Page 1

3GPP TSG-CT WG6 Meeting #54
(
C6-100037
San Francisco, USA, 23 – 26 February 2010

	CR-Form-v9.6

	CHANGE REQUEST

	

	(

	31.213
	CR
	0007
	(

rev
	-
	(

Current version:
	9.0.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	x
	ME
	x
	Radio Access Network
	
	Core Network
	

	

	Title:
(

	Addition of test cases for Rel-7 functionality of the (U)SIM API

	
	

	Source to WG:
(

	Sagem Orga GmbH

	Source to TSG:
(

	CT WG6

	
	

	Work item code:
(

	USIM_API_test
	
	Date: (

	15/02/2010

	
	
	
	
	

	Category:
(

	A
	
	Release: (

	Rel-9

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)
Rel-10
(Release 10)

	
	

	Reason for change:
(

	Although new functionality has been introduced for the (U)SIM API, the related tests have not been defined yet

	
	

	Summary of change:
(

	Addition of test cases for Rel-7 functionality

	
	

	Consequences if
(

not approved:
	Rel-7 functionality not covered by test specification

	
	

	Clauses affected:
(

	Content, 5.2.2.1, 5.2.2.2, 5.2.5, 5.3, 5.3.1, 5.3.2, 5.3.3, 5.3.4.7(new), 5.3.4.8(new), 5.3.6, 5.3.8, 5.3.11(new)

	
	

	
	Y
	N
	
	

	Other specs
(

	
	
	 Other core specifications
(

	

	affected:
	
	
	 Test specifications
	

	
	
	
	 O&M Specifications
	

	
	

	Other comments:
(

	

******************************* FIRST CHANGE*****************************

Contents
8Foreword

1
Scope
9
2
References
9
3
Definitions, symbols and abbreviations
10
3.1
Definitions
10
3.2
Abbreviations
10
4
Test environment
11
4.1
Applicability
11
4.2
Test environment description
11
4.3
Tests format
12
4.3.1
Test area reference
12
4.3.1.1
Conformance requirements
12
4.3.1.2
Test area files
13
4.3.1.3
Test procedure
13
4.3.1.4
Test coverage
13
4.4
Initial conditions
13
4.5
Package name
13
4.6
AID coding
14
4.7
Test equipment
15
4.7.1
Test tool
15
4.7.2
Interfaces and classes use
15
4.7.3
Util package
15
4.7.4
Java Software Development kit version
15
5
Test plan
15
5.1
Package uicc.usim.access package
15
5.1.1
Interface SIMConstants
15
5.1.2
Interface USIMConstants
15
5.2
Package uicc.usim.toolkit package
16
5.2.1
Interface ToolkitConstants
16
5.2.2
Interface USATEnvelopeHandler
16
5.2.2.1
Method getSecuredDataLength
16
5.2.2.2
Method getSecuredDataOffset
20
5.2.2.3
Method getShortMessageLength
23
5.2.2.4
Method getShortMessageOffset
26
5.2.2.5
Method getTPUDLOffset
30
5.2.2.6
Method getUserDataLength
32
5.2.2.7
Method getItemIdentifier
35
5.2.2.8
Method getChannelIdentifier
36
5.2.2.9
Method getChannelStatus
39
5.2.2.10
Method getSize
41
5.2.2.11
Method getTag
42
5.2.2.12
Method compareValue
43
5.2.2.13
Method copy
45
5.2.2.14
Method copyValue
47
5.2.2.15
Method findAndCompareValue(byte tag, byte[] compareBuffer, short compareOffset)
50
5.2.2.16
Method findAndCompareValue(byte tag, byte occurrence, short valueOffset, byte[] compareBuffer, short compareOffset, short compareLength)
52
5.2.2.17
Method findAndCopyValue(byte tag, byte[] dstBuffer, short dstOffset)
55
5.2.2.18
Method findAndCopyValue(byte tag, byte occurrence, short valueOffset, byte[] dstBuffer, short dstOffset, short dstLength)
57
5.2.2.19
Method findTLV
60
5.2.2.20
Method getCapacity
62
5.2.2.21
Method getLength
63
5.2.2.22
Method getValueByte
64
5.2.2.23
Method getValueLength
65
5.2.2.24
Method getValueShort
66
5.2.3
Interface USATTerminalProfile
67
5.2.4
Class USATEnvelopeHandlerSystem
67
5.2.4.1
Method getTheHandler
67
5.2.5
Interface ToolkitRegistry
68
5.2.5.1
Method clearEvent
68
5.2.5.2
Method isEventSet
70
5.2.5.3
Method setEvent
71
5.2.5.4
Method setEventList
73
5.3
(U)SAT Framework
77
5.3.1
Minimum handler availability
77
5.3.1.1
ProactiveHandler
77
5.3.1.2
ProactiveResponseHandler
82
5.3.1.3
EnvelopeHandler
92
5.3.1.4
EnvelopeResponseHandler
95
5.3.1.5
USATEnvelopeHandler
104
5.3.1.6
Applet triggering with ongoing proactive session
107
5.3.2
Handler integrity
112
5.3.2.1
ProactiveResponseHandler
112
5.3.2.2
EnvelopeHandler
113
5.3.2.3
USATEnvelopeHandler
124
5.3.3
Exception handling
141
5.3.3.1
General Behaviour
141
5.3.3.2
Interaction with Multiple Triggering
143
5.3.4
Applet triggering
144
5.3.4.1
EVENT_FORMATTED_SMS_PP_ENV
144
5.3.4.2
EVENT_UNFORMATTED_SMS_PP_ENV
146
5.3.4.3
EVENT_FORMATTED_SMS_PP_UPD
148
5.3.4.4
EVENT_UNFORMATTED_SMS_PP_UPD
150
5.3.4.5
EVENT_FORMATTED_SMS_CB
153
5.3.4.6
EVENT_UNFORMATTED_SMS_CB
154
5.3.4.7
EVENT_FORMATTED_USSD
155
5.3.4.8
EVENT_UNFORMATTED_USSD
157
5.3.5
Envelope response posting
158
5.3.5.1
EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
158
5.3.6
Toolkit installation
160
5.3.6.1
Minimum security level
160
5.3.6.2
TAR
161
5.3.6.3
Access domain
164
5.3.7
Other parts transferred to (U)SAT framework from API
166
5.3.7.1
A handler is a temporary JCRE Entry Point object
166
5.3.8
Framework security management
166
5.3.8.1
Input data
167
5.3.8.2
Output data
174
5.3.9
Concatenated SMS
175
5.3.9.1
Concatenation processing
175
5.3.9.2
Test area files
176
5.3.9.3
Test coverage
176
5.3.9.4
Test procedure
176
5.3.10
Cell Broadcast Service
178
5.3.10.1
Multiple message reassembling
178
5.3.10.2
Test area files
178
5.3.10.3
Test coverage
178
5.3.11
Concatenated USSD
179
5.3.11.1
Concatenation processing
179
5.3.11.2
Test area files
180
5.3.11.3
Test coverage
180
5.3.11.4
Test procedure
180
Annex A (normative): Class, methods and USATFramework tests acronyms
182
A.1
Toolkit part
182
A.1.1
USATEnvelopeHandler interface
182
A.1.2
USATEnvelopeHandlerSystem method
182
A.1. 3
ToolkitRegistry methods
183
A.2
Acronyms for USATFramework tests
183
A.2.1
Minimum handler availability
183
A.2.2
Handler integrity
183
A.2.3
Applet triggering
183
A.2.4
Exception handling
183
A.2.5
Envelope response posting
184
A.2.6
Toolkit installation
184
A.2.7
Other parts transferred from API to CAT RE
184
A.2.8
Framework security
184
A.2.9
Concatenated SMS
184
A.2.10
Cell Broadcast Service
184
Annex B (normative): Global prepersonalization
185
Annex C (normative): Test file description
186
Annex D (normative): uicc.usim.test.util package, (U)SIM interfaces and testing script example
187
Annex E (normative): Test Area files
188
Annex F (informative): Change history
189

***************END OF FIRST CHANGE***************

***********************SECOND CHANGE********************
5.2.2.1
Method getSecuredDataLength

Test Area Reference: Api_2_Ueh_Gsdl

5.2.2.1.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short getSecuredDataLength()

 throws uicc.toolkit.ToolkitException

5.2.2.1.1.1
Normal execution

-
CRRN1: The method shall return the length of the Secured Data from the Command Packet in the SMS TPDU (simple or concatenated) or Cell Broadcast Page Comprehension TLV contained in the Envelope handler.

-
CRRN2: The length is from the first SMS TPDU TLV, USSD String TLV or Cell Broadcast Page Comprehension TLV.

-
CRRN3: The length should not include padding bytes.

-
CRRN4: The method can be used if the event is EVENT_FORMATTED_SMS_PP_ENV and if the SMS TP UD is formatted according to TS 31.115 [10] Single or Concatenated Short Message.

-
CRRN5: The method can be used if the event is EVENT_FORMATTED_SMS_PP_UPD and if the SMS TP UD is formatted according to TS 31.115 [10] Single or Concatenated Short Message.

-
CRRN6: The method can be used if the event is EVENT_FORMATTED_SMS_CB and if the Cell Broadcast Page is formatted according to TS 31.115 [10].
-
CRRN7: The method can be used if the event is EVENT_FORMATTED_USSD and if the USSD String id is formatted according to TS31.115 [10]
-
CRRN8: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_ENV, the selected TLV should be the SMS TPDU TLV.

-
CRRN9: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_UPD, the selected TLV should be the SMS TPDU TLV.

-
CRRN10: If the method is successful and if the event is EVENT_FORMATTED_SMS_CB, the selected TLV should be the Cell Broadcast Page TLV.
-
CRRN11: If the method is successful and if the event is EVENT_FORMATTED_USSD, the selected TLV should be the USSD String TLV.
5.2.2.1.1.2
Parameter errors

No requirements.

5.2.2.1.1.3
Context errors

-
CRRC1: The method shall throw ToolkitException.UNAVAILABLE_ELEMENT in case of unavailable SMS TPDU TLV, USSD String TLV element or Cell Broadcast Page Comprehension TLV.

-
CRRC2: The method shall throw ToolkitException.UNAVAILABLE_ELEMENT in case of wrong data format.

5.2.2.1.2
Test area files

Specific triggering:

-
FORMATTED SMS CB.

-
UNFORMATTED SMS CB.

-
FORMATTED SMS PP ENV.

-
UNFORMATED SMS PP ENV.

-
FORMATTED SMS PP UPD.
-
FORMATTED USSD ENV
-
UNFORMATTED USSD ENV
-
For Formatted triggering if CC/RC/DS is used, the security parameters are the one defined in section “5.3.8 Framework Security Management”.

Test Source:
Test_Api_2_Ueh_Gsdl.java

Test Applet:
Api_2_Ueh_Gsdl_1.java

Cap File:
Api_2_Ueh_Gsdl.cap

5.2.2.1.3
Test coverage

	CRR number
	Test case number

	N1
	1 to 42

	N2
	13, 30

	N3
	6, 7, 23, 24, 37, 38

	N4
	1 to 17

	N5
	18 to 34

	N6
	35 to 42

	N7
	43 to 56

	N8
	17

	N9
	34

	N10
	42

	N11
	56

	C1
	57

	C2
	58

	C3
	59

5.2.2.1.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	
	FORMATTED SMS PP ENV Triggering
	
	

	1
	Test with FORMATTED_SMS_PP_ENV and TP-OA length of 2
	Returns 0x002A

	

	2
	Test with TP-OA length of 6
	Returns 0x002A
	

	3
	Test with TP-OA length of 12
	Returns 0x002A
	

	4
	Test with RC/CC/DS length of 0
	Returns 0x0010
	

	5
	Test with RC/CC/DS length of 8
	Returns 0x0010
	

	6
	Test with PCNTR = 0
	Returns 0x0010
	

	7
	Test with PCNTR = 7 (ciphering shall be used)
	Returns 0x0003
	

	8
	Test with Secured Data Length = 00
	Returns 0x0000
	

	9
	Test with Secured Data Length = 0x33
	Returns 0x0033
	

	10
	Test with Secured Data Length = 0x6C (UDL = 0x7F)
	Returns 0x006C
	

	11
	Test with Secured Data Length = 0x6D (UDL = 0x80)
	Returns 0x006D
	

	12
	Test with Secured Data Length = maximum length for one envelope : 0x79 (UDL = 0x8C)
	Returns 0x0079
	

	13
	Verify it is the first TPDU TLV:

Send a SMS PP with 2 TPDU TLV and inside two different secured data lengths: 5 and 10
	Returns 0x0005
	

	14
	Test with secured data length = 0x7F (2 concatenated envelopes are needed)
	Returns 0x007F
	

	15
	Test with secured data length = 0x80 (2 concatenated envelopes are needed)
	Returns 0x0080
	

	16
	Test with secured data length = maximum length for 2 concatenated envelopes : 0xFA
	Returns 0x00FA
	

	17
	Test with FORMATTED_SMS_PP_ENV

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the TPDU TLV
	getValueByte returns 0x0040
	

	
	FORMATTED SMS PP UPD Triggering
	
	

