integer of ((X - DD) * 60)

 * SS = (X - DD - MM/60) * 3600
 * When ME answer with NMEA format:

 * The Latitude shall be returned if present in the NMEA sentence, as a result of the conversion to the format of the returned data defined below.

 * The returned data shall be able to provide at least a precision of a whole minute if the Latitude in the NMEA sentence provides so.

 * Only the sentences listed in TS 31.111[7] (i.e. $--RMC, $--GGA, $--GLL, $--GNS) could be used.

 * If two of these sentences are provided in geolocation reporting envelope,only the first NMEA sentence given in
 * the envelope will used to retrieve the Latitude.
 * If none of these sentences are provided in geolocation reporting envelope, UNABLE_TO_PROCESS_COMMAND exception is thrown.
 * Latitude field from NMEA sentence is coded in ASCII (DDMM.mm).

 * Decimal representation is interpreted as:

 * DD = Remaining digits to the left of MM

 * MM = Two Digits immediately to the left of the decimal point

 * mm = Fraction of Minutes

 * SS = .mm * 60
 * @return the Latitude in Degrees, Minutes and Seconds according to TS 23.032 [14], section 6.1 Point.

 * Value returned coding:

 * In Octet 1 bit 8 will be used as Sign bit.

 * For the seconds, only taking the whole number and not decimal numbers.

 * Octet 1 (b8 ... b1): I0000000 (I: Sign bit) where, I = 0 indicates North and I = 1 indicates South

 * Octet 2 (b8 ... b1): DDDDDDDD (D: Degrees, unsigned integer value)

 * Octet 3 (b8 ... b1): MMMMMMMM (M: Minutes, unsigned integer value)

 * Octet 4 (b8 ... b1): SSSSSSSS (S: Seconds, unsigned integer value)

 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_INFORMATION</code> if empty data was returned in Geographical Location reporting envelope (i.e. Geographical Location reporting

 * Tag, Length, and Device Identities only).

 * <code>UNABLE_TO_PROCESS_COMMAND</code> if data returned in Geographical Location reporting envelope

 * does not include any of the sentences listed in TS 31.111[7].

 *

 */

 public int getLatitude() ;

 /**

 * Gives the Longitude of the geographical location in Degrees, Minutes and Seconds.

 * Precison to whole second is applied for GAD and NMEA when extracting the Longitude information.

 * When GAD shape is Polygon,
 * The returned value is the Centroid of the Polygon which is the average point of all the
latitude and longitude samples,
 * as described in described in TS 23.032 [14] section 7.3.4 Polygon.
 * The Centroid of a non-self-intersecting closed polygon is defined by n vertices (x0,y0), (x1,y1), ..., (xn-1,yn-1) is the point (Cx, Cy),

 * where:

 * Cx = (x0+x1+x2+---------+xn)/n

 * Cy= (y0+y1+y2+-----------+yn)/n

 * Where x and y are the longitude and latitude of each points respectively.

 * Absolute Longitude(X) is obtained using the formula specified TS 23.032 [14] Section 6.1 Point.

 * Using the Absolute Longitude X:

 * DD = Integer degrees are equal to the integer part of the decimal degrees

 * MM = Integer of ((X - DD) * 60)

 * SS = (X - DD - MM/60) * 3600
 * When ME answer with NMEA format:

 * The Longitude shall be returned if present in the NMEA sentence, as a result of the conversion to the format of the returned data defined below.

 * The returned data shall be able to provide at least a precision of a whole minute if the Longitude in the NMEA sentence provides so.
 * Only the sentences listed in TS 31.111[7] (i.e. $--RMC, $--GGA, $--GLL, $--GNS) could be used.

 * If two of these sentences are provided in geolocation reporting envelope,only the first NMEA sentence given in

 * the envelope will used to retrieve the Longitude.

 * If none of these sentences are provided in geolocation reporting envelope, UNABLE_TO_PROCESS_COMMAND exception is thrown.
 * Longitude field from NMEA sentence is coded in ASCII (DDMM.mm).

