Page 1

3GPP TSG CT WG 5 (Open Service Access)
(
C5-080036

Meeting CT5#42, Stockholm, SWEDEN, 26 - 28 March 200
revision of C5-080xyz
	CR-Form-v9.4

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	080036
	(

rev
	-
	(

Current version:
	7.1.0
	(

	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Transfer of missing items from ETSI TISPAN OSA Framework specification

	
	

	Source to WG:
(

	AePONA

	Source to TSG:
(

	C5

	
	

	Work item code:
(

	OSA8
	
	Date: (

	19/03/2008

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-8

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)
Rel-9
(Release 9)

	
	

	Reason for change:
(

	Transfer of ETSI TISPAN OSA to 3GPP.

	
	

	Summary of change:
(

	Introduction of the functionality supported in ETSI TISPAN OSA Stage 3 for the Framework specification, and not currently in existing 3GPP OSA stage 3 specifications. The specific area is Framework Enterprise Operator.

	
	

	Consequences if
(

not approved:
	Transfer of ETSI TISPAN OSA to 3GPP will be incomplete. This will lead to disatisfaction among those organisations that have adopted these items from the ETSI TISPAN OSA specifications and have a negative impact on further use or uptake of the specifications.

	
	

	Clauses affected:
(

	4, 8a

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	The figure in section 4 has been replaced, although the old figure does not show in change tracking. Section 8a is introduced in keeping with the order of information in the ETSI TISPAN OSA specification.

The Table of Contents needs to be updated when integrated into the document.

	1st Modified Section

4
Overview of the Framework

This clause explains which basic mechanisms are executed in the OSA Framework prior to offering and activating applications.

The Framework API contains interfaces between the Application Server and the Framework, between Network Service Capability Server (SCS) and the Framework, and between the Enterprise Operator and the Framework (these interfaces are represented by the yellow circles in the figure below). The description of the Framework in the present document separates the interfaces into three distinct sets: Framework to Application interfaces, Framework to Enterprise Operator interfaces and Framework to Service interfaces.

[image: image1.wmf]

Registered Services

Client Application

Framework

Call

Control

Mobility

 UI

Enterprise Op

erator

Operator

Some of the mechanisms are applied only once (e.g. establishment of service agreement), others are applied each time a user subscription is made to an application (e.g. enabling the call attempt event for a new user).

Basic mechanisms between Application and Framework:

-
Authentication: Once an off-line service agreement exists, the application can access the authentication interface. The authentication model of OSA is a peer-to-peer model, but authentication does not have to be mutual. The application must be authenticated before it is allowed to use any other OSA interface. It is a policy decision for the application whether it must authenticate the framework or not. It is a policy decision for the framework whether it allows an application to authenticate it before it has completed its authentication of the application.

-
Authorisation: Authorisation is distinguished from authentication in that authorisation is the action of determining what a previously authenticated application is allowed to do. Authentication shall precede authorisation. Once authenticated, an application is authorised to access certain SCFs.

-
Discovery of Framework and network SCFs: After successful authentication, applications can obtain available Framework interfaces and use the discovery interface to obtain information on authorised network SCFs.
The Discovery interface can be used at any time after successful authentication.

-
Establishment of service agreement: Before any application can interact with a network SCF, a service agreement shall be established. A service agreement may consist of an off-line (e.g. by physically exchanging documents) and an on-line part. The application has to sign the on-line part of the service agreement before it is allowed to access any network SCF.

-
Access to network SCFs: The Framework shall provide access control functions to authorise the access to SCFs or service data for any API method from an application, with the specified security level, context, domain, etc.

Basic mechanism between Framework and Service Capability Server (SCS):

· Registering of network SCFs:. SCFs offered by a SCS can be registered at the Framework. In this way the Framework can inform the Applications upon request about available SCFs (Discovery). For example, this mechanism is applied when installing or upgrading an SCS.

Basic mechanism between Framework and Enterprise Operator:

‑
Service Subscription function: This function represents a contractual agreement between the Enterprise Operator and the Framework. In this subscription business model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in the role of users or consumers of services. The framework itself acts in the role of retailer of services.

The following clauses describe each aspect of the Framework in the following order:

· The sequence diagrams give the reader a practical idea of how the Framework is implemented.

· The class diagrams clause shows how each of the interfaces applicable to the Framework relate to one another.

· The interface specification clause describes in detail each of the interfaces shown within the class diagram part.

· The State Transition Diagrams (STD) show the transition between states in the Framework. The states and transitions are well-defined; either methods specified in the Interface specification or events occurring in the underlying networks cause state transitions.

· The data definitions clause shows a detailed expansion of each of the data types associated with the methods within the classes. Note that some data types are used in other methods and classes and are therefore defined within the common data types part of the present document (29.198-2).

An implementation of this API which supports or implements a method described in the present document, shall support or implement the functionality described for that method, for at least one valid set of values for the parameters of that method. Where a method is not supported by an implementation of a Framework or Service interface, the exception P_METHOD_NOT_SUPPORTED shall be returned to any call of that method. Where a method is not supported by an implementation of an Application interface, a call to that method shall be possible, and no exception shall be returned.

	Next Modified Section

8a Framework‑to‑Enterprise Operator API

In some cases, the client applications (or the enterprise operators on behalf of these applications) must explicitly subscribe to the services before the client applications can access those services. To accomplish this, they use the service subscription function of the Framework for subscribing or un‑subscribing to services. Subscription represents a contractual agreement between the enterprise operator and the Framework operator. In general, an entity acting in the role of a customer/subscriber subscribes to the services provided by the Framework on behalf of the users/consumers of the service.

In this model, the enterprise operators act in the role of subscriber/customer of services and the client applications act in the role of users or consumers of services. The framework itself acts in the role of retailer of services. The following examples illustrate these roles:

· Service (to be subscribed): Call Centre Service, Mobility Service, etc.

· Framework Operator: AT&T, BT, etc.

· Enterprise Operator: A Financial institution such as a Bank or Insurance Company, or possibly an Application Service Provider (Such an enterprise has a conformant Subscription Application in its domain which "talks" to its peer in the Framework).

· User/Consumer: Client Applications (or their associated users) in the enterprise domain that use the Call Centre Service or the Mobility Service.