	18
	Same test as 1 but with FORMATTED_SMS_PP_UPD
	Returns 0x002A
	

	19
	Same test as 2 but with FORMATTED_SMS_PP_UPD
	Returns 0x002A
	

	20
	Same test as 3 but with FORMATTED_SMS_PP_UPD
	Returns 0x002A
	

	21
	Same test as 4 but with FORMATTED_SMS_PP_UPD
	Returns 0x0010
	

	22
	Same test as 5 but with FORMATTED_SMS_PP_UPD
	Returns 0x0010
	

	23
	Same test as 6 but with FORMATTED_SMS_PP_UPD
	Returns 0x0010
	

	24
	Same test as 7 but with FORMATTED_SMS_PP_UPD
	Returns 0x0003
	

	25
	Same test as 8 but with FORMATTED_SMS_PP_UPD
	Returns 0x0000
	

	26
	Same test as 9 but with FORMATTED_SMS_PP_UPD
	Returns 0x0033
	

	27
	Same test as 10 but with FORMATTED_SMS_PP_UPD
	Returns 0x006C
	

	28
	Same test as 11 but with FORMATTED_SMS_PP_UPD
	Returns 0x006D
	

	29
	Same test as 12 but with FORMATTED_SMS_PP_UPD
	Returns 0x0079
	

	30
	Same test as 13 but with FORMATTED_SMS_PP_UPD
	Returns 0x0005
	

	31
	Test with secured data length = 0x7F (2 concatenated envelopes are needed)
	Returns 0x007F
	

	32
	Test with secured data length = 0x80 (2 concatenated envelopes are needed)
	Returns 0x0080
	

	33
	Test with secured data length = maximum length for 2 concatenated envelopes : 0xFA
	Returns 0x00FA
	

	34
	Test with FORMATTED_SMS_PP_UPD

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the TPDU TLV
	getValueByte returns 0x0040
	

	
	FORMATTED SMS CB Triggering
	
	

	35
	Same test as 4 but with FORMATTED_SMS_CB
	Returns 0x0010
	

	36
	Same test as 5 but with FORMATTED_SMS_CB
	Returns 0x0010
	

	37
	Same test as 6 but with FORMATTED_SMS_CB
	Returns 0x0010
	

	38
	Same test as 7 but with FORMATTED_SMS_CB
	Returns 0x0003
	

	39
	Same test as 8 but with FORMATTED_SMS_CB
	Returns 0x0000
	

	40
	Same test as 9 but with FORMATTED_SMS_CB
	Returns 0x0033
	

	41
	Same test as 12 but with maximum secured data length: 0x42, and FORMATTED_SMS_CB
	Returns 0x0042
	

	42
	Test with FORMATTED_SMS_CB

Verify after call of the method the current TLV is the Cell Broadcast Page TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the Cell Broadcast Page TLV
	getValueByte returns 0x00
	

	
	FORMATTED USSD Triggering
	
	

	43
	Test with formatted USSD and RC/CC/DS length of 0
	Returns 0x0010
	

	44
	Test with RC/CC/DS length of 8
	Returns 0x0010
	

	45
	Test with PCNTR = 0
	Returns 0x0010
	

	46
	Test with PCNTR = 7 (ciphering shall be used)
	Returns 0x0003
	

	47
	Test with Secured Data Length = 00
	Returns 0x0000
	

	48
	Test with Secured Data Length = 0x33
	Returns 0x0033
	

	49
	Test with Secured Data Length = 0x6C (UDL = 0x7F)
	Returns 0x006C
	

	50
	Test with Secured Data Length = 0x6D (UDL = 0x80)
	Returns 0x006D
	

	51
	Test with Secured Data Length = maximum length for one envelope : 0x79 (UDL = 0x8C)
	Returns 0x0079
	

	52
	Verify it is the first String TLV:

Send a USSD with 2 USSD String TLV and inside two different secured data lengths: 5 and 10
	Returns 0x0005
	

	53
	Test with secured data length = 0x7F (2 concatenated envelopes are needed)
	Returns 0x007F
	

	54
	Test with secured data length = 0x80 (2 concatenated envelopes are needed)
	Returns 0x0080
	

	55
	Test with secured data length = maximum length for 2 concatenated envelopes : 0xFA
	Returns 0x00FA
	

	56
	Test with FORMATTED_USSD

Verify after call of the method the current TLV is the USSD String TLV:

findTLV device identities, getSecuredDataLength and then getValueByte to verify that the current TLV is the USSD String TLV
	getValueByte returns 0x0040
	

	
	Error tests
	
	

	57
	Send an envelope SMS CB, getSecuredDataLength
	ToolkitException.UNAVAILABLE_ELEMENT
	

	58
	Send an envelope SMS PP unformatted
	ToolkitException.UNAVAILABLE_ELEMENT
	

	59
	Send an envelope USSD unformatted
	ToolkitException.UNAVAILABLE_ELEMENT
	

5.2.2.2
Method getSecuredDataOffset

Test Area Reference: Api_2_Ueh_Gsdo

5.2.2.2.1
Conformance requirement

The method with following header shall be compliant to its definition in the API.

public short getSecuredDataOffset()

 throws uicc.toolkit.ToolkitException

5.2.2.2.1.1
Normal execution

-
CRRN1: The method shall return the offset of the secured data first byte contained in a SMS TPDU TLV or USSD String TLV.

-
CRRN2: The offset is from the first SMS TPDU TLV or USSD String TLV.

-
CRRN3: The method can be used if the event is EVENT_FORMATTED_SMS_PP_ENV and if the SMS TP-UD is formatted according to TS 31.115 [10].

-
CRRN4: The method can be used if the event is EVENT_FORMATTED_SMS_PP_UPD and if the SMS TP-UD is formatted according to TS 31.115 [10].

-
CRRN5: The method can be used if the event is EVENT_FORMATTED_SMS_CB and if the Cell Broadcast Page is formatted according to TS 31.115 [10].

-
CRRN6: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_ENV, the selected TLV should be the SMS TPDU TLV.

-
CRRN7: If the method is successful and if the event is EVENT_FORMATTED_SMS_PP_UPD, the selected TLV should be the SMS TPDU TLV.

-
CRRN8: If the method is successful and if the event is EVENT_FORMATTED_SMS_CB, the selected TLV should be the Cell Broadcast Page TLV.
-
CRRN9: If the method is successful and if the event is EVENT_FORMATTED_USSD, the selected TLV should be the USSD String TLV.
-
CRRN10: If the Secured Data length is zero the value returned shall be the offset of the first byte following the TS 31.115 [10] Command Packet structure.

5.2.2.2.1.2
Parameter errors

No requirements.

5.2.2.2.1.3
Context errors

-
CRRC1: The method shall throw ToolkitException.UNAVAILABLE_ELEMENT in case of unavailable SMS TPDU TLV or USSD String TLV element.

-
CRRC2: The method shall throw ToolkitException.UNAVAILABLE_ELEMENT in case of wrong data format.

5.2.2.2.2
Test area files

Specific triggering:

-
FORMATTED SMS CB.

-
UNFORMATTED SMS CB.

-
FORMATTED SMS PP UPD.

-
FORMATTED SMS PP ENV.

-
UNFORMATED SMS PP ENV.
-
FORMATTED USSD ENV

-
UNFORMATTED USSD ENV
-
For Formatted triggering if CC/RC/DS is used, the security parameters are the one defined in section “5.3.8 Framework Security Management”.

Test Source:
Test_Api_2_Ueh_Gsdo.java

Test Applet:
Api_2_Ueh_Gsdo_1.java

Cap File:
Api_2_Ueh_Gsdo.cap

5.2.2.2.3
Test coverage

	CRR number
	Test case number

	N1
	1 to 20

	N2
	5, 13

	N3
	1 to 8

	N4
	9 to 16

	N5
	17, 18, 19, 20

	N6
	7

	N7
	15

	N8
	20

	N9
	21 to 25

	N10
	6, 14, 19

	C1
	26

	C2
	27

5.2.2.2.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	
	FORMATTED SMS PP ENV triggering
	
	

	1
	Test with TP-OA length of 2 and RC/CC/DS length is 0
	Returns 0x21
	

	2
	Test with TP-OA length of 6 and RC/CC/DS length is 0
	Returns 0x23
	

	3
	Test with TP-OA length of 12 and RC/CC/DS length is 0
	Returns 0x26
	

	4
	Test with RC/CC/DS length of 8 and TP-OA length is 2
	Returns 0x29
	

	5
	Send a SMS PP with 2 TPDU TLV and inside two different secured data offsets
	Returns 0x24 (the first offset)
	

	6
	Same test as 1 but without any secured data
	Returns 0x21
	

	7
	Test with FORMATTED_SMS_PP ENV

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the TPDU TLV
	Returns 0x40
	

	8
	Same test as 1, but with a concatenated SMS (2 Short Messages and maximum Secured Data Length = 0x00FA)
	Returns 0x21
	

	
	FORMATTED SMS PP UPR triggering
	
	

	9
	Same test as 1 but with FORMATTED_SMS_PP_UPD
	Returns 0x21
	

	10
	Same test as 2 but with FORMATTED_SMS_PP_UPD
	Returns 0x23
	

	11
	Same test as 3 but with FORMATTED_SMS_PP_UPD
	Returns 0x26
	

	12
	Same test as 4 but with FORMATTED_SMS_PP_UPD
	Returns 0x29
	

	13
	Same test as 5 but with FORMATTED_SMS_PP_UPD
	Returns 0x24 (the first offset)
	

	14
	Same test as 6 but with FORMATTED_SMS_PP_UPD
	Returns 0x21
	

	15
	Test with FORMATTED_SMS_PP UPD

Verify after call of the method the current TLV is the TPDU TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the TPDU TLV
	Returns 0x40
	

	16
	Same test as 8, but with a concatenated SMS (2 Short Messages and maximum Secured Data Length = 0x00FA)
	Returns 0x21
	

	
	FORMATTED SMS CB triggering
	
	

	17
	Same test as 2 but with FORMATTED_SMS_CB
	Returns 0x16
	

	18
	Same test as 4 but with FORMATTED_SMS_CB
	Returns 0x1E
	

	19
	Same test as 6 but with FORMATTED_SMS_CB
	Returns 0x16
	

	20
	Test with FORMATTED_SMS_CB

Verify after call of the method the current TLV is the Cell Broadcast Page TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the Cell Broadcast Page TLV
	Returns 0x00
	

	
	FORMATTED USSD triggering
	
	

	21
	Test with RC/CC/DS length of 8
	Returns 0x29
	

	22
	Send a USSD with 2 USSD StringTLV and inside two different secured data offsets
	Returns 0x24 (the first offset)
	

	23
	Same test as 1 but without any secured data
	Returns 0x21
	

	24
	Test with FORMATTED_USSD
Verify after call of the method the current TLV is the String TLV:

findTLV device identities, getSecuredDataOffset and then getValueByte to verify that the current TLV is the StringTLV
	Returns 0x40
	

	25
	Same test as 1, but with a concatenated SMS (2 USSD message and maximum Secured Data Length = 0x00FA)
	Returns 0x21
	

	
	UNFORMATTED Triggering
	
	

	26
	Send an UNFORMATTED SMS CB envelope, getSecuredDataOffset
	ToolkitException.UNAVAILABLE_ELEMENT
	

	27
	Send an UNFORMATTED SMS PP envelope, getSecuredDataOffset
	ToolkitException.UNAVAILABLE_ELEMENT
	

	28
	Send an UNFORMATTED USSD envelope, getSecuredDataOffset
	ToolkitException.UNAVAILABLE_ELEMENT
	

********************END OF SECOND CHANGE************
*******************THIRD CHANGE***********************

5.2.5
Interface ToolkitRegistry

5.2.5.1
Method clearEvent

Test Area Reference: Api_2_Tkr_Cevt

5.2.5.1.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void clearEvent(short event)

 throws ToolkitException,

 javacard.framework.TransactionException

5.2.5.1.1.1
Normal execution

-
CRRN1: A call to isEventSet() method for a cleared event should return false after a call to clearEvent.

-
CRRN2: The (U)SAT Framework shall not trigger the applet on the occurrence of the cleared event anymore.

-
CRRN3: if event was EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and after the call, no applet is registered to it, The (U)SAT Framework shall allow an applet to register to this event.

-
CRRN4: if event was EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM and one applet is still registered to this event, The (U)SAT Framework shall not allow an applet to register to this event.

5.2.5.1.1.2
Parameter Errors

No requirements.

5.2.5.1.1.3
Context errors

-
CRRC1: shall throw javacard.framework.TransactionException - if the operation would cause the commit capacity to be exceeded.

5.2.5.1.2
Test area files

Test Source:
Test_Api_2_Tkr_Cevt.java

Test Applet:
Api_2_Tkr_Cevt_1.java
Cap File:
Api_2_Tkr_Cevt.cap

5.2.5.1.3
Test coverage

	CRR number
	Test case number

	N1
	1

	N2
	2

	N3
	Framework

	N4
	Framework

	C1
	not testable

5.2.5.1.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Clear ALLOWED events

Install Applet registered to EVENT_FORMATTED_SMS_PP_ENV event
For events (2 to 6, 10 and 24) defined in TS 31.130 [2]:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB
EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
The applet calls:

1-
Call clearEvent() method

2-
Call isEventSet() method

	1-
No exception is thrown each time.