 * Decimal representation is interpreted as:

 * DD = Remaining digits to the left of MM

 * MM = Two Digits immediately to the left of the decimal point

 * mm = Fraction of Minutes

 * SS = .mm * 60
 * @return the Longitude in Degrees, Minutes and Seconds according to TS 23.032 [14], section 6.1 Point.

 * Value returned coding:

 * In Octet 1 bit 8 will be used as Sign bit.

 * For the seconds, only taking the whole number and not decimal numbers.

 * Octet 1 (b8 ... b1): I0000000 (I: Sign bit) where, I = 0 indicates East and I = 1 indicates West

 * Octet 2 (b8 ... b1): DDDDDDDD (D: Degrees, unsigned integer value)

 * Octet 3 (b8 ... b1): MMMMMMMM (M: Minutes, unsigned integer value)

 * Octet 4 (b8 ... b1): SSSSSSSS (S: Seconds, unsigned integer value)

 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_INFORMATION</code> if empty data was returned in Geographical Location reporting envelope (i.e. Geographical Location reporting

 * Tag, Length, and Device Identities only).

 * <code>UNABLE_TO_PROCESS_COMMAND</code> if data returned in Geographical Location reporting envelope

 * does not include any of the sentences listed in TS 31.111[7].

 *

 */

 public int getLongitude() ;

 /**

 * Gives the Altitude of the geographical location in meters.

 * When ME answer with GAD format:

 * If the shape does not include the Altitude, an exception is thrown, UNABLE_TO_PROCESS_COMMAND.
 * When ME answer with NMEA format:

 * The Altitude is calculated from Altitude w.r.t. Mean Sea Level and Geoidal Separation fields.

 * NMEA Altitude = Altitude w.r.t. Mean Sea Level (H) + Geoidal Separation (N)
 * Only the sentences listed in TS 31.111[7] (i.e. $--RMC, $--GGA, $--GLL, $--GNS) could be used.

 * If the altitude is not present in NMEA sentence, an exception is thrown, UNABLE_TO_PROCESS_COMMAND.

 * If two of these sentences are provided in geolocation reporting envelope,only the first NMEA sentence given in the envelope will used to retrieve the Altitude.

 * If none of these sentences are provided in geolocation reporting envelope, UNABLE_TO_PROCESS_COMMAND exception is thrown.
 * @return the Altitude according to TS 23.032 [14], section 6.3 Altitude.
 *

 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_INFORMATION</code> if empty data was returned in Geographical Location reporting envelope (i.e. Geographical Location reporting

 * Tag, Length, and Device Identities only).

 * <code>UNABLE_TO_PROCESS_COMMAND</code> if data returned in Geographical Location reporting envelope does not include any of the sentences listed in TS 31.111[7].

 *

 */

 public int getAltitude() ;

 /**

 * Gives a field from the Velocity Data of the geographical location (speed in Km/h & bearing/course in degrees).

 * When ME answer with GAD format:

 * The returned value is the Velocity Field according to the input parameter.

 * If the Velocity Field requested is not present, UNABLE_TO_PROCESS_COMMAND exception is thrown.

 * If the parameter specifies Horizontal Velocity Field, the value returned is Velocity Type from the GeoLocation Envelope,

 * Bearing and Horizontal Speed, as defined in TS 23.032 [14] section 8.1 Horizontal Velocity.

 * If the parameter specifies Vertical Velocity Field, the value returned is Velocity Type from the GeoLocation Envelope,

 * Direction and Vertical Speed, as defined in TS 23.032 [14] section 8.2 Horizontal and Vertical Velocity.

 * If the parameter specifies Horizontal Uncertainty Velocity Field, the value returned is Velocity Type from the GeoLocation Envelope and Horizontal Uncertainty Speed,

 * as defined in TS 23.032 [14] section 8.3 Horizontal Velocity with Uncertainty.

 * If the parameter specifies Vertical Uncertainty Velocity Field, the value returned is Velocity Type from the GeoLocation Envelope and Vertical Uncertainty Speed,

 * as defined in TS 23.032 [14] section 8.4 Horizontal and Vertical Velocity with Uncertainty.