The Service Subscription interface is used by an enterprise operator to subscribe to new services and is required before a client application of the enterprise can use the new service. In general, the service subscription is performed after an off‑line negotiation of a set of services and the associated price between the framework operator and the enterprise operator. The service subscription is performed online by the enterprise operator in the frame of an existing off‑line negotiated contract between the framework operator and the enterprise. The on‑line service subscription function is used for subscriber, client application, and service contract management. The following clause describes a service subscription model.

Subscription Business Model

The following figure shows the subscription business model with respect to the business roles involved in the service subscription process. The subscription process involves the enterprise operator (which acts in the role of service subscriber) and the Framework (which acts in the role of provider or retailer of a service).

Services may be provided to the Enterprise Operator directly by a service provider or indirectly through a retailer, such as the Framework. An enterprise operator represents an organisation or a company which will be hosting client applications. Before a service can be used by the client applications in the enterprise operator's domain, subscription to the service must take place. An enterprise operator subscribes to a service by (electronically) signing a contract about the service usage with the Framework, using an on‑line subscription interface provided by the Framework. The Framework provides the service according to the service contract. The Enterprise Operator authorises the client application in his/her domain for the service usage. Finally a subscribed service can be used by a particular client application.

[image: image2.wmf]Enterprise Operator (In the role

of Service Subscriber)

Framework (In the

role

of Service Retailer)

Client Application (In the role

of

User or Consumer of Services)

Signs contract about service usage

Uses service

Authorises

Figure: Subscription Business Model

The interfaces between an enterprise operator and the client applications in its domain are outside the scope of this API.

The enterprise operator provides to the Framework the data about the client applications in its domain and the type of services each of them should be allowed access to, using the subscription interfaces offered by the Framework. The Framework provides (to the enterprise operator) the subscription interfaces for subscriber, client application and service contract management. This gives the enterprise operators the capability to dynamically create, modify and delete, in the framework domain, the client applications and service contracts belonging to its domain.

The enterprise operator is represented in the Framework domain as an EntOp object. The EntOp object is identified by a unique ID and contains the enterprise operator properties. The EntOp ID is a unique identifier of an enterprise operator in the Framework domain. It is created by the Framework Operator during the pre‑subscription off‑line negotiation of services (and their price, etc.) phase. The enterprise operator properties contain information such as the name and address of the enterprise operator (individual or organisation), service charge payment information, etc. The enterprise operator domain has one or more client applications associated with it. The enterprise operator may group a sub‑set of client applications in its domain in order to assign the same set of service features to the group. Such a group is called a Subscription Assignment Group (SAG). An enterprise operator may have multiple SAGs in its domain. A SAG relates a client application to the features of a service. A client application may be a member of multiple SAGs, one for each service subscribed for the client application by its enterprise operator.

The enterprise operator subscribes to a number of services by creating a service contract with the Framework for each service. Each service subscription is described by a service contract which defines the conditions for the service provision. A service contract restricts the usage of a service at subscription time. A service contract contains one or more Service Profiles, one for each SAG in the enterprise operator domain. A Service Profile contains the service parameters which further restrict the corresponding parameters in the service contract in order to adapt the service to the SAG's needs. A service profile is therefore a restriction of the service contract in order to provide restricted service features to a SAG. It is identified by a unique ID (within the framework domain) and contains a set of service properties, which defines the restricted usage of service allowed for that SAG (and its client applications).

[image: image3.wmf]

ca1,

ca2,

ca3

 ca4,

ca5, ca6,

ca7, ca8,

ca9

SAG2

ca10, ca11,

ca12,

ca12, ca13,

SAG3

Client Applications and SAGs in the Enterprise Domain

SC1

SC2

SC3

SC4

Service Contracts for Individual Services

Subscrib

ed by Enterprise Operator

SP1

SP2

SP3

SP5

SP4

Service Profiles in a Service Contract

Assignment of ClientApps/ SAGs to Service Profiles

SAG1

Figure: Relationship between Client Applications/SAG, Service Contract and Service Profiles

The client application is related to the enterprise operator for the usage of a service. The client application is represented in the Framework domain as a clientApp object. The clientApp object is identified by a unique ID and contains a set of client application properties describing the client application relevant information for subscription. Each client application is part of at least one SAG, which can contain one or more client applications. Each SAG has one service profile per service that defines the preferences of the SAG members for the usage of that service. A SAG can have multiple Service Profiles associated with it, one for each service subscribed by the enterprise operator on behalf of the SAG members. The figure above shows the relationship between client application objects, SAGs, service contracts and service profiles.

An enterprise operator may not want to grant all client applications in its domain the same service characteristics and usage permissions. In this case the enterprise operator can group them in a set of SAGs and assign a particular Service Profile to each group. A client application can be assigned to more than one service profile for a given service, as long as the dates within those service profiles do not overlap. The figure below illustrates this. Here the client is assigned to two SAGs. One of these SAGs uses ServiceProfile1 to control access to service 1. The other uses ServiceProfile3 to control access to service 1. If the dates in the two service profiles overlap, as is the case here, then it cannot be determined when the client signs the service agreement which service profile should be used. For example, if the client application signed the service agreement on February the 8th, then it could not be determined which of service profile 1 or service profile 3 would apply. If the dates are not overlapping then there is not a problem with identifying which of the service profiles to use. A SAG may have multiple service profiles, one for each subscribed service, associated with it.

[image: image4.emf]

ServiceProfile1

Start: 02, Feb

End: 10, Feb

ServiceID: 1

Client

App.2

SAG

2

SAG

1

Client

App.1

Client

App.3

Client

App.1

ServiceProfile2

Start: 02, Feb

End: 10, Feb

ServiceID: 2

ServiceProfile3

Start: 08, Feb

End: 30, Feb

ServiceID: 1

Figure: Overlapping date fields in service profiles

[image: image5.emf]

Client

App 7

Client

App 6

Framework

Enterprise

Operator 1

Enterprise

Operator 3

Enterprise

Operator 2

Client

App 3

Client

App 4

Client

App 5

Client

App 2

Client

App 1

Figure: Multiple Enterprise Operators

The figure above illustrates that the framework can offer its services to applications in the domains of many enterprise operators. An enterprise operator could be an Application Service Provider, a corporation, or even the network operator (if the services offered through the framework belong to a single network – it is even possible that the network operator will be the only enterprise operator). It is possible, however, that each service registered with the framework could actually be in a different network. The client application IDs have to be unique within the framework. The framework operator could decide to allocate a block of application IDs to each enterprise operator, or even negotiate with the enterprise operators to provide a set of client application IDs that are meaningful to them.