2-
Shall return false each time.

	

	2
	Checking applet isn't triggered by an ENVELOPE(EVENT_FORMATTED_SMS_PP_ENV) command

1 -
reset and initialize the card

2 - An ENVELOPE(EVENT_FORMATTED_SMS_PP_ENV) is sent.

	Applet is not triggered by an ENVELOPE(EVENT_FORMATTED_SMS_PP_ENV) command
	

5.2.5.2
Method isEventSet

Test Area Reference: Api_2_Tkr_Ievs

5.2.5.2.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public boolean isEventSet(short event)

5.2.5.2.1.1
Normal execution

-
CRRN1: shall return true if the event is set in the Toolkit Registry for the applet.

-
CRRN2: shall return false if the event is not set in the Toolkit Registry for the applet.

5.2.5.2.1.2
Parameter errors

No requirements.

5.2.5.2.1.3
Context errors

No requirements.

5.2.5.2.2
Test area files

Test Source:
Test_Api_2_Tkr_Ievs.java

Test Applet:
Api_2_Tkr_Ievs_1.java

Cap File:
Api_2_Tkr_Ievs.cap

5.2.5.2.3
Test coverage

	CRR number
	Test case number

	N1
	2

	N2
	1

5.2.5.2.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Install Applet only registered to

 EVENT_EVENT_DOWNLOAD_USER_ACTIVITY

Test that events are not set

Applet calls isEventSet() method for each event ranging from (2 to 6, 10 and 24)

	Shall return false each time.
	

	2
	Setting events

For the following events defined in TS 31.130 [2] for setEvent() method:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB
EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD
EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB
EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
applet calls:

1- Call setEvent() method

2- Call isEventSet() method

	1-
No exception shall be thrown.

2-
Shall return true each time.
	

5.2.5.3
Method setEvent

Test Area Reference: Api_2_Tkr_Sevt

5.2.5.3.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void setEvent(short id)

 throws ToolkitException,

 javacard.framework.TransactionException

5.2.5.3.1.1
Normal execution

-
CRRN1: a following call to isEventSet() method with the same event id shall answer true for the applet.

-
CRRN2: the (U)SAT Framework shall trigger the applet if an occurrence of the set event happens.

5.2.5.3.1.2
Parameter errors

No requirements.

5.2.5.3.1.3
Context errors

-
CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

-
CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet that it is not in selectable state is already registered to it.

-
CRRC3: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_ENV and the applet has no TAR defined.

-
CRRC4: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_UPD and the applet has no TAR defined.

-
CRRC5: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_CB and the applet has no TAR defined.
-
CRRC6: shall throw a ToolkitExceptin TAR_NOT_DEFINED if event is FORMATTED_USSD and the applet has no TAR defined.
5.2.5.3.2
Test area files

Test Source:
Test_Api_2_Tkr_Sevt.java

Test Applet:
Api_2_Tkr_Sevt_1.java

Api_2_Tkr_Sevt_2.java

Api_2_Tkr_Sevt_3.java

The load script installs the 3 instances.

Cap File:
Api_2_Tkr_Sevt.cap

5.2.5.3.3
Test coverage

	CRR number
	Test case number

	N1
	1

	N2
	2, 3

	C1
	4

	C2
	5

	C3
	6

	C4
	6

	C5
	6

	C6
	6

5.2.5.3.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Setting events

1-
For events (2 to 6, 10 and 24) defined in TS 31.130 [2]:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB
EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD
EVENT_IWLAN_ACCESS_STATUS
1.1-
Call clearEvent(event)

1.2-
Call isEventSet(event)

1.3-
Call setEvent(event)

1.4-
Call isEventSet(event)

1.5-
Call clearEvent(event)

	1.1-
No exception shall be thrown.

1.2-
Shall return false.

1.3-
No exception shall be thrown.

1.4-
Shall return true.

1.5-
No exception shall be thrown.
	

	2
	Setting EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
Call setEvent(EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	No Exception shall be thrown

	

	3
	Check applet is triggered by an ENVELOPE (EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)

Trigger the applet
	Applet is triggered by an ENVELOPE (EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	

	4
	Applet2 registers to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
but it is already assigned

1- Trigger Applet2 by ENVELOPE(EVENT_FORMATTED_SMS_PP_ENV)

2- Applet2 call setEvent(EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	2- Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	5
	Applet2 registers to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
but it is already assigned to another applet in not selectable state

1- Set the Applet1 in the lock state

2- Applet2 call setEvent (EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)

3- Set the Applet1 in the make selectable state
	2- Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	6
	Applet3 with no TAR defined registers to EVENT_UNFORMATTED_SMS_CB event

1- send unformatted ENVELOPE(CELL_BROADCAST_DATA_DOWNLOAD)

2- setEvent(EVENT_FORMATTED_SMS_PP_ENV)

3- setEvent(EVENT_FORMATTED_SMS_PP_UPD)

4- setEvent(EVENT_FORMATTED_SMS_CB)
5- setEvent(EVENT_FORMATTED_USSD)

	1- Applet3 shall be triggered

2- ToolkitException with reason code TAR_NOT_DEFINED shall be thrown

3- ToolkitException with reason code TAR_NOT_DEFINED shall be thrown

4- ToolkitException with reason code TAR_NOT_DEFINED shall be thrown
5- ToolkitException with reason code

TAR_NOT_DEFINED shall be thrown
	

5.2.5.4
Method setEventList

Test Area Reference: Api_2_Tkr_Sevl

5.2.5.4.1
Conformance requirement:

The method with following header shall be compliant to its definition in the API.

public void setEventList(short[] eventList,

 short offset,

 short length)

 throws java.lang.NullPointerException,

 java.lang.ArrayIndexOutOfBoundsException,

 ToolkitException,

 javacard.framework.TransactionException

5.2.5.4.1.1
Normal execution

-
CRRN1: for all events set successfully by this method, a call to isEventSet() method should return true.

-
CRRN2: the (U)SAT Framework shall trigger the applet if an occurrence of one of the successfully registered events happens.

5.2.5.4.1.2
Parameter errors

No requirements.

5.2.5.4.1.3
Context errors

-
CRRC1: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if eventList contains EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet is already registered to it.

-
CRRC2: shall throw a ToolkitException with EVENT_ALREADY_REGISTERED if event is EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM but another applet that it is not in selectable state is already registered to it.

-
CRRC3: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_ENV and the applet has no TAR defined.

-
CRRC4: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_PP_UPD and the applet has no TAR defined.

-
CRRC5: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_SMS_CB and the applet has no TAR defined.
-
CRRC6: shall throw a ToolkitException with TAR_NOT_DEFINED if event is FORMATTED_USSD and the applet has no TAR defined

5.2.5.4.2
Test area files

Test Source:
Test_Api_2_Tkr_Sevl.java

Test Applet:
Api_2_Tkr_Sevl_1.java

Api_2_Tkr_Sevl_2.java
Cap File:
Api_2_Tkr_Sevl.cap

5.2.5.4.3
Test coverage

	CRR number
	Test case number

	N1
	1,2

	N2
	3, 4

	C1
	5

	C2
	6

	C3
	7

	C4
	7

	C5
	7

	C6
	7

5.2.5.4.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Applet1 registers all eventList buffer

EventList = events (2 to 6, 10 and 24) defined in TS 31.130 [2]:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB
EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
1-
For each event in EventList clearEvent(event)

2-
Call setEventList(eventList)

Offset = 0

Length = eventList.length

3-
For all events in eventList isEventSet(event)

4-
For each event in EventList clearEvent(event)

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Each time shall return true.

4-
No exception shall be thrown.

	

	2
	Registering part of eventList buffer

EventList = events (2 to 6, 10 and 24) defined in TS 31.130 [2]:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB
EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
1-
For each event in EventList clearEvent(event)

2-
setEventList(eventList, offset, length)

Offset > 0

Length = eventList.lentgh – offset

3-
For all events in eventList:

Call isEventSet(event)

4-
For each event in EventList: clearEvent(event)

	1-
No exception shall be thrown.

2-
No exception shall be thrown.

3-
Each time shall return true for events ranging from offset to offset+length else shall return false.

4-
No exception shall be thrown.

	

	3
	Setting EVENT_MO_SHORT_MESSAGE_ CONTROL_BY_SIM
Call setEventList(MonoEventList, 0, 1) with MonoEventList containing

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
	Shall not throw an exception

	

	4
	Check applet1 is triggered by an ENVELOPE (EVENT_MO_SHORT_MESSAGE_ CONTROL_BY_SIM)

Reset and initialize the card

Trigger the applet
	Applet is triggered by an ENVELOPE (EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM)
	

	5
	Applet 2 registers to EVENT_MO_SHORT_MESSAGE_ CONTROL_BY_SIM
but it is already assigned

Call setEventList(MonoEventList,0,1) with MonoEventList containing EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

	Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.
	

	6
	Applet2 registers to EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
but it is already assigned to another applet in not selectable state

1- Set the Applet1 in the lock state

2- Applet2 calls setEventList(MonoEventList,0,1) with MonoEventList containing EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

3- Set the Applet1 in the make selectable state
	2- Shall throw a ToolkitException with EVENT_ALREADY_REGISTERED reason code.

	

	7
	Applet3 with no TAR defined registers to EVENT_UNFORMATTED_SMS_CB event

1- send unformatted ENVELOPE(CELL_BROADCAST_DATA_DOWNLOAD)

2- setEventList(EventList,0,1) with EventList containing EVENT_FORMATTED_SMS_PP_ENV

3- setEventList (EventList,1,1) with EventList containing EVENT_FORMATTED_SMS_PP_UPD

4- setEventList (EventList,2,1) with EventList containing EVENT_FORMATTED_SMS_CB

5- isEventSet(EVENT_FORMATTED_SMS_PP_ENV)

6- isEventSet(EVENT_FORMATTED_SMS_PP_UPD)

7- isEventSet(EVENT_FORMATTED_SMS_CB)
8- isEventSet(EVENT_FORMATTED_USSD)
	1- Applet3 shall be triggered

2- ToolkitException with reason code TAR_NOT_DEFINED shall be thrown

3- ToolkitException with reason code TAR_NOT_DEFINED shall be thrown

4- ToolkitException with reason code TAR_NOT_DEFINED shall be thrown

5- method shall return FALSE

6- method shall return FALSE

7- method shall return FALSE
8- method shall return FALSE

	

5.3
(U)SAT Framework

5.3.1
Minimum handler availability

5.3.1.1
ProactiveHandler

Test Area Reference: Ufw_Mha_Pahd

5.3.1.1.1
Conformance requirements

5.3.1.1.1.1
Normal execution

-
CRRN1: If a proactive session is not ongoing the ProactiveHandler is available from the invocation to the termination of the processToolkit() method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB

EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
-
CRRN2: A ProactiveHandler is considered available when no HANDLER_NOT_AVAILABLE ToolkitException is thrown when the corresponding getTheHandler() method is called or a method of the handler is called.

-
CRRN3: When available the ProactiveHandler shall remain available until the termination of the processToolkit() method.

-
CRRN4: If a proactive command is pending the ProactiveHandler may not be available.

5.3.1.1.1.2
Parameter errors

No requirements.

5.3.1.1.1.3
Context errors

-
CRRC1: The ProactiveHandler shall not be available if the Terminal Profile command has not yet been processed by the (U)SAT Framework.

5.3.1.1.2
Test area files

Test Source:
Test_Ufw_Mha_Pahd.java

Test Applet:
Ufw_Mha_Pahd_1.java

Ufw_Mha_Pahd_2.java

Cap File:
Ufw_Mha_Pahd.cap

5.3.1.1.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1 to 10

	N2
	11 to 20

	N3
	1 to 11

	N4
	Not testable

	C1
	12 to 17 and also tested in Test Cases 8 to 14 in Ufw_Mha_Prhd. Applicable only if the applet is triggerred when no terminal profile has been previously received.

5.3.1.1.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	ProactiveHandler availability with EVENT_FORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes
	

	2
	ProactiveHandler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes
	

	3
	ProactiveHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown.
	

	4
	ProactiveHandler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown.
	

	5
	ProactiveHandler availability with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown
	

	6
	ProactiveHandler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler
	1- Applet1 is triggered

2- No exception is thrown
	

	7
	ProactiveHandler availability with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

	1- Applet1 is triggered

2-No exception is thrown

Applet1 finalizes
	

	8
	ProactiveHandler availability with EVENT_FORMATTED_USSD

1- Envelope USSD formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes
	

	9
	ProactiveHandler availability with EVENT_UNFORMATTED_USSD
1- Envelope USSD unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown.
	

	10
	ProactiveHandler availability with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS

1- Envelope DOWNLOAD_IWLAN_ACCESS_STATUS is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered

3- No exception is thrown.
	