 * When ME answer with NMEA format:

 * Only the sentences listed in TS 31.111[7] (i.e. $--RMC, $--GGA, $--GLL, $--GNS) could be used.

 * The Velocity shall be returned if present in the NMEA RMC sentence for any other sentence type, UNABLE_TO_PROCESS_COMMAND exception is thrown.

 * If none of these sentences are provided in geolocation reporting envelope, UNABLE_TO_PROCESS_COMMAND exception is thrown.

 * For RMC Sentence, the Speed over ground and Course over ground is returned. The Speed over ground is converted from knots to Km/h.

 * As RMC Sentence only returns the Speed over ground and Course over ground, it's only possible to set input parameter to GET_HORIZONTAL_VELOCITY.

 * @param velocity Velocity Type byte to identify the Velocity Type to return.

 * Possible values:

 * - <code>GET_HORIZONTAL_VELOCITY</code>

 * - <code>GET_VERTICAL_VELOCITY</code>

 * - <code>GET_HORIZONTAL_UNCERTAINTY_VELOCITY</code>

 * - <code>GET_VERTICAL_UNCERTAINTY_VELOCITY</code>

 * @return The Velocity field according to TS 23.032 [14].

 * When ME answer with GAD format:

 * In the MSB byte:

 * - Bit 8 to bit 5 (b8b7b6b5) will provide the Velocity Type received in the envelope according to TS 23.032 [14] Section 8.6

 * - Bit 4 and bit 3 (b4b3) will be used to indicate the Velocity Field (bGetVelocityField parameter) requested

 * - Bit 2 and bit 1 (b2b1) will be used to encode bearing or direction, depending of the Velocity Field returned.

 * For Horizontal Velocity Field, the integer returned will include the Velocity Type received and requested (cf above), Bearing and Horizontal Speed extracted from the Velocity coding type defined in sections 8.12 to 8.15 of TS 23.032 [14], where bearing will be encoded from the bit b1 of the MSB byte in the returned integer. Horizontal Speed will be encoded on LSB bytes of the returned integer. Bit b2 of the MSB byte is set to zero.

 * Octet 1 (b8 ... b1): TTTT000B (T: Velocity Type, B: Bearing)

 * Octet 2 (b8 ... b1): BBBBBBBB (B: Bearing)

 * Octet 3 (b8 ... b1): HHHHHHHH (H: Horizontal Speed higher byte)

 * Octet 4 (b8 ... b1): HHHHHHHH (H: Horizontal Speed lower byte)

 * For Vertical Velocity Field, the integer returned will include the Velocity Type received and requested (cf above) and the Vertical Speed with its direction extracted from the Velocity coding type defined in sections 8.13 and 8.15 of TS 23.032 [14]. Bit b2 of the MSB byte provides the direction, all other bits are set to zero until the LSB byte that contains the vertical velocity.

 * Octet 1 (b8 ... b1): TTTT01D0 (T: Velocity Type, D: Direction)

 * Octet 2 (b8 ... b1): 00000000 (Not used)

 * Octet 3 (b8 ... b1): 00000000 (Not used)

 * Octet 4 (b8 ... b1): VVVVVVVV (V: Vertical Speed)

 * For Horizontal Uncertainty Velocity Field, the integer returned will include the Velocity Type received and requested (cf above) and the Horizontal Uncertainty speed extracted from the Velocity coding type defined in sections 8.14 and 8.15 of TS 23.032 [14]. The Uncertainty Speed is assigned to the last byte of the returned Integer, all other bits are set to zero.

 * Octet 1 (b8 ... b1): TTTT1000 (T: Velocity Type)

 * Octet 2 (b8 ... b1): 00000000 (Not used)

 * Octet 3 (b8 ... b1): 00000000 (Not used)

 * Octet 4 (b8 ... b1): UUUUUUUU (U: Horizontal Uncertainty Speed)

 * For Vertical Uncertainty Velocity Field, the integer returned will include the Velocity Type received and requested (cf above) and the Vertical Uncertainty Speed extracted from the Velocity coding type defined in section 8.15 of TS 23.032 [14]. The Vertical Uncertainty Speed is assigned to the last byte of the returned Integer, all other bits are set to zero.

