Page 1



Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5)

C5-070138
Meeting #38, 7 - 9 Feb 2007, Vancouver, CANADA 
	CR-Form-v9.1

	CHANGE REQUEST

	

	(

	29.199-04
	CR
	CRNum
	(

rev
	-
	(

Current version:
	7.0.0
	(


	

	For HELP on using this form look at the pop-up text over the (
 symbols. Comprehensive instructions on how to use this form can be found at http://www.3gpp.org/specs/CR.htm.

	


	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X


	

	Title:
(

	Add missing support for stateless delivery status reports

	
	

	Source to WG:
(

	Cingular, Alcatel-Lucent, Orange

	Source to TSG:
(

	

	
	

	Work item code:
(

	OSA3
	
	Date: (

	31/01/2007

	
	
	
	
	

	Category:
(

	B
	
	Release: (

	Rel-7 

	
	Use one of the following categories:
F  (correction)
A  (corresponds to a correction in an earlier release)
B  (addition of feature), 
C  (functional modification of feature)
D  (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	Add missing support for asynchronous notification of delivery status reports

	
	

	Summary of change:
(

	A new parameter is added to support the sending of  short messages (for SMS, logo, and ringtone) with additional descriptions.
Additional errors is added to handle compatibility.

A new manager interface is added to enable the reception of delivery receipts.

A new application side interface is added for the delivery of the receipts.

	
	

	Consequences if 
(

not approved:
	There are two main reasons why this enhancement is necessary for Parlay X SMS/Multimedia Message. The first reason is that there are a large amount of messages that is sent without any interest in the applications if they are delivered or not. Typically examples are commercial SMS/MMS. These will require the PX Gwy to store and maintain the state of the message to enable polling of the status which will result in a more costly solution for the operator (i.e. extra database transactions) while in the proposed solution, using this new option without any call back will enable these large amount of messages to be sent with less amount of transactions i.e. cost for the operator.

The second reason is the approved change to the Parlay MMM API to enable to send messages “with Notify”. The proposed change to Parlay X will enable Parlay X Gwys to utilize this new feature fully, i.e. enable applications on Parlay X level to use the with Notify functionality.




	
	

	Clauses affected:
(

	8.1.1, 8.1.2, 8.1.3, 8.5, 8.6, 9.1.5, 9.1.6

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	


	1st Modified Section


4
Detailed service description

Currently, in order to programmatically receive and send SMS it is necessary to write applications using specific protocols to access SMS functions provided by network elements (e.g. SMS-C). This approach requires a high degree of network expertise. Alternatively it is possible to use the Parlay/OSA approach, invoking standard interfaces (e.g. User Interaction or Messaging Service Interfaces) to gain access to SMS capabilities, but these interfaces are usually perceived to be quite complex by IT application developers. Developers must have advanced telecommunication skills to use OSA interfaces.

In this clause is described a Parlay X Web Service, for sending and receiving SMS messages. The overall scope of this Web Service is to provide to application developers primitives to handle SMS in a simple way. In fact, using the SMS Web Service, application developers can invoke SMS functions without specific Telco knowledge.

ShortMessaging provides operations (see clause 8.1, Send SMS API) for sending a SMS message to the network and a polling mechanism for monitoring the delivery status of a sent SMS message. It also provides an asynchronous notification mechanism for delivery status (see clause 8.2, SmsNotification API).

ShortMessaging also allows an application to receive SMS messages. Both a polling (see clause 8.3, ReceiveSMS API) and an asynchronous notification mechanism (see clause 8.2, SMSNotification API and clause 8.4, SmsNotificationManager API) are available.

Figure 1 shows a scenario using the SMS Web Service to send an SMS message from an application. The application invokes a Web Service to retrieve a weather forecast for a subscriber (1) and (2) and a Parlay X Interface (3) to use the SMS Web Service operations (i.e. to send an SMS). After invocation, the SMS Web Service invokes a Parlay API method (4) using the Parlay/OSA SCS (Generic User Interaction) interface. This SCS handles the invocation and sends an UCP operation (5) to an SMS-C. Subsequently the weather forecast is delivered (6) to the subscriber.