	11
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_SMS_PP_ENV

1- Reset the card without sending the Terminal Profile

2- Envelope SMS-PP Download formatted is sent to the (U)SIM

3- Applet1 gets the ProactiveHandler
	2- Applet1 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	12
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	
	
	
	

	13
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	14
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	15
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	16
	The ProactiveHandler is not available before the Terminal Profile with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	17
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	18
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_USSD

1- 1- Envelpe USSD formatted is sent to the (U)SIM
2- 2- Applet gets the ProactiveHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	19
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_USSD

1- Envelope USSD unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	20
	The ProactiveHandler is not available befor the Terminal Profile with EVENT_DOWNLOAD_IWLNA_ACCESS_STATUS
1- Envelope Download Iwlan Access Status h n is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet2 gets the ProactiveHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

5.3.1.2
ProactiveResponseHandler

Test Area Reference: Ufw_Mha_Prhd

5.3.1.2.1
Conformance requirements

5.3.1.2.1.1
Normal execution

-
CRRN1: The ProactiveResponseHandler is available as soon as the ProactiveHandler is available and remains available until the termination of the processToolkit() method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB

EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
-
CRRN2: A ProactiveResponseHandler is considered available when no HANDLER_NOT_AVAILABLE ToolkitException is thrown when the corresponding getTheHandler() method is called or a method of the handler is called.

5.3.1.2.1.2
Parameter errors

No requirements.

5.3.1.2.1.3
Context errors

-
CRRC1: The ProactiveResponseHandler shall not be available if the ProactiveHandler is not available.

5.3.1.2.2
Test area files

Test Source:
Test_Ufw_Mha_Prhd.java

Test Applet:
Ufw_Mha_Prhd_1.java

Ufw_Mha_Prhd_2.java

Cap File:
Ufw_Mha_Prhd.cap

5.3.1.2.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1 to 10

	N2
	1 to 20

	C1
	8 to 20.

Applicable only if the applet is triggerred when no terminal profile has been previously received.

5.3.1.2.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	ProactiveResponseHandler availability with EVENT_FORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download formatted is sent to the (U)SIM

Applet builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	2
	ProactiveResponseHandler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

Applet builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	3
	ProactiveResponseHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

Applet2 is triggered

5- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	4
	ProactiveResponseHandler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

Applet2 is triggered

5- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	5
	ProactiveResponseHandler availability with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the (U)SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called.

Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

Applet2 is triggered

5- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	6
	ProactiveResponseHandler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

Applet builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called
	1- Applet1 is triggered

3- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	7
	ProactiveResponseHandler availability with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the (U)SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called.

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	8
	ProactiveResponseHandler availability with EVENT_FORMATTED_USSD
1- Envelope USSD formatted is sent to the (U)SIM

Applet builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	9
	ProactiveResponseHandler availability with

EVENT_UNFORMATTED_USSD
1- Envelope USSD unformatted is sent to the (U)SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called
4- Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

Applet2 is triggered

5- No exception is thrown
	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4- A proactive command DISPLAY TEXT is fetched
TERMINA RESPONSE

	10
	ProactiveResponseHandler availability with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
1- Envelope USSD unformatted is sent to the (U)SIM

Applet1 builds a proactive command DISPLAY TEXT

2- ProactiveHandler.send() method is called

3- ProactiveResponseHandler.getTheHandler() method is called

4- Applet2 builds a proactive command DISPLAY TEXT

4- ProactiveHandler.send() method is called

5- ProactiveResponseHandler.getTheHandler() method is called

	1- Applet1 is triggered

3- No exception is thrown

Applet1 finalizes

Applet2 is triggered

	2- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

4- A proactive command DISPLAY TEXT is fetched

TERMINAL RESPONSE

	11
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_SMS_PP_ENV

1- Reset the card without sending the Terminal Profile

2- Envelope SMS-PP Download formatted is sent is sent to the (U)SIM

3- Applet1 gets the ProactiveHandler

4- Applet1 gets the ProactiveResponseHandler

	2- Applet1 is triggered

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	12
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	13
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

4- Applet2 gets the ProactiveHandler

5- Applet2 gets the ProactiveResponseHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	14
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

4- Applet2 gets the ProactiveHandler

5- Applet2 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	15
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

4- Applet2 gets the ProactiveHandler

5- Applet2 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	16
	The ProactiveHandler is not available before the Terminal Profile with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	17
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	18
	The ProactiveHandler is not available before the Terminal Profile with EVENT_FORMATTED_USSD

1- Envelope USSD formatted is sent is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	

	19
	The ProactiveHandler is not available before the Terminal Profile with EVENT_UNFORMATTED_USSD
1- Envelope USSD unformatted is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

4- Applet2 gets the ProactiveHandler

5- Applet2 gets the ProactiveResponseHandler
	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

	20
	The ProactiveHandler is not available before the Terminal Profile with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
1- Envelope Download Iwlan Access Status is sent to the (U)SIM

2- Applet1 gets the ProactiveHandler

3- Applet1 gets the ProactiveResponseHandler

4- Applet2 gets the ProactiveHandler

5- Applet2 gets the ProactiveResponseHandler

	1- Applet1 is triggered

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

3- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes

Applet2 is triggered

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet2 finalizes
	

5.3.1.3
EnvelopeHandler

Test Area Reference: Ufw_Mha_Enhd

5.3.1.3.1
Conformance requirements

5.3.1.3.1.1
Normal execution

-
CRRN1: The EnvelopeHandler and its content are available for all toolkit applets triggered from the invocation to the termination of their processToolkit() method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB

EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS
-
CRRN2: An EnvelopeHandler is considered available when no HANLDER_NOT_AVAILABLE ToolkitException is thrown when the corresponding getTheHandler() method is called or a method of the handler is called.

5.3.1.3.1.2
Parameter errors

No requirements.

5.3.1.3.1.3
Context Errors

No requirements.

5.3.1.3.2
Test area files

Test Source:
Test_Ufw_Mha_Enhd.java

Test Applet:
Ufw_Mha_Enhd_1.java

Ufw_Mha_Enhd_2.java

Cap File:
Ufw_Mha_Enhd.cap

5.3.1.3.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1 to 10

	N2
	1 to 10

5.3.1.3.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	EnvelopeHandler availability with EVENT_FORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download formatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	2
	EnvelopeHandler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	3
	EnvelopeHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

3- EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown.
	

	4
	EnvelopeHandler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

3- EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered
3- No exception is thrown.
	

	5
	EnvelopeHandler availability with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

3- EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	6
	EnvelopeHandler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2- No exception is throw

	

	7
	EnvelopeHandler availability with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2-No exception is thrown
	

	8
	EnvelopeHandler availability with EVENT_FORMATTED_USSD
1- Envelope USSD formatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2-No exception is thrown
	

	9
	EnvelopeHandler availability with EVENT_UNFORMATTED_USSD
1- Envelope USSD unformatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

3- EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.
Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown
	

	10
	EnvelopeHandler availability with DOWNLOAD_IWLAN_ACCESS_STATUS
1- Envelope Download Iwlan Access Status is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called by Applet1

3- EnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.
Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown
	

5.3.1.4
EnvelopeResponseHandler

Test Area Reference: Ufw_Mha_Erhd

5.3.1.4.1
Conformance requirements

5.3.1.4.1.1
Normal execution

-
CRRN1: The handler is available for all triggered toolkit applets from the invocation of the processToolkit() method of the toolkit applet until a toolkit applet has posted an envelope response or the first invocation of the ProactiveHandler.send() method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD
-
CRRN2: An EnvelopeResponseHandler is considered available when no HANLDER_NOT_AVAILABLE ToolkitException is thrown when the corresponding getTheHandler() method is called or a method of the handler is called.

5.3.1.4.1.2
Parameter errors

No requirements.

5.3.1.4.1.3
Context Errors

-
CRRC1: The handler is not available for the following events:

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_FORMATTED_SMS_CB

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
5.3.1.4.2
Test area files

Test Source:
Test_Ufw_Mha_Erhd.java

Test Applet:
Ufw_Mha_Erhd_1.java

Ufw_Mha_Erhd_2.java

Cap File:
Ufw_Mha_Erhd.cap

5.3.1.4.3
Test coverage

	CRR Number
	Test Case Number

	N1
	5 to 10

	N2
	1 to 10

	C1
	1 to 4,11

5.3.1.4.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	EnvelopeResponseHandler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- The applet1 is triggered.

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

	

	2
	EnvelopeResponseHandler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

	

	3
	EnvelopeResponseHandler availability with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- The applet1 is triggered.

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

	

	4
	EnvelopeResponseHandler availability with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered.

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

	

	5
	EnvelopeResponseHandler availability with EVENT_FORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download formatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3- Applet1 builds an additional information for response packet and it calls the post() method

4- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)

5- A EVENT_FORMATTED_SMS_PP_ENV envelope is sent to the (U)SIM

6- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
7- Applet1 builds a proactive command and it calls the send() method

8- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)
	1- Applet1 is triggered

2- No exception is thrown.

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet1 is triggered

6- No Exception is thrown

8- ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method
	3- The response packet is sent

7- The proactive command is sent

	6
	EnvelopeResponseHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3- Applet1 builds the envelope response and it calls the post() method

4- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)

5- EnvelopeResponseHandler.getTheHandler() method is called

6- An unformatted SMS PP envelope is sent to the (U)SIM

7- EnvelopeResponseHandler.getTheHandler() method is called.

8- Applet1 builds a proactive command and it calls the send() method

9- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)

10- EnvelopeResponseHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- No exception is thrown.

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet2 is triggered.

A ToolkitException HANDLER_NOT_AVAILABLE is thrown.

Applet2 finalizes

6- Applet1 is triggered.

7- No exception is thrown.

9- A ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method.

Applet1 finalizes

10- Applet2 is triggered.

A ToolkitException HANDLER_NOT_AVAILABLE is thrown.

	3- The envelope response is sent

9- The proactive command is fetched and the Terminal response is issued.

	7
	EnvelopeResponseHandler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3- Applet1 builds the envelope response and it calls the postAsBERTLV() method

4- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)

5- Envelope MO short message control by SIM is sent to the (U)SIM

6- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

7- Applet1 builds a proactive command and it calls the send method

8- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)
	1- Applet1 is triggered

2- No exception is thrown.

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet1 is triggered

6- No exception is thrown

8- A ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method

	3-The envelope response is sent

7- The proactive command is fetched and the Terminal Response is issued

	8
	EnvelopeResponseHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV in case of multi-triggering

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet 2

6- Applet2 calls the post() method

	1- Applet1 is triggered

2- No exception is thrown.

3- Applet1 finalizes

4- Applet2 is triggered.

5- No Exception is thrown

Applet2 finalizes

	6- The response is checked.

	9
	EnvelopeResponseHandler availability with EVENT_FORMATTED_USSD

1- Envelope USSD formatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

3- Applet1 builds an additional information for response packet and it calls the post() method

4- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)

5- EVENT_FORMATTED_USSD envelope is sent to the (U)SIM

6- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
7- Applet1 builds a proactive command and it calls the send() method

8- Applet1 calls all methods of the EnvelopeResponseHandler (including inherited methods)
	1- Applet1 is triggered

2- No exception is thrown.

4- A ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method

Applet1 finalizes

5- Applet1 is triggered

6- No Exception is thrown

8- ToolkitException HANDLER_NOT_AVAILABLE is thrown for each method
	3- The response packet is sent

7- The proactive command is sent

	10
	EnvelopeResponseHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV in case of multi-triggering

1- Envelope USSD unformatted is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet 2

6- Applet2 calls the post() method

	1- Applet1 is triggered

2- No exception is thrown.

3- Applet1 finalizes

4- Applet2 is triggered.

5- No Exception is thrown

Applet2 finalizes

	6- The response is checked.

	11
	EnvelopeResponseHandler availability with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS

1- Envelope Download Iwlan Access Status is sent to the (U)SIM

2- EnvelopeResponseHandler.getTheHandler() method is called by Applet1

	1- The applet1 is triggered.

2- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

	

5.3.1.5
USATEnvelopeHandler

Test Area Reference: Ufw_Mha_Uehd

5.3.1.5.1
Conformance requirements

5.3.1.5.1.1
Normal execution

-
CRRN1: The UsatEnvelopeHandler and its content are available for all toolkit applets triggered from the invocation to the termination of their processToolkit() method for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_SMS_CB

EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
-
CRRN2: An UsatEnvelopeHandler is considered available when no HANLDER_NOT_AVAILABLE ToolkitException is thrown when the corresponding getTheHandler() method is called or a method of the handler is called.

5.3.1.5.1.2
Parameter errors

No requirements.

5.3.1.5.1.3
Context Errors

No requirements.

5.3.1.5.2
Test area files

Test Source:
Test_Ufw_Mha_Uehd.java

Test Applet:
Ufw_Mha_Uehd_1.java

Ufw_Mha_Uehd_2.java

Cap File:
Ufw_Mha_Uehd.cap

5.3.1.5.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1 to 10

	N2
	1 to 10

5.3.1.5.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	USATEnvelopeHandler availability with EVENT_FORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download formatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	2
	USATEnvelopeHandler availability with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction formatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	3
	USATEnvelopeHandler availability with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope SMS-PP Download unformatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

3- USATEnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown.
	

	4
	USATEnvelopeHandler availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction unformatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

3- USATEnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

Applet2 is triggered
3- No exception is thrown.
	