Service subscription and subscription management requires a careful delineation of subscription‑related functions. The service subscription interfaces are classified in the following categories:

· Enterprise Operator Account Management.

· Enterprise Operator Account Query.

· Service Contract Management.

· Service Contract Query.

· Service Profile Management.

· Service Profile Query.

· Client Application Management.

· Client Application Query.

Only the enterprise operator, which is registered and later on authenticated, is allowed to use these interfaces.

8a.1
Sequence Diagrams

8a.1.1
Event Notification Sequence Diagrams

No Sequence Diagrams exist for Event Notification.

8a.1.2
Service Subscription Sequence Diagrams

8a.1.2.1
Service Discovery and Subscription Scenario

This scenario is shown in the sequence diagram below. Services are subscribed to by the enterprise operator on behalf of the client applications which then use these services. Before an enterprise operator can subscribe to a service, it must have knowledge of the existence of that service in the framework. The enterprise operator discovers the set of services provided by the framework using the IpServiceDiscovery interface. Initially, the enterprise operator obtains a list of service types supported by the framework by invoking listServiceTypes() on IpServiceDiscovery interface. Then it obtains the description of a service type using describeServiceType() to find out the set of properties applicable to a particular service type. Subsequently it invokes discoverService() to discover the services of a given type which supports the desired set of property values. The discoverService() method returns a list of "serviceIDs" and their associated property values. The service discovery phase is followed by the service subscription phase. The enterprise operator uses the IpServiceContractManagement and IpServiceProfileManagement interfaces to perform service subscription.
The enterprise operator invokes the createServiceContract() on IpServiceContractManagement interface to subscribe to a service. Depending upon the Framework Operator's policy, the services may be subscribed by identifying them by their "serviceID" or by their service type. In the former case only the specific service can be used by the enterprise operator and its client applications. In the latter case, all registered services of the given type can be used. The enterprise operator may create multiple service profiles (each of which are a restriction of the service contract) by invoking createServiceProfile() on IpServiceProfileManagement interface and assign each service profile to a different Subscription Assignment Group (SAG), using assign() method. This allows an enterprise operator to assign different service privileges to different client application groups. During the life time of a service contract, the enterprise operator may perform service contract and service profile management functions, such as modifying the service profiles (modifyServiceProfile()) and service contract (modifyServiceContract()), re‑assigning the service profiles to a SAG (assign()), obtaining information about a service profile (getServiceProfile()), deleting service profiles (deleteServiceProfile()), etc. These methods may be interleaved in any logical order. The enterprise operator or the client applications, can at any time obtain a list of currently subscribed services by invoking listSubscribedServices() method on the IpServiceDiscovery interface. This method returns a list of serviceIDs of the set of subscribed services. The service contract ceases to exist after the specified end date. The deleteServiceContract deletes the service contract object held in the framework. It is up to the discretion of the Framework operator to allow the enterprise operator to delete a service contract before its specified end date.
After the service subscription is performed the client applications can access and use the set of subscribed services in addition to the set of freely available services. In order to start a service, the interface reference of the service is required. The discoverService() method or the listSubscribedServices() method, described above, return the "serviceID". The interface reference of the service is obtained in the service access phase. The service access phase begins with the client applications selecting the service, via the selectService() method, and signing a service agreement, via the signServiceAgreement() method. The selectService() method is used by the client application to identify the service that it wants to initiate. The input to the selectService() is the "serviceID" returned by the discoverService() or the listSubscribedServices() and the output is a "serviceToken". The serviceToken is free format text token returned by the framework, which can be used as part of a service agreement. If the service is not subscribed by the enterprise operator, then a "service not subscribed" exception is raised. The signServiceAgreement() is invoked by the client application on the framework to sign an agreement on the service. The input to this method is the service token returned by the selectService() method. The sign service agreement is used as a way of non‑repudiation of the intention to use the service by the client application. The successful completion of the signServiceAgreement() returns the interface reference to the service (or to its service manager). The client application can then use this interface reference to start the service.
[image: image6.wmf]:

EnterpriseOperator

:

ClientApplication

 : IpAccess

 : IpServiceDiscovery

 : IpServiceContractManagement

 : IpServiceContractInfoQuery

 : IpServiceProfileManagement

 : IpServiceProfileInfoQuery

Auth. phase

followed by

1: obtainInterface()

2: listServiceTypes()

3: describeServiceType()

4: discoverService()

Find desired

Services

5: obtainInterface()

6: createServiceContract(in TpServiceContractDescription)

Subscribe

the Services

7: createServiceProfile()

create more

SPs in SC

8: assign()

9: modifyServiceProfile()

10: assign()

11: describeServiceProfile()

12: deleteServiceProfile()

13: modifyServiceContract(in TpServiceContract)

14: listSubscribedServices()

15: listSubscribedServices()

16: describeServiceContract()

17: createServiceContract(in TpServiceContractDescription)

8a.1.2.2
Enterprise Operator and Client Application Subscription Management Sequence Diagram