In an alternative scenario, the Parlay API interaction involving steps (4) and (5) could be replaced with a direct interaction between the SMS Web Service and the Mobile network.
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Figure 1: Send SMS Scenario

Figure 2 shows a scenario using the SMS Web Service to deliver a received SMS message to an application. The application receives a Parlay X Web Service invocation for an SMS sent by a subscriber (1) and (2). The SMS message contains the e-mail address of the person the user wishes to call. The application invokes a Parlay X Interface (3) to the Third Party Call Web Service in order to initiate the call (4).
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Figure 2: Receive SMS Scenario

Additionaly an enhancement has been introduced to the PX to eliminate the storing of state of the message in the Parlay X server for two reasons. 
The first reason is that there are a large amount of messages that is sent without any interest in the applications if they are delivered or not. Typically examples are commercial SMS/MMS. These will require the PX Gwy to store and maintain the state of the message to enable polling of the status which will result in a more costly solution for the operator (i.e. extra database transactions) while in the proposed solution, using this new option without any call back will enable these large amount of messages to be sent with less amount of transactions i.e. cost for the operator.

The second reason is the approved change to the Parlay MMM API to enable to send messages “with Notify”. The proposed change to Parlay X will enable Parlay X Gwys to utilize this new feature fully, i.e. enable applications on Parlay X level to use the with Notify functionality.
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8
Web Service interface definition

8.1 Interface: SendSms

This interface defines operations to send various types of Short Messages and to subsequently poll for delivery status.  The Short Message types are:

· SMS message, as described in 8.1.1
· SMS logo, as described in Error! Reference source not found.
· SMS ringtone, as described in Error! Reference source not found..

The send operations for the Short Message types are similar.  A description of the common message parts follows:

· addresses specifies the destination address or address set for the Short Message. It may include group URIs as defined in the Address List Management specification. If groups are not supported, a PolicyException (POL0006) will be returned to the application.

· senderName is optional and specifies the sender’s name: i.e. the string that is displayed on the user's terminal as the originator of the message

· charging specifies the charging information

· receiptRequest is optional and is specified when the application requires to receive notification of the status of the SMS delivery.  It is a SimpleReference structure that indicates the application endpoint, interface used for notification of delivery receipt and a correlator that uniquely identifies the sending request.  

· If the notification mechanism is not supported by a network, a ServiceException (SVC0283) will be returned to the application and the message will not be sent to the addresses specified.  

· The correlator provided in the receiptRequest must be unique for this Web Service and application at the time the notification is initiated, otherwise a ServiceException (SVC0005) will be returned to the application.

· Notification to the application is done by invoking the notifySmsDeliveryReceipt operation at the endpoint specified in receiptRequest.

· requestIdentifier is specified in the response message associated with each send operation.  The application can use it to invoke the getSmsDeliveryStatus operation to poll for the delivery status.
8.1.1 Operation: SendSms
The application invokes the sendSms operation to send an SMS message, specified by the String message. For GSM systems, if message contains characters not in the GSM 7-bit character set, the SMS is sent as a Unicode SMS.

If message is longer than the maximum supported length (e.g. for GSM, 160 GSM 7-bit characters or 70 Unicode characters), the message content will be sent as several concatenated short messages.
Using the asyncNotify mode will require that the Network, e.g. the SMSC will be able to assign a unique MessageId per senderName, enabling the Application receiving delivery receipts to correlate the sent SMS with the receipt. If the Applications using this mode don’t require any delivery receipt this is not an issue.

8.1.1.1
Input message: SendSmsRequest  
	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Addresses to which the SMS will be sent

	SenderName
	xsd:string
	Yes
	If present, it indicates the SMS sender name, i.e. the string that is displayed on the user's terminal as the originator of the message

	Charging
	common:ChargingInformation
	Yes
	Charge to apply to this message

	Message
	xsd:string
	No
	Text to be sent in SMS

	ReceiptRequest
	common:SimpleReference
	Yes
	It defines the application endpoint, interfaceName and correlator that will be used to notify the application when the message has been delivered to terminal or if delivery is impossible. 

	asyncNotify 
	xsd:boolean
	No
	The asyncNotify parameter enables an application to send messages without storing any state of the message in the Parlay X server.. Notifications of delivery can be received based on the Delivery Notification subscription mechanism described below.  If no call back is defined the message delivery or failure to be delivered will not be accessible by the application. 


8.1.1.2
Output message : SendSmsResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It identifies a specific SMS delivery request.  In case the asyncNotify mode is used this parameter will contain the network message ID that can be used by the application to correlate messages with delivery notifications. 