	5
	USATEnvelopeHandler availability with EVENT_UNFORMATTED_SMS_CB

1- Envelope Cell Broadcast Download unformatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

3- USATEnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown

Applet1 finalizes

3- Applet2 is triggered

4- No exception is thrown
	

	6
	USATEnvelopeHandler availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope MO short message control by SIM is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2- No exception is throw

	

	7
	USATEnvelopeHandler availability with EVENT_FORMATTED_SMS_CB

1- Envelope Cell Broadcast Download formatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

2-No exception is thrown
	

	8
	USATEnvelopeHandler availability with EVENT_FORMATTED_USSD
1- Envelope USSD formatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

	1- Applet1 is triggered

2- No exception is thrown.

	

	9
	USATEnvelopeHandler availability with EVENT_UNFORMATTED_USSD
1- Envelope USSD unformatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

3- USATEnvelopeHandler.getTheHandler() method is called by Applet2
	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown.
	

	10
	USATEnvelopeHandler availability with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS
1- Envelope USSD unformatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called by Applet1

3- USATEnvelopeHandler.getTheHandler() method is called by Applet2

	1- Applet1 is triggered

2- No exception is thrown.

Applet1 finalizes

3- Applet2 is triggered
4- No exception is thrown
	

5.3.1.6
Applet triggering with ongoing proactive session

Test Area Reference: Ufw_Mha_Rent

5.3.1.6.1
Conformance requirements

5.3.1.6.1.1
Normal execution

-
CRRN1: EnvelopeHandler and USATEnvelopeHandler are available for all events.

-
CRRN2: EnvelopeResponseHandler is available for the following events:

EVENT_FORMATTED_SMS_PP_ENV

EVENT_UNFORMATTED_SMS_PP_ENV

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

EVENT_FORMATTED_USSD

EVENT_UNFORMATTED_USSD
-
CRRN3: Reply busy is not allowed for following events:

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM
5.3.1.6.1.2
Parameter errors

No requirements.

5.3.1.6.1.3
Context Errors

-
CRRC1: EnvelopeResponseHandler is not available for the following events:

EVENT_FORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_PP_UPD

EVENT_UNFORMATTED_SMS_CB

EVENT_FORMATTED_SMS_CB

EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS

5.3.1.6.2
Test area files

Test Source:
Test_Ufw_Mha_Rent.java

Test Applet:
Ufw_Mha_Rent_1.java

Cap File:
Ufw_Mha_Rent.cap

5.3.1.6.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1, 2, 3, 4, 5, 6, 7,8

	N2
	3, 4, 5,8,9

	N3
	1, 2, 3

	C1
	1, 2, 6, 7,10

5.3.1.6.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Handlers availability with EVENT_FORMATTED_SMS_PP_UPD

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Update Record EFSMS instruction formatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	2
	Handlers availability with EVENT_UNFORMATTED_SMS_PP_UPD

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Update Record EFSMS instruction unformatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	3
	Handlers availability with EVENT_MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope MO short message control by SIM is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- No exception is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	4
	Handlers availability with EVENT_FORMATTED_SMS_PP_ENV

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope SMS-PP Download formatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- No exception is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	5
	Handlers availability with EVENT_UNFORMATTED_SMS_PP_ENV

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope SMS-PP Download unformatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- No exception is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	6
	Handlers availability with EVENT_FORMATTED_SMS_CB

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope CB Download formatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	7
	Handlers availability with EVENT_UNFORMATTED_SMS_CB

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope CB Download unformatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	8
	Handlers availability with EVENT_FORMATTED_SMS_USSD
1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope USSD formatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- No exception is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	9
	Handlers availability with EVENT_UNFORMATTED_USSD

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope USSD unformatted is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- No exception is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

	10
	Handlers availability with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS

1- Envelope unrecognized is sent to the (U)SIM

2- Applet1 builds a proactive command and calls the send() method

3- Envelope Download Iwlan Access Status is sent to the (U)SIM

4- EnvelopeHandler.getTheHandler() and USATEnvelopeHandler.getTheHandler() methods are called by Applet1

5- EnvelopeResponseHandler.getTheHandler() method is called by Applet1
	1- Applet1 is triggered

3- Applet1 is triggered again

4- No exception is thrown

5- A ToolkitException HANDLER_NOT_AVAILABLE is thrown

Applet1 finalizes
	2- 91 XX

6- The proactive command is fetched and the Terminal Response is issued.

5.3.2
Handler integrity

5.3.2.1
ProactiveResponseHandler

Test Area Reference: Ufw_Hin_Prhd

5.3.2.1.1
Conformance requirements

5.3.2.1.1.1
Normal execution

-
CRRN1: The ProactiveResponseHandler TLV list shall be empty before the first call to the ProactiveHandler.send() method.

5.3.2.1.1.2
Parameter errors

No requirements.

5.3.2.1.1.3
Context Errors

No requirements.

5.3.2.1.2
Test area files

Test Source:
Test_Ufw_Hin_Prhd.java

Test Applet:
Ufw_Hin_Prhd_1.java

Cap File:
Ufw_Hin_Prhd.cap

5.3.2.1.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1

5.3.2.1.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Applet registration and ProactiveResponseHandler obtaining

1- Applet is registered to all events defined in TS 31.130 [2].

Using the method setEventList() for all the events.

Terminal Profile command is sent to the (U)SIM without the facilities of SET_EVENT_LIST ,SETUP_IDLE_MODE_TEXT, SETUP_MENU and POLL_INTERVAL.

2- For each event/triggering:

3- ProactiveResponseHandler.getTheHandler() is called

4- ProactiveResponseHandler.getLength() is called
	1- No exception is thrown

2- Applet is triggered.

3- No exception is thrown

4- The return value is 0
	

5.3.2.2
EnvelopeHandler

Test Area Reference: Ufw_Hin_Enhd

5.3.2.2.1
Conformance requirements

5.3.2.2.1.1
Normal execution

-
CRRN1: When available, the EnvelopeHandler shall remain available and its content shall remain unchanged from the invocation to the termination of the processToolkit() method.

-
CRRN2: The EnvelopeHandler TLV list is filled with the Comprehension TLV data objects of the ENVELOPE APDU command. The Comprehension TLV data objects shall be provided in the order given in the ENVELOPE command data.

5.3.2.2.1.2
Parameter errors

No requirements.

5.3.2.2.1.3
Context Errors

No requirements.

5.3.2.2.2
Test area files

Test Source:
Test_Ufw_Hin_Enhd.java

Test Applet:
Ufw_Hin_Enhd_1.java

Cap File:
Ufw_Hin_Enhd.cap

5.3.2.2.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1 to 10

	N2
	1 to 10

5.3.2.2.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	EnvelopeHandler integrity checks with EVENT_FORMATTED_SMS_PP_ENV

1- A formatted SMS PP envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_SMS_TPDU is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	2
	EnvelopeHandler integrity checks with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction single and formatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

Call Control execution is finished.

Checked that the TAG_SMS_TPDU is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	3
	EnvelopeHandler integrity checks with EVENT_UNFORMATTED_SMS_PP_ENV

1- A unformatted SMS PP envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	4
	EnvelopeHandler integrity checks with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction single and unformatted is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_SMS_TPDU

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the SMS_TPDU is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	5
	EnvelopeHandler integrity checks with EVENT_UNFORMATTED_SMS_CB

1- An unformatted cell broadcast envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	6
	EnvelopeHandler integrity checks with EVENT_ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- A MO short message control by SIM envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_ADDRESS is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	7
	EnvelopeHandler integrity checks with EVENT_FORMATTED_SMS_CB

1- A formatted cell broadcast envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	8
	EnvelopeHandler integrity checks with EVENT_FORMATTED_USSD

1- A formatted USSD envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_USSD_STRING
4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_USSD_STRING is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	9
	EnvelopeHandler integrity checks with EVENT_UNFORMATTED_USSD

1- A unformatted USSD envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	10
	EnvelopeHandler integrity checks with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS

1- An Download Iwlan Access Status envelope is sent to the (U)SIM

2- EnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using EnvelopeHandler.copy()

The EnvelopeHandler.findTLV() method is called with TAG_WLAN_ACCESS_STATUS (0x4B)
4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

EnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using EnvelopeHandler.copy() and Util.arrayCompare() methods

The EnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_WLAN_ACCESS_STATUS is the TLV selected

7- The content of EnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

5.3.2.3
USATEnvelopeHandler

Test Area Reference: Ufw_Hin_Uehd

5.3.2.3.1
Conformance requirements

5.3.2.3.1.1
Normal execution

-
CRRN1: When available, the USATEnvelopeHandler shall remain available and its content shall remain unchanged from the invocation to the termination of the processToolkit() method.

-
CRRN2: The USATEnvelopeHandler TLV list is filled with the Comprehension TLV data objects of the ENVELOPE APDU command. The Comprehension TLV data objects shall be provided in the order given in the ENVELOPE command data.

-
CRRN3: The (U)SAT Framework shall convert the UPDATE RECORD EFSMS APDU into a COMPREHENSION TLV List containing Device Identities TLV, Address TLV, SMS TPDU TLV and AID TLV (only if the EFSMS file updated is under an ADF).

-
CRRN4: The getEnvelopeTag() method shall return BTAG_SMS_PP_DOWNLOAD.

-
CRRN5: The getLength() method shall return the Comprehension TLV list length.

-
CRRN6: The Device Identity Simple TLV is used to store the information about the absolute record number in the EFSMS file and the value of the EFSMS record status byte.

5.3.2.3.1.2
Parameter errors

No requirements.

5.3.2.3.1.3
Context Errors

No requirements.

5.3.2.3.2
Test area files

Test Source:
Test_Ufw_Hin_Uehd.java

Test Applet:
Ufw_Hin_Uehd_1.java

Cap File:
Ufw_Hin_Uehd.cap

5.3.2.3.3
Test coverage

	CRR Number
	Test Case Number

	N1
	1 to 7, 14, 15, 16

	N2
	1 to 7,14, 15, 16

	N3
	8, 11

	N4
	10, 13

	N5
	9, 12

	N6
	8, 11

5.3.2.3.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	USATEnvelopeHandler integrity checks with EVENT_FORMATTED_SMS_PP_ENV

1- A formatted SMS PP envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_SMS_TPDU is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	2
	USATEnvelopeHandler integrity checks with EVENT_FORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction single and formatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_SMS_TPDU

Call Control execution is finished.

Checked that the TAG_SMS_TPDU is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	3
	USATEnvelopeHandler integrity checks with EVENT_UNFORMATTED_SMS_PP_ENV

1- A unformatted SMS PP envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	4
	USATEnvelopeHandler integrity checks with EVENT_UNFORMATTED_SMS_PP_UPD

1- Update Record EFSMS instruction single and unformatted is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV method is called with TAG_SMS_TPDU

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	5
	USATEnvelopeHandler integrity checks with EVENT_UNFORMATTED_SMS_CB

1- An unformatted cell broadcast envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	6
	USATEnvelopeHandler integrity checks with EVENT_ MO_SHORT_MESSAGE_CONTROL_BY_SIM

1- A MO short message control by SIM envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV() method is called with TAG_ADDRESS

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_ADDRESS is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	7
	USATEnvelopeHandler integrity checks with EVENT_FORMATTED_SMS_CB

1- A formatted cell broadcast envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV() method is called with TAG_CELLBROADCAST_PAGE

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Checked that EnvelopeHandler content is the same as in envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_CELLBROADCAST_PAGE is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	8
	Check the TLV list conversion for EVENT_FORMATTED_SMS_PP_UPD

1- An EVENT_FORMATTED_SMS_PP_UPD is sent to the (U)SIM.

2- The findTLV(tag == device identities Tag) method is called.

3- The getValueByte(offset == 0) method is called.

4- The getValueByte(offset == 1) method is called.

5- The findTLV(tag == address Tag) method is called.

6- Check the content.

7- The findTLV(tag == SMS TPDU Tag) method is called.

8- Check the content.
	1- Applet is triggered.

2- No exception is thrown.

3- return the absolute record.

4- return the record status.

5- No exception is thrown.

7- No exception is thrown.
	

	9
	getLength() call

Call getLength() method
	return the Comprehension TLV list length
	

	10
	getEnvelopeTag() call

Call getTag() method
	return BTAG_SMS_PP_DOWNLOAD
	

	11
	Check the TLV list conversion for EVENT_UNFORMATTED_SMS_PP_UPD

1- An EVENT_UNFORMATTED_SMS_PP_UPD is sent to the (U)SIM.

2- The findTLV(tag == device identities Tag) method is called.

3- The getValueByte(offset == 0) method is called.

4- The getValueByte(offset == 1) method is called.

5- The findTLV(tag == address Tag) method is called.

6- Check the content.

7- The findTLV(tag == SMS TPDU Tag) method is called.

8- Check the content.
	1- Applet is triggered.

2- No exception is thrown.

3- return the absolute record.

4- return the record status.

5- No exception is thrown.

7- No exception is thrown.
	