The first step in the service subscription process is the creation of an account for the enterprise operator. The creation of enterprise operator accounts is performed by the Framework Operator via interfaces outside of the present document. When the enterprise operator's account has been created they are allowed to use the framework. The enterprise operator (acting in the role of service subscriber) can then create accounts within the framework for all of the client applications in its domain. The enterprise operator obtains the reference to the IpEntOpManagement interface by invoking obtainInterface() on the IpAccess interface. The enterprise operator at any time may inspect its subscription account by invoking describeEntOpAccount on the IpEntOpAccountInfoQuery interface and modify the subscriber‑related information contained in its subscription account by invoking modifyEntOpAccount() on IpEntOpAccountManagement interface.
An enterprise operator usually has many client applications in its enterprise domain. These client applications must be registered within the framework so that the set of services subscribed to by the enterprise operator (through createServiceContract()) can be assigned to these client applications by associating a service profile (a restriction of service contracts) with a group of client applications, called a Subscription Assignment Group (SAG). In order to create an account for individual client applications, the enterprise operator invokes createClientApp() on IpClientAppManagement interface. The enterprise operator groups a related set of client applications in a SAG so that the same service profile can be assigned to them. The enterprise operator may create an empty SAG by invoking createSAG() on IpClientAppManagement interface. The enterprise operator adds client applications to the newly created SAG by invoking addSAGMembers() on IpClientAppManagement interface. The enterprise operator also performs other client application / SAG management functions such as modifyClientApp(), deleteClientApp(), modifySAG(), listSAGs(), listSAGMembers(), addSAGmembers(), removeSAGmembers()etc. These methods can be interleaved in any logical order. Finally, the enterprise operator (or the framework operator) can delete its subscription account by invoking deleteEntOpAccount() on IpEntOpAccountManagement interface.
[image: image7.wmf]Enterprise

Operator

Framework

Operator

 : IpAccess

 :

IpEntOpAccountManagement

 :

IpEntOpAccountInfoQuery

 :

IpClientAppManagement

 :

IpClientAppInfoQuery

The Enterprise Operator

account has already been created.

Auth. Phase followed by:

1: obtainInterface()

2: describeEntOpAccount()

3: modifyEntOpAccount()

4: obtainInterface()

5: createClientApp()

Create more client

apps

6: createSAG()

7: addSAGMembers()

8: modifyClientApp()

9: modifySAG()

10: deleteClientApp()

11: removeSAGMembers()

12: modifySAG()

13: obtainInterface()

14: listSAGs()

15: listSAGMembers()

16: deleteEntOpAccount()

8a.2
Class Diagrams

[image: image8.wmf]IpClientEventNotification

reportNotification()

notificationTerminated()

(from Client Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
[image: image9.wmf]IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpInitial

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

listInterfaces()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image10.wmf]IpClientAppInfoQuery

describeClientApp()

listClientApps()

describeSAG()

listSAGs()

listSAGMembers()

listClientAppMembership()

(from Framework interfaces)

<<Interface>>

IpClientAppManagement

createClientApp()

modifyClientApp()

deleteClientApp()

createSAG()

modifySAG()

deleteSAG()

addSAGMembers()

removeSAGMembers()

requestConflictInfo()

(from Framework interfaces)

<<Interface>>

IpEntOpAccountInfoQuery

describeEntOpAccount()

(from Framework interfaces)

<<Interface>>

IpEntOpAccountManagement

modifyEntOpAccount()

deleteEntOpAccount()

(from Framework interfaces)

<<Interface>>

IpServiceContractInfoQuery

describeServiceContract()

listServiceContracts()

listServiceProfiles()

(from Framework interfaces)

<<Interface>>

IpServiceContractManagement

createServiceContract()

modifyServiceContract()

deleteServiceContract()

(from Framework interfaces)

<<Interface>>

IpServiceProfileInfoQuery

listServiceProfiles()

describeServiceProfile()

listAssignedMembers()

(from Framework interfaces)

<<Interface>>

IpServiceProfileManagement

createServiceProfile()

modifyServiceProfile()

deleteServiceProfile()

assign()

deassign()

requestConflictInfo()

(from Framework interfaces)

<<Interface>>

Figure: Service Subscription Package Overview
8a.3
Interface Classes
8a.3.1
Event Notification Interface Classes

8a.3.1.1
Interface Class IpClientEventNotification

Inherits from: IpInterface.
This interface is used by the framework to inform the client of a generic event. The Event Notification Framework will invoke methods on the Event Notification Client Interface that is specified when the Event Notification interface is obtained.

	<<Interface>>

IpClientEventNotification

	

	reportNotification (eventInfo : in TpFwEventInfo, assignmentID : in TpAssignmentID) : void

notificationTerminated () : void

8a.3.1.1.1
Method reportNotification()

This method notifies the client of the arrival of a generic event.

Parameters

eventInfo : in TpFwEventInfo
Specifies specific data associated with this event.
assignmentID : in TpAssignmentID
Specifies the assignment id which was returned by the framework during the createNotification() method. The client can use assignment id to associate events with event specific criteria and to act accordingly.
8a.3.1.1.2
Method notificationTerminated()

This method indicates to the client that all generic event notifications have been terminated (for example, due to faults detected).

Parameters

No Parameters were identified for this method.

8a.3.1.2
Interface Class IpEventNotification

Inherits from: IpInterface.
The event notification mechanism is used to notify the client of generic events that have occurred. If Event Notifications are supported by a Framework, this interface and the createNotification() and destroyNotification() methods shall be supported.

	<<Interface>>

IpEventNotification

	

	createNotification (eventCriteria : in TpFwEventCriteria) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

8a.3.1.2.1
Method createNotification()

This method is used to enable generic notifications so that events can be sent to the client.

Returns <assignmentID>: Specifies the ID assigned by the framework for this newly installed notification.

Parameters

eventCriteria : in TpFwEventCriteria
Specifies the event specific criteria used by the client to define the event required.
Returns

TpAssignmentID
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
8a.3.1.2.2
Method destroyNotification()

This method is used by the client to delete generic notifications from the framework.

Parameters

assignmentID : in TpAssignmentID
Specifies the assignment ID given by the framework when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the framework will return the error code P_INVALID_ASSIGNMENT_ID.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_ASSIGNMENT_ID
8a.3.2
Service Subscription Interface Classes

8a.3.2.1
Interface Class IpClientAppManagement

Inherits from: IpInterface.
If the enterprise operator wants the client applications in its domain to access the subscribed services in name of the enterprise, then (s)he has to register these client applications in the Framework domain. For this the enterprise operator must use the client application management interface, to which (s)he can subscribe as a privileged user. The client application management interface is intended for cases where an organisation wants to allow several client applications to register with a Framework as service consumers. It allows enterprise operators to dynamically add new client applications and SAGs, delete them and to modify subscription related information concerning the client applications and the SAGs. Client applications use the subscribed services in the enterprise operator's name. The main task of client application management is to register, modify and delete client applications (Client Application Management), and manage groups of client applications, called Subscription Assignment Groups (SAG Management).