8.1.1.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

· SVC0280 - Message too long.

· SVC0283 – Delivery Receipt Notification not supported
· SVC0284 – Statefull operation not supported

· SVC0285 – asyncNotify operation not supported
PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.

· POL0008 - Charging not allowed.

8.1.2 Operation: SendSmsLogo

The application invokes the sendSmsLogo operation to send an SMS logo, specified by the byte array image.
Using the asyncNotify mode will require that the Network, e.g. the SMSC will be able to assign a unique MessageId per senderName, enabling the Application receiving delivery receipts to correlate the sent SMS with the receipt. If the Applications using this mode don’t require any delivery receipt this is not an issue.
8.1.2.1
Input message: SendSmsLogoRequest

	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Addresses to which the SMS logo will be sent

	SenderName
	xsd:string
	Yes
	SMS sender name, i.e. the string that is displayed on the user's terminal as the originator of the message

	Charging
	common:ChargingInformation
	Yes
	Charge to apply to this message

	Image
	xsd:base64Binary
	No
	The image in jpeg, gif or png format. The image will be scaled to the proper format

	SmsFormat
	SmsFormat
	No
	Conversion to be applied to the message prior to delivery.  Possible values are: 'Ems' or 'SmartMessaging'

	ReceiptRequest
	common:SimpleReference
	Yes
	It defines the application endpoint, interfaceName and correlator that will be used to notify the application when the message has been delivered to terminal or if delivery is impossible

	asyncNotify
	xsd:boolean
	No
	The asyncNotify parameter enables an application to send messages without storing any state of the message in the Parlay X server. Notifications of delivery can be received based on the Delivery Notification subscription mechanism described below.   If no call back is defined the message delivery or failure to be delivered will not be accessible by the application. 


8.1.2.2
Output message: SendSmsLogoResponse

	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It identifies a specific SMS delivery request.  In case the asyncNotify mode is used this parameter will contain the network message ID that can be used by the application to correlate messages with delivery notifications.


8.1.2.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

· SVC0281 - Unrecognized data format.

· SVC0283 – Delivery Receipt Notification not supported
· SVC0284 – Statefull operation not supported

· SVC0285 – asyncNotify operation not supported
PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.

· POL0008 - Charging not allowed.

8.1.3 Operation: SendSmsRingtone

The application invokes the sendSmsRingtone operation to send an SMS ringtone, specified by the String ringtone (in RTX format). 

Depending on the length of the ringtone, it may be sent as several concatenated short messages.

NOTE:
In the RTX Ringtone Specification,an RTX file is a text file, containing the ringtone name, a control subclause and a subclause containing a comma separated sequence of ring tone commands.

Using the asyncNotify mode will require that the Network, e.g. the SMSC will be able to assign a unique MessageId per senderName, enabling the Application receiving delivery receipts to correlate the sent SMS with the receipt. If the Applications using this mode don’t require any delivery receipt this is not an issue.

8.1.3.1
Input message: SendSmsRingtoneRequest

	Part name
	Part type
	Optional
	Description

	Addresses
	xsd:anyURI [1..unbounded]
	No
	Addresses to which the SMS ringtone will be sent

	SenderName
	xsd:string
	Yes
	SMS sender name, i.e. the string that is displayed on the user's terminal as the originator of the message

	Charging
	common:ChargingInformation
	Yes
	Charge to apply to this message

	Ringtone
	xsd:string
	No
	The ringtone in RTX format (see note above). (http://www.logomanager.co.uk/help/Edit/RTX.html)

	SmsFormat
	SmsFormat
	No
	Conversion to be applied to the message prior to delivery.  Possible values are: 'Ems' or 'SmartMessaging'

	ReceiptRequest
	common:SimpleReference
	Yes
	It defines the application endpoint, interfaceName and correlator that will be used to notify the application when the message has been delivered to terminal or if delivery is impossible

	asyncNotify
	xsd:boolean
	No
	The asyncNotify parameter enables an application to send messages without storing any state of the message in the Parlay X server. Notifications of delivery can be received based on the Delivery Notification subscription mechanism described below. If no call back is defined the message delivery or failure to be delivered will not be accessible by the application. 