 * Octet 1 (b8 ... b1): TTTT1100 (T: Velocity Type)

 * Octet 2 (b8 ... b1): 00000000 (Not used)

 * Octet 3 (b8 ... b1): 00000000 (Not used)

 * Octet 4 (b8 ... b1): NNNNNNNN (N: Vertical Uncertainty Speed)

 * When ME answer with NMEA format:

 * In the MSB, the bits b8 to b5 are defined to "1000" to identify NMEA RMC sentence.

 * In the MSB, the bits b4 to b2 are defined to 00.

 * Course over ground will be encoded from the bit b1 of the MSB byte and following MSB byte. Horizontal Speed (Speed over the Ground converted from knots to Km/h) will be encoded on LSB bytes of the returned integer.

 * Octet 1 (b8 ... b1): 1000000C (C: Course over ground in degrees)

 * Octet 2 (b8 ... b1): CCCCCCCC (C: Course over ground in degrees)

 * Octet 3 (b8 ... b1): SSSSSSSS (S: Speed over Ground in km/h)

 * Octet 4 (b8 ... b1): SSSSSSSS (S: Speed over Ground in km/h)
 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_INFORMATION</code> if empty data was returned in Geographical Location reporting envelope (i.e. Geographical Location reporting

 * Tag, Length, and Device Identities only).

 * <code>INCORRECT_PARAMETERS</code> if incorrect parameter is set.

 * <code>UNABLE_TO_PROCESS_COMMAND</code> if data returned in Geographical Location reporting envelope does not include any of the sentences listed in TS 31.111[7]

 * or the Velocity field requested is not present.
 *

 */

 public int getVelocity(byte bGetVelocityField) ;

 /**
 * This API return the Geo Location information provided in the geolocation reporting Envelope.
 * The byte buffer is formatted either using GAD shapes as defined in TS 23.032 [14] or NMEA format as defined in IEC 61162-1

 * depending on the format answered by the ME.

 * Returns empty buffer (i.e.: length = 0), when empty data was returned in Geographical Location reporting envelope (i.e.

 * Geographical Location Reporting Tag, Length, and Device Identities only).

 * If the ME answer with NMEA format, only the sentences listed in TS 31.111[7] (i.e. $--RMC, $--GGA, $--GLL, $--GNS) could

 * be copied in the buffer.

 * If two of these sentences are provided in geolocation reporting envelope,only the first NMEA sentence given in the

 * envelope will be copied in the buffer.

 * If none of these sentences are provided in geolocation reporting envelope, empty buffer (i.e.: length = 0) is returned. <p>

 * @param buffer byte array where response of the operation shall be copied.

 * @param offset offset of the result in <code>buffer</code>

 * @param length length of data in <code>buffer</code>

 * @return actual length of the data copied into the <code>buffer</code>

 */

 public short getResponseBuffer(byte[] buffer, short bOffset, short length) ;

}

GeoLocationBuilder.java
package uicc.usim.geolocation ;

import uicc.toolkit.* ;

/**

 * The <code>GeoLocationBuilder</code> class is a <code>GeoLocation</code> object factory.

 */

public class GeoLocationBuilder {

 /**

 * Create an instance of the <code>GeoLocation</code> interface.

 *

 * @return <code>GeoLocation</code> object;

 */

 public static GeoLocation buildGeoLocation() {

 return null ;

 }

}

GeoLocationEventListener.java
package uicc.usim.geolocation ;

import javacard.framework.Shareable;

/**

 * The <code>GeoLocationEventListener</code> interface provides a callback interface for the

 * CAT Runtime Environment to send the result of a geographical operation to an applet.