	<<Interface>>

IpClientAppManagement

	

	createClientApp (clientAppDescription : in TpClientAppDescription) : void

modifyClientApp (clientAppDescription : in TpClientAppDescription) : void

deleteClientApp (clientAppID : in TpClientAppID) : void

createSAG (sag : in TpSag, clientAppIDs : in TpClientAppIDList) : void

modifySAG (sag : in TpSag) : void

deleteSAG (sagID : in TpSagID) : void

addSAGMembers (sagID : in TpSagID, clientAppIDs : in TpClientAppIDList) : void

removeSAGMembers (sagID : in TpSagID, clientAppIDList : in TpClientAppIDList) : void

requestConflictInfo () : TpAddSagMembersConflictList

8a.3.2.1.1
Method createClientApp()

A client application is represented in the Framework domain as a "clientApp object". This method creates a new clientApp object associated with the enterprise operator object. Each clientApp object has a clientApp ID and other subscription related client application's properties stored in it.

Parameters

clientAppDescription : in TpClientAppDescription
The "clientAppDescription" parameter contains the clientApp ID that is to be associated with the newly created clientApp object and the subscription‑related "client application properties". The clientApp ID must be a unique ID across framework, if the ID already exists, an exception "P_INVALID_CLIENT_APP_ID" would be raised. The client application properties are a list of name/value pairs. The client application properties are an item for bi‑lateral agreement between the enterprise operator and the framework operator.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.1.2
Method modifyClientApp()

Modify the information contained in an existing clientApp object associated with the enterprise operator. An exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

clientAppDescription : in TpClientAppDescription
The "clientAppDescription" parameter contains the modified client application information. If the clientApp ID does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.1.3
Method deleteClientApp()

Delete the specified client application associated with the enterprise operator. If the client application currently has an access session with the framework then this will be terminated, along with any service instances it may have created. An exception of "P_TASK_REFUSED" will be raised if a non‑associated enterprise operator invokes this method.

Parameters

clientAppID : in TpClientAppID
The "clientAppID" parameter identifies the client application that is to be deleted. If the clientAppID does not exist, a "P_INVALID_CLIENT_APP_ID" exception will be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.1.4
Method createSAG()

Create a new SAG associated with the enterprise operator. The SAG object is identified by a SAG ‑ ID and contains SAG ‑ specific description.

Parameters

sag : in TpSag
The "sag" parameter contains the SAG‑ID and SAG‑specific description. This sagID is particular to the SAG, and must be unique across framework. If the sagID supplied already exists, an exception of type "P_INVALID_SAG_ID" would be raised.

clientAppIDs : in TpClientAppIDList
The "clientAppIDs" parameter contains the list of client application IDs that are to be associated with the newly created SAG.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID
8a.3.2.1.5
Method modifySAG()

Modify the description of an existing SAG associated with the enterprise operator. An exception of "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sag : in TpSag
The "sag" parameter contains the modified SAG‑specific description. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.1.6
Method deleteSAG()

Delete an existing SAG. Only the enterprise operator associated with the SAG is allowed to delete it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG that is to be deleted. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" is raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.1.7
Method addSAGMembers()

Add the specified client applications to the specified SAG associated with the enterprise operator. Only the enterprise operator associated with the SAG is allowed to assign members to it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method. Each client application may be assigned to a service only through a single service profile at a particular moment in time. If this condition is violated, a "P_INVALID_ADDITION_TO_SAG" would be raised. In this case, no partial execution of this method is performed. The enterprise operator can query further information about this invalid addition using the method requestConflictInfo().

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG object to which the client applications are to be added. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDs : in TpClientAppIDList
The "clientAppIDs" parameter contains the list of the clientApp IDs that are to be added to the specified SAG. The clientApp objects are first created using the createClientApp() method. If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID, P_INVALID_ADDITION_TO_SAG
8a.3.2.1.8
Method removeSAGMembers()

Delete specified client applications from the specified SAG object of the enterprise operator. Only the enterprise operator associated with the SAG is allowed to remove members from it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG from which the client applications are to be removed. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

clientAppIDList : in TpClientAppIDList
The "clientAppIDList" parameter contains the list of the clientApp IDs that are to be removed from the specified SAG. If one or all of the client application IDs in the list does not exist, an exception "P_INVALID_CLIENT_APP_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID, P_INVALID_SAG_ID
8a.3.2.1.9
Method requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method addSagMembers() on this interface (i.e. Information about the invocation of addSagMembers() that raised a P_INVALID_ADDITION_TO_SAG). Each client application may be assigned to a service only through a single service profile at a particular moment in time. The enterprise operator might try to add a client application to a SAG, where both, the client application and the SAG are already assigned to the same service through different service profiles. As this may happen in one method call for multiple client applications, a conflict list is generated.

It is only possible to retrieve information about the last conflicting addSagMembers() method call; information about previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAddSagMembersConflictList>: The list of conflicts of the last invocation of addSagMembers() that raised a P_INVALID_ADDITION_TO_SAG. Each conflict contains the following elements:

a.
The conflict generating client application.

b.
The SAG and the service profile through which the conflict generating client application is already assigned to the conflict generating service. It includes the current service profile.

c.
The SAG, to which the conflict generating client application should be added. However, this SAG is already assigned to a concurrent service profile concerning the conflict generating service. This creates a conflict, as each client application may be assigned to a service only through a single service profile at a particular moment in time.

d.
The conflict generating service.

Parameters

No Parameters were identified for this method.

Returns

TpAddSagMembersConflictList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.2
Interface Class IpClientAppInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to list the client applications and the SAGs in its domain and to obtain information about them.

	<<Interface>>

IpClientAppInfoQuery

	

	describeClientApp (clientAppID : in TpClientAppID) : TpClientAppDescription

listClientApps () : TpClientAppIDList

describeSAG (sagID : in TpSagID) : TpSagDescription

listSAGs () : TpSagIDList

listSAGMembers (sagID : in TpSagID) : TpClientAppIDList

listClientAppMembership (clientAppID : in TpClientAppID) : TpSagIDList

8a.3.2.2.1
Method describeClientApp()

Query information about the specified client application of the enterprise operator.