8.1.3.2
Output message: SendSmsRingtoneResponse 
	Part name
	Part type
	Optional
	Description

	result
	xsd:string
	No
	It identifies a specific SMS delivery request.  In case the asyncNotify mode is used this parameter will contain the network message ID that can be used by the application to correlate messages with delivery notifications.


8.1.3.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.

· SVC0002 - Invalid input value.

· SVC0004 - No valid addresses.

· SVC0006 - Invalid group.

· SVC0281 - Unrecognized data format.

· SVC0283 – Delivery Receipt Notification not supported
· SVC0284 – Statefull operation not supported

· SVC0285 – asyncNotify operation not supported
PolicyException from [6]:

· POL0001 - Policy error.

· POL0006 - Groups not allowed.

· POL0007 - Nested groups not allowed.

POL0008 - Charging not allowed.
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8.5
Interface SmsDeliveryReceiptManager

The short message delivery receipt manager enables applications to receive delivery receipts for messages that were sent using asyncNotify mode, i.e. setting the asyncNotify parameter to true.
8.5.1
Operation: startSmsDeliveryReceipt

The application invokes the startSmsDeliveryReceipt operation to notify the ParlayX server that application is ready to receive delivery receipts according for the specified smsServiceActivationNumber, but also the URL of the application that is expecting the delivery receipt.
8.5.1.1
Input message: startSmsDeliveryReceiptRequest 
	Part name
	Part type
	Optional
	Description

	Reference
	common:SimpleReference
	No
	Notification endpoint definition

	smsServiceActivationNumber 
	xsd:string
	No
	A unique sender address for an application


8.5.1.2
Output message: startSmsDeliveryReceiptResponse Add an optional column
	Part name
	Part type
	Optional
	Description

	None
	
	
	


8.5.1.3
Referenced faults

ServiceException from [6]

· SVC0001 – Service error

· SVC0002 – Invalid input value

· SVC0005 – Duplicate correlator

· SVC0008 – Overlapping Criteria
· SVC0285 – asyncNotify operation not supported
PolicyException from [6
· POL0001 – Policy error
8.5.2

Operation: stopSmsDeliveryReceipt

The application invokes the stopSmsDeliveryReceipt operation to notify the ParlayX gateway that the application is not ready for receiving the delivery receipt.

8.5.2.1 Input message: stopSmsDeliveryReceiptRequest

	Part name
	Part type
	Optional
	Description

	Correlator
	xsd:string
	No
	Correlator of request to end 


8.5.2.2
Output message: stopSmsDeliveryReceiptResponse 
	Part name
	Part type
	Optional
	Description

	None
	
	
	


8.5.2.3
Referenced faults

ServiceException from [6]

· SVC0001 – Service error

· SVC0002 – Invalid input value

PolicyException from [6]

· POL0001 – Policy error
8.6

Interface reportSmsDeliveryReceipt
This Web Service at the application side allows the Parlay X server to send short message delivery receipts using the notification functionality.
8.6.1
Operation: reportSmsDeliveryReceipt

The reportSmsDeliveryReceipt operation must be implemented by a Web Service at the application side if it requires notification of SMS delivery receipts. The operation will be invoked by the Parlay X server to notify the application when a SMS sent by an application has been delivered or not.

For the Delivery Report, a Web Service on the Enterprise has to implement this operation.
8.6.1.1 Input message: reportSmsDeliveryReceiptRequest add an optional column
	Part name
	Part type
	Optional
	Description

	deliveryInfo
	xsd:DeliveryInfo [1..unbounded]
	No
	A struct that contains the Status that maps to the destinationAddress. A Parlay X gwy can store a set of delivery informations for an application sending a set of these in one call.

The MessageID are always filled in this mode to enable the application to correlate between the sent SMS and the delivery information.


8.6.1.2
Output message: reportSmsDeliveryResponse add an optional column
	Part name
	Part type
	Optional
	Description

	None
	
	
	


8.6.1.3
Referenced faults

ServiceException from [6]:

· SVC0001 - Service error.
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9.1.5
SVC0284: Statefull operation not supported

	Name
	Description

	Message Id
	SVC0284

	Text
	Statefull operation not supported

	Variables
	


9.1.6
SVC0285: AsyncNotify operation not supported

	Name
	Description

	Message Id
	SVC0285

	Text
	Asyncnotify operation not supported

	Variables
	


	End of modifications
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