	12
	getLength() call

Call getLength() method

	return the Comprehension TLV list length
	

	13
	getEnvelopeTag() call

Call getEnvelopeTag() method
	return BTAG_SMS_PP_DOWNLOAD
	

	14
	USATEnvelopeHandler integrity checks with EVENT_FORMATTED_USSD

1- A formatted USSD envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV() method is called with TAG_USSD_STRING

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_USSD_STRING is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	15
	USATEnvelopeHandler integrity checks with EVENT_UNFORMATTED_USSD

1- A unformatted USSD envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES

4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

	16
	USATEnvelopeHandler integrity checks with EVENT_DOWNLOAD_IWLAN_ACCESS_STATUS

1- A Download Iwlan Access Status envelope is sent to the (U)SIM

2- USATEnvelopeHandler.getTheHandler() method is called

3- Copy the content of the EnvelopeHandler in buffer1 using USATEnvelopeHandler.copy()

The USATEnvelopeHandler.findTLV method is called with TAG_DEVICE_IDENTITIES
4- A proactive command DISPLAY TEXT is sent

5- Envelope call control by SIM is sent to the (U)SIM

USATEnvelopeHandler.getTheHandler() method is called

6- Check that EnvelopeHandler content is the same as in the envelope call control using USATEnvelopeHandler.copy() and Util.arrayCompare() methods

The USATEnvelopeHandler.findTLV() method is called with TAG_DEVICE_IDENTITIES

Call Control execution is finished.

Check that the TAG_DEVICE_IDENTITIES is the TLV selected

7- The content of USATEnvelopeHandler is compared with buffer1 using Util.arrayCompare()
	1- Applet is triggered

2- No exception is thrown.

3- No exception is thrown.

5- Applet is triggered

6- No exception is thrown and the handler contains the envelope call control by SIM

7- The contents of the EnvelopeHandler shall be the same as stored in buffer1.
	4- 91 XX

Proactive command Display Text is fetched

The terminal Response of DISPLAY TEXT is sent to the (U)SIM

5.3.3
Exception handling

5.3.3.1
General Behaviour

Test Area Reference: Ufw_Exh_Genb

5.3.3.1.1
Conformance requirement

5.3.3.1.1.1
Normal execution

-
CRRN1: If more than one Applet shall be triggered by the currently processed event all Exceptions shall be caught by the USAT Framework and shall not be sent to the terminal. The USAT Framework shall proceed with the triggering.

-
CRRN2: If only one Applet shall be triggered by the currently processed event and an ISOException with the reason code REPLY_BUSY is thrown, it shall be sent to the terminal using the Status Word 0x9300.

-
CRRN3: If only one Applet shall be triggered by the currently processed event other Exceptions than an ISOException with the reason code REPLY_BUSY shall not be propagated to the terminal.

5.3.3.1.1.2
Parameter errors

No requirements.

5.3.3.1.1.3
Context errors

No requirements.

5.3.3.1.2
Test area files

Test Source:
Test_Ufw_Exh_Genb.java

Test Applet:
Ufw_Exh_Genb_1.java

Ufw_Exh_Genb_2.java

Cap File:
ufw_exh_genb.cap

5.3.3.1.3
Test coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3, 4

5.3.3.1.4 Test procedure
	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	0
	Applet1 is installed and registers to EVENT_FORMATTED_SMS_PP_ENV EVENT_UNFORMATTED_SMS_PP_ENV
EVENT_FORMATTED_USSD
and
Applet2 is installed and registers to

EVENT_UNFORMATTED_SMS_PP_ENV and EVENT_UNFORMATTED_SMS_CB
EVENT_UNFORMATTED_USSD
	
	

	1
	ISOException REPLY_BUSY is not sent to the terminal in multi triggering

1- Send an envelope Event Unformatted SMS PP ENV (multi triggering event, multi registered applets)

4- Send an envelope Event Unformatted SMS PP ENV (multi triggering event, multi registered applets)

	1- Applet1 is triggered

2- Applet1 sends a ISOException with the reason code REPLY_BUSY then finalizes

Applet2 is triggered, does nothing and finalizes

4- Applet1 is triggered, does nothing and finalizes

Applet2 is triggered, sends a ISOException with the reason code REPLY_BUSY then finalizes

	3- SW = 90 00

5- SW = 90 00

	2
	ISOException REPLY_BUSY is sent to the terminal in single triggering SMS PP
1- Send an envelope Event formatted SMS PP ENV to trigger Applet1 (single triggering event)

2- Send an envelope Event Unformatted SMS CB (multi triggering event, single registered applet)

	1- Applet1 is triggered, sends a ISOException with the reason code REPLY_BUSY then finalizes

2- Applet2 is triggered, sends a ISOException with the reason code REPLY_BUSY then finalizes
	1- SW = 93 00

2- SW = 93 00

	3
	Other exception than ISOException REPLY_BUSY are not sent to the terminal

1- Send an envelope Event formatted SMS PP ENV to trigger Applet1 (single triggering event)

2- Send an envelope Event formatted SMS PP ENV to trigger Applet1 (single triggering event)
	1- Applet1 is triggered, sends a ISOException with reason code different to REPLY_BUSY then finalizes

2- Applet1 is triggered, sends a ToolkitException then finalizes
	1- SW = 90 00

2- SW = 90 00

	4
	ISOException REPLY_BUSY is sent to the terminal in single triggering USSD
1- Send an envelope Event formatted USSD to trigger Applet1 (single triggering event)

2- Send an envelope Event unformatted SMS CB (multi triggering event, single registered applet)

	1- Applet1 is triggered, sends a ISOException with the reason code REPLY_BUSY then finalizes

2- Applet2 is triggered, sends a ISOException with the reason code REPLY_BUSY then finalizes
	1- SW = 93 00

2- SW = 93 00

5.3.3.2
Interaction with Multiple Triggering

Test Area Reference: Ufw_Exh_Imtg

5.3.3.2.1
Conformance requirement

5.3.3.2.1.1
Normal execution:

-
CRRN1: An exception thrown by a toolkit applet, will not influence toolkit applets registered to the same event.

5.3.3.2.1.2
Parameter errors

No requirements.

5.3.3.2.1.3
Context errors

No requirements.

5.3.3.2.2
Test area files

Test Source:
Test_Ufw_Exh_Imtg.java

Test Applet:
Ufw_Exh_Imtg_1.java

Ufw_Exh_Imtg_2.java

Cap File:
ufw_exh_imtg.cap

5.3.3.2.3
Test coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3, 4

5.3.3.2.4 5.3.3.2.4
Test procedure
	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	0
	Load/install 2 toolkit applets registered to EVENT_UNFORMATTED_SMS_PP_ENV, EVENT_UNFORMATTED_SMS_PP_UPD, EVENT_UNFORMATTED_SMS_CB,
EVENT_UNFORMATTED_USSD
Applet1: Priority= 0x01,

Applet2: Priority= 0x02,

(i.e. Applet1 is triggered before Applet2)
	
	

	1
	UNFORMATTED_SMS_PP_ENV is sent

	1- Applet1 is triggered

2- NullPointerException is thrown

3- Applet2 is triggered
	

	2
	UNFORMATTED_SMS_PP_UPD is sent

	1- Applet1 is triggered

2- NullPointerException is thrown

3- Applet2 is triggered
	

	3
	UNFORMATTED_SMS_CB is sent
	1- Applet1 is triggered

2- NullPointerException is thrown

3- Applet2 is triggered
	

	4
	UNFORMATTED_USSD is send
	1- Applet1 is triggered

2- NullPointerException is thrown

3- Applet2 is triggered
	

*********************END OF THIRD CHANGE***************
***********************FOURTH CHANGE*****************

5.3.4.7
EVENT_FORMATTED_USSD
Test Area Reference: Ufw_Apt_Efud
5.3.4.7.1
Conformance requirement

5.3.4.7.1.1
Normal execution

-
CRRN1: The applet is triggered by the EVENT_FORMATTED_USSD once:

-
it has been registered to this event;

-
formatted according to TS 31.115 [X] or an other protocol to identify explicitly the toolkit applet for which the message is sent;
-
the toolkit applet to be triggered is registered with the corresponding TAR in the USSD String TLV;

-
the security is verified.

-
CRRN2: The applet is not triggered by the EVENT_FORMATTED_USSD once it has deregistered from this event.

5.3.4.7.1.2
Parameters error

No requirements.

5.3.4.7.1.3
Context Errors

No requirements.

5.3.4.7.2
Test area files

Test Source:
Test_Ufw_Apt_ Efud.java

Test Applet:
Ufw_Apt_ Efud _1.java

Cap File:
ufw_apt_ Efud.cap
5.3.4.7.3
Test coverage

	CRR Number
	Test Case Number

	CRRN1
	1,2

	CRRN2
	2

NOTE:
The security checks are not relevant to the test designed in this test area; they will be checked in the "Framework Security Management" section.

5.3.4.7.4
Test coverage

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT FORMATTED_USSD and triggering
Applet is registered to EVENT_FORMATTED_USSD and EVENT_UNRECOGNIZED_ENVELOPE
1- A Single USSD Formatted Envelope is sent to the USIM.
2- A Concatenated USSD is sent to the USIM (composed of 2 USSD messages. The UDL for the first Short Message is 70 and for the second 70)
	1- Applet is triggered
2- Applet is triggered
	

	
	Applet deregistration
ToolkitRegistry.clearEvent() method is called for EVENT_FORMATTED_USSD
1- A formatted USSD message is sent to the USIM.

2- A Concatenated USSD message is sent to the USIM (composed of 2 USSD Messages. The UDL for the first USSD message is 70 and for the second 70).
An unrecognized envelope is sent to the USIM
ToolkitRegistry.setEvent() method is called for EVENT_FORMATTED_USSD
3- A Single formatted USSD is sent to the USIM.
4- A Concatenated USSD message is sent to the USIM (composed of 2 Messages. The UDL for the first USSD message is 70 and for the second 70).
	1- Applet is not triggered
2- Applet is not triggered
3- Applet is triggered
4- Applet is triggered

	

5.3.4.8
EVENT_UNFORMATTED_USSD

Test Area Reference: Ufw_Apt_Euud

5.3.4.8.1
Conformance requirement

5.3.4.8.1.1
Normal execution

-
CRRN1: The applets registers are triggered by the EVENT_UNFORMATTED_USSD once a unformatted USSDis received by Envelope APDU(s) and is unformatted.

-
CRRN2: The applet is not triggered by the EVENT_UNFORMATTED_USSD once it has deregistered from this event.

5.3.4.8.1.2
Parameters error

No requirements.

5.3.4.8.1.3
Context Errors

No requirements.

5.3.4.8.2
Test area files

Test Source:
Test_Ufw_Apt_Euud.java

Test Applet:
Ufw_Apt_Euud_1.java

Cap File:
ufw_apt_euud.cap

5.3.4.8.3
Test coverage

	CRR Number
	Test Case Number

	CRRN1
	1,2

	CRRN2
	2

5.3.4.8.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Applet registration to EVENT_UNFORMATTED_USSD and triggering
Applet is registered to the EVENT_UNFORMATTED_USSD and EVENT_FORMATTED_USSD
1-ToolkitRegistry.isEventSet() method is called for EVENT_UNFORMATTED_USSD
2- A Single and Unformatted USSD message is sent to the USIM.
3- A Concatenated and Unformatted USSD message is sent to the USIM (composed of 2 USSD messages. The UDL for the first message is 70 and for the second 70)
	1- The method returns true
2- Applet is triggered
3- Applet is triggered

	

	
	Applet deregistration
ToolkitRegistry.clearEvent()method is called for EVENT_UNFORMATTED_USSD
1- A Single and Unformatted USSD message is sent to the USIM.
2- A Concatenated and Unformatted USSD message is sent to the USIM (composed of 2 USSD messages. The UDL for the first Message is 70 and for the second 70)
An unrecognized envelope is sent to the USIM
ToolkitRegistry.setEvent() method is called for EVENT_UNFORMATTED_USSD
3- A Single and Unformatted USSD Envelope is sent to the USIM.
4- A Concatenated and Unformatted USSD Envelope is sent to the USIM (composed of 2 messages. The UDL for the first message is 70 and for the second 70)

	1- Applet isn't triggered
2- Applet isn't triggered
3- Applet is triggered
4- Applet is triggered

	

*********************END OF FOURTH CHANGE**************
********************FIFTH CHANGE***********************
5.3.6
Toolkit installation

5.3.6.1
Minimum security level

Test Area Reference: ufw_tin_msl

5.3.6.1.1
Conformance requirements

5.3.6.1.1.1
Normal execution

-
CRRN1: The Receiving Entity shall check the Minimum Security Level during processing the security of the Command Packet.

-
CRRN2: The Receiving Entity shall reject the message if the MSL check fails.

-
CRRN3: If the MSL check fails, a Response Packet with the 'Insufficient Security Level' Response Status Code shall be sent if required.

-
CRRN4: If the length of the Minimum Security Level field is greater than zero, the Minimum Security Level is used to specify the minimum level to be applied to Secured Packets. The first byte shall be the MSL Parameter, other bytes shall be the MSL Data.

-
CRRN5: If the length of the Minimum Security Level field is zero, no minimum security level check shall be performed by the receiving entity.