 */

public interface GeoLocationEventListener extends Shareable {

 /**

 * Called by the CAT Runtime Environment to send the result of a geographical operation

 * to an applet. The result is formatted either in the format of GAD shapes defined in TS 23.032 [14] or in the format of NMEA sentences defined in IEC 61162-1.<p>

 * This method executes in the context of the applet instance. <p>

 * Exceptions thrown by this method are caught by the CAT Runtime Environment and ignored.

 *

 * @param geoLocInfo object that provides the geo information received from the ME to the

 * Applet. It's a Temporary JCRE Entry Point Object.

 */

 public void processGeoLocationEventListener(GeoLocationInfo geoLocInfo) ;

}
GeoLocationException.java
package uicc.usim.geolocation;

import javacard.framework.CardRuntimeException;

/**

 * Geographical Location exception and its associated constants.

 */

public class GeoLocationException extends CardRuntimeException {

 // ------------------------------- Constants ------------------------------

 /** This reason code (= 1) is used to indicate that the parameters are incorrect

 */

 public static final short INCORRECT_PARAMETERS = (short)1;

 /** This reason code (= 2) is used to indicate that the geographical location is disabled

 */

 public static final short FUNCTION_DISABLED = (short)2;

 /** This reason code (= 3) is used to indicate that the operation could not be processed

 */

 public static final short UNABLE_TO_PROCESS_COMMAND = (short)3;

 /**

 * This reason code (= 5) is used to indicate that the information in the <code>ProactiveResponseHandler</code> or in

 * the <code>EnvelopeHandler</code> is not correct.

 */

 public static final short INCORRECT_INFORMATION = (short)5;
 /**

 * This reason code (= 6) is used to indicate that the a <code>performGeoLocationRequest</code> is under processing

 * (i.e. after the sent of a location request and before receiving the "Geographical Location Reporting" ENVELOPE command).

 */

 public static final short LOCATION_REQUEST_PROCESSING = (short)6 ;

 // ------------------------------- Constructors ---------------------------

 /**

 * Construct a GeoLocationException instance with the specified reason. To

 * conserve on resources use <code>throwIt()</code> method to re-use the

 * JCRE instance of this class.

 *

 * @param reason the reason for the exception

 */

 public GeoLocationException(short reason) { super(reason); }
 // ------------------------------- Public methods -------------------------

 /**

 * Throws the JCRE instance of the <code>GeoLocationException</code> class with

 * the specified reason.

 *

 * @param reason the reason for the exception.

 *

 * @exception GeoLocationException always

 */

 public static void throwIt(short reason) throws GeoLocationException {

 }

}
GeoLocation.java
package uicc.usim.geolocation;

import uicc.toolkit.*;

/**

 * This interface defines services allowing an application to get information on the ME current geographical location.

*/

public interface GeoLocation {

/**

 * Horizontal accuracy: best effort

 */

public static final byte HORIZONTAL_ACCURACY_BEST_EFFORT = (byte)0x81 ;

/**

 * Vertical coordinate: not requested

 */

public static final byte VERTICAL_COORDINATE_NOT_REQUESTED = (byte)0x80 ;

/**

* Vertical coordinate: best effort

*/

public static final byte VERTICAL_COORDINATE_REQUESTED_BEST_EFFORT = (byte)0x81 ;

/**

 * Horizontal velocity requested

 */

public static final byte HORIZONTAL_VELOCITY_REQUESTED = (byte)0x01 ;

/**

 * Vertical velocity requested in addition to horizontal velocity

 */

public static final byte VERTICAL_ AND_HORIZONTAL_VELOCITY_REQUESTED = (byte)0x03 ;

/**

 * Uncertainty of horizontal velocity requested in addition to horizontal velocity

 */

public static final byte HORIZONTAL_VELOCITY_REQUESTED _WITH_UNCERTAINTY = (byte)0x05 ;
/**

 * Uncertainty of vertical and horizontal velocity requested in addition to horizontal and vertical velocity

*/

public static final byte VERTICAL_AND_HORIZONTAL_VELOCITY_REQUESTED_WITH_UNCERTAINTY = (byte)0x0F ;

/**

 * Obtain Horizontal Velocity Field from Velocity information.