Returns <clientAppDescription>: The "clientAppDescription" parameter contains the clientApp description.

Parameters

clientAppID : in TpClientAppID
The "clientAppID" parameter identifies the clientApp object whose description is requested.
Returns

TpClientAppDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.2.2
Method listClientApps()

Get a list of all client applications belonging to an enterprise operator.

Returns <clientAppIDs>: The "clientAppIDs" parameter identifies the list of client applications in the enterprise operator domain.

Parameters

No Parameters were identified for this method.

Returns

TpClientAppIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.2.3
Method describeSAG()

Query information about the specified SAG associated with the enterprise operator.

Returns <SagDescription>: The "sagDescription" parameter returns the SAG‑specific description.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG whose description is required.
Returns

TpSagDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.2.4
Method listSAGs()

Get a list of all SAGs associated with an enterprise operator.

Returns <SagIDList>: The "sagIDList" parameter returns the list of the identifiers of the SAGs associated with the enterprise operator.

Parameters

No Parameters were identified for this method.

Returns

TpSagIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.2.5
Method listSAGMembers()

Get a list of all client applications associated with the specified SAG.

Returns <clientAppIDList>: The "clientAppIDList" parameter returns the list of the client applications associated with the SAG.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG whose clientAppID list is required.
Returns

TpClientAppIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID
8a.3.2.2.6
Method listClientAppMembership()

Obtain a list of the SAGs of which the specified client application is a member.

Returns <sags>: The SAGs of which the client application is a member.

Parameters

clientAppID : in TpClientAppID
The "clientAppID" parameter identifies the clientApp object whose membership details are requested.
Returns

TpSagIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_CLIENT_APP_ID
8a.3.2.3
Interface Class IpServiceProfileManagement

Inherits from: IpInterface.
This interface is used by the enterprise operator for the management of Service Profiles, which are defined for every subscribed service, and to assign/de ‑ assign the Service Profiles to SAGs.

	<<Interface>>

IpServiceProfileManagement

	

	createServiceProfile (serviceProfileDescription : in TpServiceProfileDescription) : TpServiceProfileID

modifyServiceProfile (serviceProfile : in TpServiceProfile) : void

deleteServiceProfile (serviceProfileID : in TpServiceProfileID) : void

assign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

deassign (sagID : in TpSagID, serviceProfileID : in TpServiceProfileID) : void

requestConflictInfo () : TpAssignSagToServiceProfileConflictList

8a.3.2.3.1
Method createServiceProfile()

Creates a new Service Profile for the specified service contract. The service properties within the service profile restrict the service to meet the client application requirements. A Service Profile is a restriction of the corresponding service contract. When the description has been verified, a service profile ID will be generated.

Returns <serviceProfileID>: The service profile ID, generated by the framework, will be used to uniquely identify the service profile within the framework.

Parameters

serviceProfileDescription : in TpServiceProfileDescription
The "serviceProfile" parameter is a structured data type, which contains a subset of the associated service contract information and which may further restrict the value ranges of the service subscription properties.
Returns

TpServiceProfileID
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.3.2
Method modifyServiceProfile()

Modifies the specified Service Profile associated with the enterprise operator. Only the enterprise operator associated with the particular service profile is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceProfile : in TpServiceProfile
The modified Service Profile. If the serviceProfileID specified in the serviceProfile parameter does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.3.3
Method deleteServiceProfile()

Deletes the specified Service Profile. If there are any service instances running that are governed by this profile then they will be terminated. Only the enterprise operator associated with the particular service profile is allowed to delete it, a "P_TASK_REFUSED" exception will be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile that is to be deleted. If the serviceProfileID does not exist, a "P_INVALID_SERVICE_PROFILE_ID" exception will be raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.3.4
Method assign()

Assign a Service Profile to the specified SAG. Only the enterprise operator associated with the serviceProfileID is allowed to assign it to a SAG, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method. Each client application may be assigned to a service only through a single service profile at a particular moment in time. If this condition is violated, a "P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT" would be raised. In this case, no partial execution of this method is performed. The enterprise operator can query further information about this invalid assignment using the method requestConflictInfo().

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG to which Service Profile is to be assigned. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile that is to be assigned to the SAG. If the serviceProfileID does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID, P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT
8a.3.2.3.5
Method deassign()

De‑assign the Service Profile from the specified SAG. Because only the enterprise operator associated with the serviceProfileID is allowed to deassign it from a SAG, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

sagID : in TpSagID
The "sagID" parameter identifies the SAG whose Service Profile is to be de‑assigned. If the SAG ID does not exist, an exception "P_INVALID_SAG_ID" would be raised.

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile that is to be de‑assigned. If the serviceProfileID does not exist, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SAG_ID, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.3.6
Method requestConflictInfo()

Requests details about the latest conflict that occurred during performing the method assign() on this interface (i.e. Information about the invocation of assign () that threw a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT). Each client application may be assigned to a service only through a single service profile at a particular moment in time. The enterprise operator could try to assign a SAG to a service profile of a given service. If one or more client applications in this SAG are already assigned to service profiles belonging to the given service, the client applications would have two concurrent service profiles at a particular moment in time. As this is prohibited, a conflict list is generated.

It is only possible to retrieve information about the last conflicting assign() method call; information about previous conflicts cannot be requested. If there has never been a conflict, the method returns an empty conflict list.

Returns <TpAssignSagToServiceProfileConflictList>: The description of the conflicts occurring at the latest invocation of assign() that raised a P_INVALID_SAG_TO_SERVICE_PROFILE_ASSIGNMENT. Each conflict contains the following elements:

a.
The conflict generating client application.

b.
The SAG and the service profile through which the conflict generating client application is already assigned to the conflict generating service. It includes the current service profile.

c.
The conflict generating service.

The conflict generating SAG and service profile are supposed to be well known, because they are input parameters of the assign() method. Therefore, they do not appear in the returned conflict list.

Parameters

No Parameters were identified for this method.

Returns

TpAssignSagToServiceProfileConflictList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.4
Interface Class IpServiceProfileInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to obtain information about individual Service Profiles, to find out which SAGs are assigned to a given Service Profile, and to find out what Service Profile is associated with a given client application or SAG.