5.3.6.1.2
Test area files

Test source:

Test_Ufw_Tin_Msl_1.java

Test Applet:

Ufw_Tin_Msl_1.java

Cap file:

ufw_tin_msl.cap

5.3.6.1.3
Test coverage

	CRR number
	Test case number

	CRRN1
	Not applicable

	CRRN2
	2,4

	CRRN3
	2,4

	CRRN4
	2,4

	CRRN5
	1,3

5.3.6.1.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Installation with MSL length of 0

FORMATTED_SMS_PP_ENV
1- Install (install) applet with a MSL length = 0

2- Send formatted SMS PP ENV with no RC/CC/DS, no Ciphering and counter mode 0 (not checked)

3- Send a formatted SMS PP ENV with CC, ciphering and counter mode 1 (counter available and no checking)

4- Delete the applet instance
	2- Applet is triggered

3- Applet is triggered
	1- SW = 9000

	2
	Installation with correct MSL value
FORMATTED_SMS_PP_ENV
1- Install (install) applet with MSL field set to 02 (CC needed).

2- Send formatted SMS PP ENV with no RC/CC/DS, no Ciphering and counter mode 0 (not checked)

3- Send a formatted SMS PP ENV with CC, no ciphering and counter mode 1 counter available and no checking)

4- Send a formatted SMS PP ENV with PoR required and no CC, ciphered with DES and counter mode 0 counter available and no checking)

5- Delete the applet instance
	2- Applet is not triggered

3- Applet is triggered

4- Applet is not triggered
	1- SW = 9000

4- SW = 62 00, Response status code shall be '0A', insufficient security level.

	3
	Installation with MSL length of 0

FORMATTED_USSD
1- Install (install) applet with a MSL length = 0

2- Send formatted ÚSSD with no RC/CC/DS, no Ciphering and counter mode 0 (not checked)

3- Send a formatted USSD with CC, ciphering and counter mode 1 (counter available and no checking)

4- Delete the applet instance

	2- Applet is not triggered

3- Applet is triggered

4- Applet is not triggered
	1- SW = 9000

	4
	Installation with correct MSL value

FORMATTED_USSD

1- Install (install) applet with MSL field set to 02 (CC needed).

2- Send formatted SMS PP ENV with no RC/CC/DS, no Ciphering and counter mode 0 (not checked)

3- Send a formatted SMS PP ENV with CC, no ciphering and counter mode 1 counter available and no checking)

4- Send a formatted SMS PP ENV with PoR required and no CC, ciphered with DES and counter mode 0 counter available and no checking)

5- Delete the applet instance
	2- Applet is not triggered

3- Applet is triggered

4- Applet is not triggered
	1- SW = 9000

4- SW = 62 00, Response status code shall be '0A', insufficient security level

5.3.6.2
TAR

Test Area Reference: ufw_tin_tar

5.3.6.2.1
Conformance requirements

5.3.6.2.1.1
Normal execution

-
CRRN1: It is possible to define several TAR values at the installation of the Toolkit Application .

-
CRRN2: If the length of the TAR value is zero, the TAR may be taken out of the AID if any.

-
CRRN3: If the length of the TAR value is greater than zero then the application instance shall be installed with the TAR value field defined in parameter and the TAR indicated in the AID if any shall be ignored.

-
CRRN4: If the TAR value(s) is already assigned on the card for the Toolkit Application instance the card shall return the status word '6A 80', incorrect parameter in data field.

-
CRRN5: If the length of the TAR value(s) field is incorrect, the card shall return the status word '6A 80', incorrect parameter in data field.

5.3.6.2.2
Test area files

Test source:

Test_Ufw_Tin_Tar_1.scr

Test Applet:

ufw_tin_tar_1.java

Cap file:

ufw_tin_tar.cap

5.3.6.2.3
Test Coverage

	CRR number
	Test case number

	CRRN1
	1

	CRRN2
	2

	CRRN3
	3

	CRRN4
	4

	CRRN5
	5

5.3.6.2.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Installation with several TAR value
FORMATTED_SMS_PP_ENV
1- Install (install) applet with no TAR defined in the AID but TAR values set to 11 11 11, 22 22 22

2- Send formatted SMS PP ENV with TAR set to 11 11 11.

3- Send formatted SMS PP ENV with TAR set to 22 22 22.

4- Delete the applet instance.
	2- Applet is triggered

3- Applet is triggered
	1- SW = 9000

	2
	Installation without TAR value in install parameter
FORMATTED_SMS_PP_ENV

1- Install (install) applet with TAR value length set to 0 in install parameters.

2- Send formatted SMS PP ENV with the TAR value defined in applet AID.

3- Delete the applet instance
	2- Applet is triggered

	1- SW = 9000

	3
	Installation with TAR value within AID different from the one define in install parameters
FORMATTED_SMS_PP_ENV

1- Install (install) applet with applet AID TAR set to XX YY ZZ and TAR value set to 11 11 11.

2- Send formatted SMS PP ENV with the TAR value set to the one defined in applet AID.

3- Send formatted SMS PP ENV with the TAR value set to 11 11 11.

	2- Applet is not triggered.

3- Applet is triggered
	

	4
	Installation with TAR value already assigned
FORMATTED_SMS_PP_ENV

1- Install (install) applet with no TAR in applet AID and TAR value in install parameters set to 11 11 11.

	1- Applet is not installed

	1- SW = 6A80

	5
	Installation with incorrect TAR value length in install parameters
FORMATTED_SMS_PP_ENV

1- Install (install) applet with no TAR in applet AID and TAR value length set to 02 and TAR value set to 11 11.

2- Install (install) applet with no TAR in applet AID and TAR value length set to 05 and TAR value set to 11 11 11,22 22.
	1- Applet is not installed

2- Applet is not installed
	1- SW = 6A80

	7
	Installation with several TAR value
FORMATTED_USSD
1- Install (install) applet with no TAR defined in the AID but TAR values set to 33 33 33, 44 44 44

2- Send formatted USSD with TAR set to 33 33 33.

3- Send formatted USSD with TAR set to 44 44 44.

4- Delete the applet instance.
	2- Applet is triggered

3- Applet is triggered
	1- SW = 9000

	8
	Installation without TAR value in install parameter

FORMATTED_USSD
1- Install (install) applet with TAR value length set to 0 in install parameters.

2- Send formatted USSD with the TAR value defined in applet AID.

3- Delete the applet instance
	2- Applet is triggered

	1- SW = 9000

	9
	Installation with TAR value within AID different from the one defined in install parameters
FORMATTED_USSD
1- Install (install) applet with applet AID TAR set to XX YY ZZ and TAR value set to 33 33 33.

2- Send formatted USSD with the TAR value set to the one defined in applet AID.

3- Send formatted USSD with the TAR value set to 33 33 33.

	2- Applet is not triggered.

3- Applet is triggered
	

	10
	Installation with TAR value already assigned

FORMATTED_USSD

1- Install (install) applet with no TAR in applet AID and TAR value in install parameters set to 33 33 33.

	1- Applet is not installed

	1- SW = 6A80

	11
	Installation with incorrect TAR value length in install parameters

FORMATTED_USSD

1- Install (install) applet with no TAR in applet AID and TAR value length set to 02 and TAR value set to 11 11.

2- Install (install) applet with no TAR in applet AID and TAR value length set to 05 and TAR value set to 11 11 11,22 22.
	1- Applet is not installed

2- Applet is not installed
	1- SW = 6A80

5.3.6.3
Access domain

Test Area Reference: ufw_tin_acdo

5.3.6.3.1
Conformance requirements

5.3.6.3.1.1
Normal execution

-
CRRN1: The USAT framework shall grant files access to the application instance according to the USAT Framework access parameters.

-
CRRN2:The access rights granted to an application and defined in the access parameter shall be independent from the access rights granted at the USAT Framework/Terminal interface level.

-
CRRN3: If an application with access domain parameter set to 'FF' tries to access a file, the USAT framework shall throw an exception.

-
CRRN4: An application with access domain parameter set to '00' can perform all actions on files, except the ones with NEVER access conditions.

-
CRRN5: If a requested Access Domain is not supported, the card shall return the Status word '6A 80' to the Install(install) command.

-
CRRN6: The card shall at least support the following Access Domain Parameter values:

-
'00' : Full access to the file system

-
'02' : UICC access mechanism

-
'FF' : No access to the file system

5.3.6.3.2
Test area files

Test source:

Test_Ufw_Tin_Acdo_1.java

Test Applet:

Ufw_Tin_Acdo_1.java

Cap file:

ufw_tin_acdo.cap

5.3.6.3.3
Test coverage

	CRR number
	Test case number

	CRRN1
	1,2,3

	CRRN2
	1

	CRRN3
	2

	CRRN4
	3

	CRRN5
	Not testable

	CRRN6
	1,2,3

5.3.6.3.4
Test procedure
	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	The access granted to an application shall be independent from the USAT Framework/Terminal interface

1- Install (install) applet with Access domain parameter set to PIN1

2- Block PIN1 by sending unsuccessful verify pin command.

3- Trigger the installed applet and try to increase EF_CUAC file with uicc.access.increase() method.

4- Delete the applet instance.
	3- no exception is thrown

	

	2
	Access domain parameter set to 'FF'

1- Install (install) applet with access domain parameter set to 'FF'.

2- Trigger the installed applet and try to access EF_TARU file with uicc.access.readBinary() method.

3- Delete the applet instance
	2- UICCException. Security_status_Not_satisfied is thrown

	

	3
	Access domain parameter set to '00'

1- Install (install) applet with access domain parameter set to '00'.

2- Trigger the installed applet and try to access EF_TARU file using uicc.access.readBinary() method.

3- Trigger the applet and try to access the EF_TNU file using uicc.access.updateBinary() method.

4- Delete the applet instance
	2- No exception is thrown.

3- UICCException. Security_status_Not_satisfied is thrown

	

********************END OF FIFTH CHANGE*****************
********************SIXTH CHANGE*****************

5.3.8
Framework security management

Security parameters

The table that follows contains the security parameters that shall be used when the TS 31.115[10] security is required in the test cases developed in the current subclause.

	Parameter
	Value in hexadecimal

	KIC
	11

	KID
	11

	CNTR
	00 00 00 00 01

	Key for ciphering
	01 41 42 7F DA E8 91 A7

	Key for RC/CC/DS
	01 23 45 67 89 AB CD EF

If a parameter is not listed explicitly in the above table, the default values of subclause 4.7.3.1 apply.

5.3.8.1
Input data

Test Area Reference: ufw_fws_inda

5.3.8.1.1
Conformance requirements

5.3.8.1.1.1
Normal execution
-
CRRN1: If the USAT Framework receives an envelope APDU containing a Short Message Point to Point formatted according to TS 31.115 [10], it shall verify the security of the SMS TPDU and trigger the applet registered with the corresponding TAR.

-
CRRN2: The toolkit applet will only be triggered if the TAR is known and the security verified.

-
CRRN3: If the USAT Framework receives an envelope APDU containing a Short message Cell Broadcast formatted according to TS 31.115 [10], it shall verify the security of the cell broadcast page and trigger the applet registered with the corresponding TAR.

-
CRRN4: If the USAT Framework receives an Update Record EFSMS instruction formatted according to TS 31.115 [10], it shall verify the security of the SMS and trigger the applet registered with the corresponding TAR.

-
CRRN5: The USAT Framework shall provide the input data deciphered.

5.3.8.1.1.2
Parameter errors

No requirements.

5.3.8.1.1.3
Context errors

No requirements.

5.3.8.1.2
Test area files

Test source:
Test_ufw_fws_inda_1.java

Test Applet:
ufw_fws_inda_1.java

ufw_fws_inda_2.java

ufw_fws_inda_3.java

ufw_fws_inda_4.java

ufw_fws_inda_5.java

ufw_fws_inda_6.java

Cap file:
ufw_fws_inda.cap

5.3.8.1.3
Test coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3

	CRRN2
	3,6,9

	CRRN3
	4, 5, 6

	CRRN4
	7,8,9

	CRRN5
	1,2,4,5,7,8

5.3.8.1.4
Test procedure
	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Framework checks the Cryptographic checksum and deciphers the data
SMS-PP
Applet1 is loaded and installed

1-Envelope(SMS-PP) single and formatted is sent to the USAT Framework with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1;

Data = 01

2- Short Message concatenated and formatted is sent to the USAT Framework by an Envelope (SMS PP)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1;

Data length is 150.

	1- Applet1 is triggered and the value integrity is checked.

2- Applet1 is triggered and the value integrity is checked

	1- The USAT Framework answers to the Envelope with status words 9000

2- The USAT Framework answers to the Envelope with status words 9000

	2
	Triggering two different applets with different security

Applet2 is installed

1-Envelope(SMS-PP) single and formatted is sent to the USAT Framework with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data = 03

2- Short Message concatenated and formatted is sent to the USAT Framework by an Envelope (SMS PP)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data length = 150

3-Envelope(SMS-PP) single and formatted is sent to the USAT Framework with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet2

Data = 05

4- Short Message concatenated and formatted is sent to the USAT Framework by an Envelope (SMS PP)with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet2

Data length = 150.