*/

public static final byte GET_HORIZONTAL_VELOCITY = (byte)0x00 ;
/**

 * Obtain Vertical Velocity Field from Velocity information.
*/

public static final byte GET_VERTICAL_VELOCITY = (byte)0x01 ;
/**

 * Obtain Horizontal Uncertainty Velocity Field from Velocity information.
*/
public static final byte GET_HORIZONTAL_UNCERTAINTY_VELOCITY = (byte)0x02 ;
/**

 * Obtain Vertical Uncertainty Velocity Field from Velocity information.

*/

public static final byte GET_VERTICAL_UNCERTAINTY_VELOCITY = (byte)0x03 ;
/**

 * GAD shape: Ellipsoid point

 */

public static final byte GAD_SHAPES_ELLIPSOID_POINT = (byte)0x01 ;

/**

* GAD shape: Ellipsoid point with uncertainty circle

*/

public static final byte GAD_SHAPES_ELLIPSOID_POINT_WITH_UNCERTAINTY_CIRCLE = (byte)0x02 ;

/**

* GAD shape: Ellipsoid point with uncertainty ellipse

*/

public static final byte GAD_SHAPES_ELLIPSOID_POINT_WITH_UNCERTAINTY_ELLIPSE = (byte)0x04 ;

/**

* GAD shape: Ellipsoid point with altitude

*/

public static final byte GAD_SHAPES_ELLIPSOID_POINT_WITH_ALTITUDE = (byte)0x08 ;

/**

* GAD shape: Polygon

*/

public static final byte GAD_SHAPES_POLYGON = (byte)0x10 ;

/**

* GAD shape: Ellipsoid point with altitude and uncertainty ellipsoid

*/

public static final byte GAD_SHAPES_ELLIPSOID_POINT_WITH_ALTITUDE_AND_UNCERTAINTY_ELLIPSOID = (byte)0x20 ;

/**

* GAD shape: Ellipsoid arc

*/

public static final byte GAD_SHAPES_ELLIPSOID_ARC = (byte)0x40;

 /**

 * Preferred NMEA sentence: _RMC

 */

 public static final byte PREFERRED_NMEA_SENTENCE_RMC = (byte)0x01 ;

 /**

 * Preferred NMEA sentence: _GGA

 */

 public static final byte PREFERRED_NMEA_SENTENCE_GGA = (byte)0x02 ;

 /**

 * Preferred NMEA sentence: _GLL

 */

 public static final byte PREFERRED_NMEA_SENTENCE_GLL = (byte)0x04 ;

 /**

 * Preferred NMEA sentence: _GNS

 */

 public static final byte PREFERRED_NMEA_SENTENCE_GNS = (byte)0x08 ;

 /**

 * Set alpha identifier parameter for this object as defined in 3GPP TS 31.111 [7].
 * @param alphaIdentifier Alpha identifier TLV as definedin in 3GPP TS 31.111 [7]
 */

 public void setAlphaIdentifier(byte[] alphaIdentifier) ;

 /**

 * Set icon identifier parameter for this object as defined in 3GPP TS 31.111 [7].
 * @param iconIdentifier Value part of Icon identifier TLV as definedin in 3GPP TS 31.111 [7]
 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.

 */

 public void setIconIdentifier(short iconIdentifier) ;
 /**

 * Set horizontal accuracy parameter for this object as defined in 3GPP TS 31.111 [7].
 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.
 */

 public void setHorizontalAccuracy(byte horizontalAccuracy) ;

 /**

 * Set vertical coordinate parameter for this object as defined in 3GPP TS 31.111 [7].
 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.
 */

 public void setVerticalCoordinate(byte verticalCoordinate) ;

 /**

 * Set velocity parameter for this object as defined in 3GPP TS 31.111 [7].
 * @param velocity byte to identify the Velocity Type to return.