	<<Interface>>

IpServiceProfileInfoQuery

	

	listServiceProfiles () : TpServiceProfileIDList

describeServiceProfile (serviceProfileID : in TpServiceProfileID) : TpServiceProfileDescription

listAssignedMembers (serviceProfileID : in TpServiceProfileID) : TpSagIDList

8a.3.2.4.1
Method listServiceProfiles()

Get a list of all service profiles created by the enterprise operator.

Returns <serviceProfileIDList>: The "serviceProfileIDList" is a list of the service profiles associated with the enterprise operator.

Parameters

No Parameters were identified for this method.

Returns

TpServiceProfileIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.4.2
Method describeServiceProfile()

Query information about a single service profile.

Returns <serviceProfileDescription>: The "serviceProfileDescription" parameter is a structured data type which contains a description for the specified service profile.

Parameters

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile whose description is being requested.
Returns

TpServiceProfileDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.4.3
Method listAssignedMembers()

Get a list of SAGs assigned to the specified service profile.

Returns <sagIDList>: The "sagIDs" parameter is the list of the SAG IDs that are assigned to the specified service profile.

Parameters

serviceProfileID : in TpServiceProfileID
The "serviceProfileID" parameter identifies the Service Profile. If the serviceProfileID is not recognised by the framework, an exception "P_INVALID_SERVICE_PROFILE_ID" would be raised.

Returns

TpSagIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_PROFILE_ID
8a.3.2.5
Interface Class IpServiceContractManagement

Inherits from: IpInterface.
The enterprise operator uses this interface for service contract management, such as create, modify, and delete service contracts.

	<<Interface>>

IpServiceContractManagement

	

	createServiceContract (serviceContractDescription : in TpServiceContractDescription) : TpServiceContractID

modifyServiceContract (serviceContract : in TpServiceContract) : void

deleteServiceContract (serviceContractID : in TpServiceContractID) : void

8a.3.2.5.1
Method createServiceContract()

Create a new service contract for an enterprise operator. The enterprise operator provides the service contract description. This contract should conform to the previously negotiated high ‑ level agreement (regarding the services, their usage and the price, etc.), if any, between the enterprise operator and the framework operator, otherwise the appropriate exception is raised by the framework. When the description has been validated, a service contract ID will be generated.

Returns <serviceContractID>: The service contract ID will be used to uniquely identify the service contract within the framework.

Parameters

serviceContractDescription : in TpServiceContractDescription
The "serviceContractDescription" parameter provides the information contained in the service contract. The service contract is a structured data type, which contains the following information:

a.
information about the service requestor, i.e. the enterprise operator;

b.
information about the billing contact (person);

c.
service start date;

d.
service end date;

e.
service type (e.g. obtained from listServiceType() method);

f.
service ID (e.g. obtained from discoverService() method). For certain services, service type information is sufficient and service ID may not be required. This implies that any service of the type specified above is subscribed and hence accessible to the enterprise operator or to its client applications;

g.
list of service subscription properties and their value ranges (service profiles further restrict these value ranges).

Returns

TpServiceContractID
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID
8a.3.2.5.2
Method modifyServiceContract()

Modify an existing service contract. The service contract can be modified only within the context of a pre‑existing off‑line negotiated high‑level agreement between the enterprise operator and the framework operator. Only the enterprise operator associated with the serviceContract is allowed to modify it, an exception "P_TASK_REFUSED" would be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceContract : in TpServiceContract
The "serviceContract" parameter provides the modified service contract. If the serviceContractID does not exist, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_ID, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.5.3
Method deleteServiceContract()

Delete an existing service contract. All the Service Profiles associated with the service contract are also deleted. If there are any service instances running that are governed by this contract, or any of the profiles associated with it, then they will be terminated. Only the enterprise operator associated with the serviceContract is allowed to delete it, a "P_TASK_REFUSED" exception will be raised if a non‑associated enterprise operator invokes this method.

Parameters

serviceContractID : in TpServiceContractID
The "serviceContractID" parameter identifies the service contract that the enterprise operator wishes to delete. If the serviceContractID does not exist, a "P_INVALID_SERVICE_CONTRACT_ID" exception will be raised.

Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.6
Interface Class IpServiceContractInfoQuery

Inherits from: IpInterface.
The enterprise operator uses this interface to query information about a given service contract.

	<<Interface>>

IpServiceContractInfoQuery

	

	describeServiceContract (serviceContractID : in TpServiceContractID) : TpServiceContractDescription

listServiceContracts () : TpServiceContractIDList

listServiceProfiles (serviceContractID : in TpServiceContractID) : TpServiceProfileIDList

8a.3.2.6.1
Method describeServiceContract()

Query information about the specified service contract. The enterprise operator invokes this operation to obtain information that is stored in the specified service contract. The enterprise operator can only obtain information about the service contracts that it has created.

Returns <serviceContractDescription>: The "serviceContract" parameter contains the description for the specified service contract.

Parameters

serviceContractID : in TpServiceContractID
The "serviceContractID" parameter identifies the service whose description is being requested.
Returns

TpServiceContractDescription
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.6.2
Method listServiceContracts()

Returns a list of the IDs of service contracts created by the Enterprise Operator.

Returns <serviceContractIDs>: The "serviceContractIDs" parameter will contain a list of IDs for service contracts that the enterprise operator has created.

Parameters

No Parameters were identified for this method.

Returns

TpServiceContractIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.6.3
Method listServiceProfiles()

The enterprise operator invokes this operation to obtain a list of service profiles that are associated with a particular service contract.

Returns <serviceProfileIDs>: This contains the service profiles associated with a particular service contract.

Parameters

serviceContractID : in TpServiceContractID
The "serviceContractID" parameter identifies the service contract. If the serviceContractID is not recognised by the framework, an exception "P_INVALID_SERVICE_CONTRACT_ID" would be raised.

Returns

TpServiceProfileIDList
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_SERVICE_CONTRACT_ID
8a.3.2.7
Interface Class IpEntOpAccountManagement

Inherits from: IpInterface.
The enterprise operator, in the role of the service subscriber, uses this interface for the management of enterprise operator subscription accounts, such as modify and delete enterprise operator accounts. The EntOpID will be decided in an off‑line agreement between the FW operator and the EntOp, as the EntOp may require the ID to be something more meaningful than a random number. The EntOp account, consisting of the EntOpID, along with the list of valid properties and their modes and prescribed ranges, will be entered via a FW operator interface that is currently outside the scope of the API.