	1- Applet1 is triggered and the value integrity is checked

2- Applet1 is triggered and the value integrity is checked

3- Applet2 is triggered and the value integrity is checked

4- Applet2 is triggered and the value integrity is checked

	1- The USAT Framework answers to the Envelope with status words 9000

2- The USAT Framework answers to the Envelope with status words 9000

3- The USAT Framework answers to the Envelope with status words 9000

4- The USAT Framework answers to the Envelope with status words 9000

	3
	Envelope(SMS-PP) formatted with wrong cryptographic checksum

1-Envelope 03.48 single and formatted is sent to the USAT Framework with this features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data = 07

2- Short Message concatenated and formatted is sent to the USAT Framework by an Envelope (SMS PP)with these features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The USAT Framework answers to the Envelope with status words 9000

	4
	Framework checks the Cryptographic checksum and deciphers the data

Applet3 is loaded and installed

1-Envelope(SMS-CB) formatted is sent to the USAT Framework with this features:
Ciphering;

Cryptographic checksum;

No proof of receipt;

Data = 01

	1- Applet3 is triggered and the value integrity is checked
	1- The USAT Framework answers to the Envelope with status words 9000

	5
	Triggering two different applets with different security on Envelope(SMS-CB) formatted

Applet4 is installed

1-Envelope(SMS-CB) formatted is sent to the USAT Framework with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet3

Data = 02

2-Envelope(SMS-CB) formatted is sent to the USAT Framework with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet4

Data = 03

	1- Applet3 is triggered and the value integrity is checked

2- Applet4 is triggered and the value integrity is checked
	1- The USAT Framework answers to the Envelope with status words 9000

2- The USAT Framework answers to the Envelope with status words 9000

	6
	Envelope(SMS-CB) formatted with wrong cryptographic checksum

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet3

Data = 04
	No applet is triggered
	1- The USAT Framework answers to the Envelope with status words 9000

	7
	Framework checks the Cryptographic checksum and deciphers the data

Applet5 is installed

1- Short Message single and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5;

Data = 01

2- Short Message concatenated and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5;

Data length = 150.

	1- Applet5 is triggered and the value integrity is checked.

2- Applet5 is triggered and the value integrity is checked

	1- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

2- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

	8
	Triggering two different applets with different security

Applet6 is installed

1- Short Message single and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data = 03

2- Short Message concatenated and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data length = 150.

3- Short Message single and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet6;

Data = 05

4- Short Message concatenated and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet6;

Data length = 150.

	1- Applet5 is triggered and the value integrity is checked.

2- Applet5 is triggered and the value integrity is checked.

3- Applet6 is triggered and the value integrity is checked.

4- Applet6 is triggered and the value integrity is checked.

	1- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

2- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

3- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

4- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

	9
	Update Record EFSMS instruction formatted with wrong cryptographic checksum

1- Short Message single and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features: No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data = 07

2- Short Message concatenated and formatted is sent to the USAT Framework by Update Record EFSMS instruction with these features:

No ciphering;

Wrong Cryptographic checksum;

No proof of receipt;

TAR of Applet5

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

2- The USAT Framework answers to the Update Record EFSMS instruction with status words 9000

	10
	Framework checks the Cryptographic checksum and deciphers the data

USSD

Applet1 is loaded and installed

1-Envelope(USSD) single and formatted is sent to the USAT Framework with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1;

Data = 01

2- USSD Message concatenated and formatted is sent to the USAT Framework by an Envelope (USDD)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1;

Data length is 150.

	1- Applet1 is triggered and the value integrity is checked.

2- Applet1 is triggered and the value integrity is checked

	1- The USAT Framework answers to the Envelope with status words 9000

2- The USAT Framework answers to the Envelope with status words 9000

	11
	Triggering two different applets with different security
USSD
Applet2 is installed

1-Envelope(USSD) single and formatted is sent to the USAT Framework with this features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data = 03

2- Short Message concatenated and formatted is sent to the USAT Framework by an Envelope (USSD)with these features:

Ciphering;

Cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data length = 150

3-Envelope(USSD) single and formatted is sent to the USAT Framework with this features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet2

Data = 05

4- Concatenated and formatted USSD is sent to the USAT Framework by an Envelope (USSD)with these features:

No ciphering;

No cryptographic checksum;

No proof of receipt;

TAR of Applet2

Data length = 150.

	1- Applet1 is triggered and the value integrity is checked

2- Applet1 is triggered and the value integrity is checked

3- Applet2 is triggered and the value integrity is checked

4- Applet2 is triggered and the value integrity is checked

	1- The USAT Framework answers to the Envelope with status words 9000

2- The USAT Framework answers to the Envelope with status words 9000

3- The USAT Framework answers to the Envelope with status words 9000

4- The USAT Framework answers to the Envelope with status words 9000

	12
	USSD formatted with wrong cryptographic checksum
USSD
1-Formatted USSD is sent to the USAT Framework with this features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data = 07

2- USSD concatenated and formatted is sent to the USAT Framework by an Envelope (USSD)with these features:

No ciphering;

Wrong cryptographic checksum;

No proof of receipt;

TAR of Applet1

Data length = 150

	1- No applet is triggered.

2- No applet is triggered.

	1- The USAT Framework answers to the Envelope with status words 9000

	13
	Framework checks the Cryptographic checksum and deciphers the data

USSD

Applet3 is loaded and installed

1-USSD formatted is sent to the USAT Framework with this features:
Ciphering;

Cryptographic checksum;

No proof of receipt;

Data = 01

	1- Applet3 is triggered and the value integrity is checked
	1- The USAT Framework answers to the Envelope with status words 9000

5.3.8.2
Output data

Test Area Reference: ufw_fws_ouda

5.3.8.2.1
Conformance requirements

5.3.8.2.1.1
Normal execution
-
CRRN1: The USAT Framework Toolkit Framework shall secure and send the response packet.

5.3.8.2.1.2
Parameters errors

No requirements.

5.3.8.2.1.3
Context errors

No requirements.

5.3.8.2.2
Test Area Files

Test source:
Test_Ufw_Fws_Ouda_1.java

Test Applet:
Ufw_Fws_Ouda_1.java

Cap file:
Ufw_Fws_Ouda.cap

5.3.8.2.3
Test coverage

	CRR Number
	Test Case Number

	CRRN1
	1, 2, 3, 4

5.3.8.2.4
Test procedure
	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	1
	Envelope(SMS-PP) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent using SMS-Deliver-Report;

no security applied to proof of receipt

Data in plain text = "APPLET1"

	The applet is triggered and sends a "Display Text" proactive command with the data received in the Envelope.
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked.

The PoR has no application data.

The USAT Framework answers with status words 91xx to issue a Display Text "APPLET1".

	2
	Envelope(SMS-PP) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent using SMS-Deliver-Report;

no security applied to proof of receipt

Data in plain text = "APPLET1"
	The applet posts application data. It does not call the ProactiveHandler.send() method
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked.

The PoR has the application data posted by the application.

	3
	Envelope(SMS-PP) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent using SMS-Deliver-Report;

no security applied to proof of receipt

Data in plain text = "TEST"
	The applet posts application data and calls the ProactiveHandler.send() method to send a "Display Text" proactive command with the data received in the Envelope.
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked. The PoR has the application data posted by the application.

The USAT Framework answers with status words 91xx to issue the Display Text "TEST".

	4
	Envelope(SMS-PP) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent using SMS-Deliver-Report;

proof of receipt shall be ciphered

Data in plain text = "TEST"
	The applet posts application data and calls the ProactiveHandler.send() method to send a "Display Text" proactive command with the data received in the Envelope.
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked. The PoR has the application data posted by the application.

The USAT Framework answers with status words 91xx to issue the Display Text "TEST".

	5
	Envelope(USSD) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent and no security shall be applied
Data in plain text = "APPLET1"

	The applet is triggered and sends a "Display Text" proactive command with the data received in the Envelope.
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked.

The PoR has no application data.

The USAT Framework answers with status words 91xx to issue a Display Text "APPLET1".

	6
	Envelope(USSD) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent using SMS-Deliver-Report;

no security applied to proof of receipt

Data in plain text = "APPLET1"
	The applet posts application data. It does not call the ProactiveHandler.send() method
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked.

The PoR has the application data posted by the application.

	7
	Envelope(USSD) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent and no security applied to proof of receipt
Data in plain text = "TEST"
	The applet posts application data and calls the ProactiveHandler.send() method to send a "Display Text" proactive command with the data received in the Envelope.
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked. The PoR has the application data posted by the application.

The USAT Framework answers with status words 91xx to issue the Display Text "TEST".

	8
	Envelope(USSD) formatted

Ciphering;

Cryptographic checksum;

proof of receipt response shall be sent and it shall be ciphered
Data in plain text = "TEST"
	The applet posts application data and calls the ProactiveHandler.send() method to send a "Display Text" proactive command with the data received in the Envelope.
	The USAT Framework answers to the Envelope with a PoR which is retrieved and checked. The PoR has the application data posted by the application.

The USAT Framework answers with status words 91xx to issue the Display Text "TEST".

*******************END OF SIXTH CHANGE*****************
*******************SEVENTH CHANGE*******************

5.3.11
Concatenated USSD

5.3.11.1
Concatenation processing

Test Area Reference: Ufw_Fusd_Proc

5.3.11.1.1
Conformance requirements:

5.3.11.1.1.1
Normal execution
- CRRN1: When a USSD Message is received as concatenated as defined in TS 31.115 [X], it is the responsibility of the (U)SAT Framework to link single USSD Messages together to re‑assemble the original message before any further processing.

-CRRN2: The original USSD message shall be placed in one USSD String TLV included in the USATEnvelopeHandle.

-CRRN3: . The USSD String parameters (DCS, PFI, CCF) shall correspond to the ones in the last received USSD String (independently of the CCF Sequence number).
-
CRRN4: The (U)SAT Framework shall be able to process messages with the following properties as a minimum requirement:

-
the Information Element Identifier is equal to the 8-bit reference number

-
it contains uncompressed 8 bit data or uncompressed UCS2 data

5.3.11.2
Test area files

Test Source:

Test_Ufw_Fusd_Proc.java

Test Applet:

Ufw Fusd Proc_1.java

Cap File:

ufw fusd proc.cap

5.3.11.3
Test coverage

	CRR number
	Test case number

	N1
	1 to 9,

	N2
	1 to 9

	N3
	6, 10 to 18

	N4
	9,18

5.3.11.4
Test procedure

	Id
	Description
	API/(U)SAT Framework Expectation
	APDU Expectation

	
	Applet registration to EVENT_FORMATTED_USSD and triggering

Applet is registered to EVENT_FORMATTED_USSD and EVENT_UNFORMATTED_USSD events

A concatenated formatted USSD is sent to the (U)SIM (composed of three segments).

	
	

	1
	The second segment of a concatenated USSD is sent to the (U)SIM.

	Applet is not triggered.
	

	2
	The first segment of the concatenated USSD is sent to the (U)SIM.
	Applet is not triggered.
	

	3
	The third segment of the concatenated USSD is send to the (U)SIM
	Applet is triggered.
	

	4
	Call USATEnvelopeHandlerSystem.getTheHandler().
	No exception is thrown.
	

	5
	Call the USATEnvelopeHandler.findTLV() to select the Dev Id, the alpha id and the USSD String and the USATEnvelopeHandler.compareValue() to check each content.
	Check that the message has been re-assembled in the correct order. Check that TP-UDL field is coded in one octet. Check that the concatenation control header is not present in the message. Check the integrity of the message.
	

	6
	A new concatenated formatted USSD is sent to the (U)SIM composed of three segments. DCS, PFI, CCF of the of the first, second and third segment are different among themselves.
	Applet is triggered.
	

	7
	Call USATEnvelopeHandlerSystem.getTheHandler().
	No exception is thrown.
	

	8
	Call USATEnvelopeHandler.findTLV() to select the TP_DU TLV and USATEnvelopeHandler.compareValue() to check its TP elements.
	Check that the TP elements of the message are equal to the ones of the third segment.
	

	9
	Send a concatenated USSD (composed of 3 segments) with uncompressed 8 bit data.
	Applet is triggered.
	

	
	Applet registration to EVENT_UNFORMATTED_USSD and triggering

Same test as above but with an unformatted USSD
A concatenated unformatted SMS_PP is sent to the (U)SIM (composed of three segments).

	
	

	10
	The second segment of a concatenated USSD message is sent to the (U)SIM.

	Applet is not triggered.
	

	11
	The first segment of the concatenated USSD message is sent to the (U)SIM.
	Applet is not triggered.
	

	12
	The third segment of the concatenated USSD message is sent to the (U)SIM.
	Applet is triggered.
	

	13
	Call USATEnvelopeHanlderSystem.getTheHandler()
	No exception is thrown.
	

	14
	Call USATEnvelopeHandler.findTLV() to select the Dev Id, USSD String TLV and the USATEnvelopeHandler.compareValue() to check each content.
	Check that the message has been reassembled in the correct order. Check that TP-UDL field is coded one octet. Check that the concatenation control header is not present in the message. Check the integrity of the message.
	

	15
	A new concatenated unformatted USSD is sent to the (U)SIM composed of two segments. Some TP_elements of the TPDU of the first, second and third segment are different.
	Applet is triggered.
	

	16
	Call USATEnvelopeHandlerSystem.getTheHandler()
	No exception is thrown.
	

	17
	Call USATEnvelopeHandler.findTLV()to select the TPDU TLV and the USATEnvelopeHandler.compareValue() to check its TP elements.
	Check that the TP elements of the message are equal to the ones of the third segment.
	

	18
	Send a concatenated unformatted USSD (composed of 3 segments) with uncompressed UCS2 data.
	Applet is triggered.
	

*******************END OF SEVENTH CHANGE*************

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