 * Possible value, one or combination (OR operation) of:

 * - <code>HORIZONTAL_VELOCITY_REQUESTED</code>

 * - <code>VERTICAL_AND_HORIZONTAL_VELOCITY_REQUESTED</code>

 * - <code>HORIZONTAL_VELOCITY_REQUESTED_WITH_UNCERTAINTY</code>

 * - <code>VERTICAL_AND_HORIZONTAL_VELOCITY_REQUESTED_WITH_UNCERTAINTY</code>
 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.
 */

 public void setVelocity(byte velocity) ;

 /**

 * Set accepted GAD shapes parameter for this object as defined in 3GPP TS 31.111 [7].
 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.
 */

 public void setAcceptedGADShapes(byte acceptedGADShapes) ;
 /**

 * Set Preferred NMEA sentences parameter for this object as defined in 3GPP TS 31.111 [7].

 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.

 */

 public void setPreferredNMEASentences(byte preferredNMEASentences) ;

 /**

 * Set Preferred Maximum Response Time parameter for this object as defined in 3GPP TS 31.111 [7].

 * @exception GeoLocationException with the following reason codes:

 * <code>INCORRECT_PARAMETERS</code> in case of bad parameter is set.

 */

 public void setPreferredMaximumResponseTime(byte preferredMaximumResponseTime) ;
 /**

 * Request a geographical location operation, using parameters defined in the object.

 * A callback mechanism is used to retrieve the result, when available, using

 * the <code>geoLocationEventListener</code> object.

 * If the ME has indicated in its Terminal Profile that it supports "class n"

 * ("Geographical Location Request" see TS 31.111[7] for more details) the system will first send out

 * a "Geographical Location Request" proactive command.

 *

 * If the Terminal Response from the ME indicates that the commands can be performed successfully the

 * actual Geo Location information will be made available through a <code>GeoLocationInformation</code> object.

 *

 * If the Terminal Response from the ME indicates that it can not perform this command,

 * an exception is thrown, UNABLE_TO_PROCESS_COMMAND.

 *

 *

 * If the ME does not support "class n", an exception is thrown, UNABLE_TO_PROCESS_COMMAND.

 *

 * @param geoLocationEventListener the callback object to be invoked once the result is available.
 *

 * @exception NullPointerException if <code> geoLocationEventListener </code>
 * is <code>null</code>

 *

 * @exception GeoLocationException with the following reason codes:

 * <code>FUNCTION_DISABLED</code> in case the ME is currently unable to get the location information

 * (e.g. due to lack of GPS coverage or due to a deactivated GPS receiver).

 * <code>UNABLE_TO_PROCESS_COMMAND</code> in case the ME is not equipped with a positioning feature.

 * <code>LOCATION_REQUEST_PROCESSING</code> in case a Geographical Location Request has already been

 * issued and the Envelope Geographical Location Reporting is expected.

 * @exception uicc.toolkit.ToolkitException with the following reason code:

 * <code>HANDLER_NOT_AVAILABLE</code> if there is on-going proactive session

 *

 */

 public void performGeoLocationRequest(GeoLocationEventListener geoLocationEventListener) throws GeoLocationException, uicc. toolkit.ToolkitException ;

}
Annex C (normative):
(U)SIM API package version management

The following table describes the relationship between each TS 31.130 specification version and its packages AID and Major, Minor versions defined in the export files.

	TS 31.130
	uicc.usim.access package
	uicc.usim.toolkit package

	
	AID
	Major, Minor
	AID
	Major,

Minor

	
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 10 00 00
	1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 20 00 00
	1.0

	7.1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 10 00 00
	1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 20 00 00
	1.1

	7.2.1
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 10 00 00
	1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 20 00 00
	1.2

	10.1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 10 00 00
	1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 20 00 00
	1.7

	10.2.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 10 00 00
	1.0
	A0 00 00 00 87 10 05 FF FF FF FF 89 13 20 00 00
	1.8

	TS 31.130
	uicc.usim.geolocation

	
	AID
	Major, Minor

	
	A000000087 1005 FFFF FFFF 89 13 300000
	1.0

	13.1.0
	A000000087 1005 FFFF FFFF 89 13 300000
	2.0