	<<Interface>>

IpEntOpAccountManagement

	

	modifyEntOpAccount (enterpriseOperatorProperties : in TpEntOpProperties) : void

deleteEntOpAccount () : void

8a.3.2.7.1
Method modifyEntOpAccount()

Modification of the enterprise operator information contained in the enterprise operator object.

Parameters

enterpriseOperatorProperties : in TpEntOpProperties
The "enterprise operator properties" parameter conveys the modified/populated information about the enterprise operator. The values of the "enterprise operator properties" can only be modified within the prescribed range, as negotiated earlier (an off‑line process) between the enterprise operator and the framework operator, otherwise a P_INVALID_PROPERTY exception is raised.
Raises

TpCommonExceptions, P_ACCESS_DENIED, P_INVALID_PROPERTY
8a.3.2.7.2
Method deleteEntOpAccount()

Deletes the specified enterprise operator object. Deletion of the enterprise operator object cannot be performed until the enterprise operator has deleted all the service contracts (and the Service Profiles) associated with it. An attempt to delete the enterprise operator account will result in a P_TASK_REFUSED exception if there are outstanding service contracts (and service profiles).

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.3.2.8
Interface Class IpEntOpAccountInfoQuery

Inherits from: IpInterface.
This interface is used by the enterprise operator to query information related to its own subscription account as held within the framework.

	<<Interface>>

IpEntOpAccountInfoQuery

	

	describeEntOpAccount () : TpEntOp

8a.3.2.8.1
Method describeEntOpAccount()

Query information about the enterprise operator. The enterprise operator invokes this operation to find out what information about itself is stored in the enterprise operator account object within the Framework.

Returns <enterpriseOperator>: The "enterpriseOperator" parameter conveys the information stored in the EntOp object about the enterprise operator. It contains the unique "enterprise operator ID" followed by a list of "enterprise operator properties". The enterprise operator properties is a list of name/value pairs which provide enterprise operator related information such as the name, organisation, address, phone, e‑mail, fax, payment method (credit card, bank account), etc. to the framework.

Parameters

No Parameters were identified for this method.

Returns

TpEntOp
Raises

TpCommonExceptions, P_ACCESS_DENIED
8a.4
State Transition Diagrams
This clause contains the State Transition Diagrams for the objects that implement the Framework interfaces on the gateway side. The State Transition Diagrams show the behaviour of these objects. For each state the methods that can be invoked by the client are shown. Methods not shown for a specific state are not relevant for that state and will return an exception. Apart from the methods that can be invoked by the client also events internal to the gateway or related to network events are shown together with the resulting event or action performed by the gateway. These internal events are shown between quotation marks.

8a.4.1
Event Notification State Transition Diagrams

There are no State Transition Diagrams defined for Event Notification.
8a.4.2
Service Subscription State Transition Diagrams

There are no State Transition Diagrams defined for Service Subscription.
	End of modifications

�PAGE \# "'Page: '#'�'" �� � HYPERLINK "http://www.3gpp.org/ftp/Information/DocNum_FTP_structure_V3.zip" ��Document numbers� are allocated by the Working Group Secretary. Use the format of document number specified by the � HYPERLINK "http://www.3gpp.org/About/WP.htm" ��3GPP Working Procedures�.

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least four digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR was written and (normally) to which it will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line, but if this is not possible, do not enter hard new-line characters. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

One or more organizations (3GPP Individual Members) which drafted the CR and are presenting it to the Working Group.

For CRs agreed at Working Group level, the identity of the WG. Use the format "xn" where �	x = "C" for TSG CT, "R" for TSG RAN, "S" for TSG SA, "G" for TSG GERAN; �PAGE \# "'Page: '#'�'" ���	n = digit identifying the Working Group; for CRs drafted during the TSG meeting itself, use "P". �Examples: "C4", "R5", "G3new", "SP".

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, A, B & C CRs for Release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See �� HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm" ��http://www.3gpp.org/ftp/Specs/html-info/WI-List.htm� .

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2006.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed. For more detailed help on interpreting these categories, see Technical Report �HYPERLINK "http://www.3gpp.org/ftp/Specs/html-info/21900.htm"��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR were to be rejected. It is mandatory to complete this section only if the CR is of category "F" (i.e. correction), though it may well be useful for other categories.

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes. Be as specific as possible (ie list each subclause, not just the umbrella clause).

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

_1066658228.doc
[image: image1.wmf]

Registered Services

Client Application

Framework

Call

Control

Mobility

 UI

Enterprise Op

erator

Operator

_1099216806.doc
[image: image1.wmf]

ServiceProfile1

Start: 02, Feb

End: 10, Feb

ServiceID: 1

Client

App.2

SAG

2

SAG

1

Client

App.1

Client

App.3

Client

App.1

ServiceProfile2

Start: 02, Feb

End: 10, Feb

ServiceID: 2

ServiceProfile3

Start: 08, Feb

End: 30, Feb

ServiceID: 1

_1099216945.doc

Client

App 1

Client

App 2

Client

App 5

Client

App 4

Client

App 3

Enterprise Operator 2

Enterprise Operator 3

Enterprise Operator 1

Framework

Client

App 6

Client

App 7

_1098709019.doc

ca1, ca2, ca3

SAG1

 ca4,

ca5, ca6,

ca7, ca8,

ca9

SAG2

ca10, ca11, ca12,

ca12, ca13,

SAG3

Client Applications and SAGs in the Enterprise Domain

SC1

SC2

SC3

SC4

Service Contracts for Individual Services

Subscribed by Enterprise Operator

SP1

SP2

SP3

SP5

SP4

Service Profiles in a Service Contract

Assignment of ClientApps/ SAGs to Service Profiles

_1051101660.doc
[image: image1.png][image: image2.png][image: image3.png]

Enterprise Operator (In the role of Service Subscriber)

Framework (In the role of Service Retailer)

Client Application (In the role of User or Consumer of Services)

Signs contract about service usage

Uses service

Authorises

