Page 1

Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5) (
C5-06wxyz
Meeting #35, Prague, Czech Republic, 24 - 27 Apr 2006
	CR-Form-v8

	CHANGE REQUEST

	

	(

	29.198-04-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.5.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Remove deprecated item: getNotification() method

	
	

	Source:
(

	ETSI PTCC

	
	

	Work item code:
(

	OSA7
	
	Date: (

	15/04/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	CT5 have introduced rules for management of backwards compatibility in their specifications. These are described in TS 29.198-01. At each major release, deprecated items in the most recent version of the n-2 release are removed. This CR implements this rule for TS 29.198-04-03 for release 7.

	
	

	Summary of change:
(

	Remove the deprecated method getNotifications(), and any reference to it.

	
	

	Consequences if
(

not approved:
	The backwards compatibilty rules will not be implemented consistantly, thereby confusing users of this specification.

Deprecated methods and other items, already demonstrated to be broken and already replaced, will remain in the specification, encouraging users of the specification to use these methods, which is contrary to the intention of deprecating them.

	
	

	Clauses affected:
(

	5, 6.1, 6.1.5, 6.1.7, 7.1.3, 8.2

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	29.198-08

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

	1st Modified Section

5 Class Diagrams

The multiparty call control service consists of two packages, one for the interfaces on the application side and one for interfaces on the service side.
The class diagrams in the following figures show the interfaces that make up the multi party call control application package and the multi party call control service package. This class diagram shows the interfaces of the multi-party call control application package and their relations to the interfaces of the multi-party call control service package.

[image: image1]

Figure: Application Interfaces
This class diagram shows the interfaces of the multi-party call control service package.

[image: image2]

Figure: Service Interfaces
	Next Modified Section

6 MultiParty Call Control Service Interface Classes

The Multi-party Call Control service enhances the functionality of the Generic Call Control Service with leg management. It also allows for multi-party calls to be established, i.e. up to a service specific number of legs can be connected simultaneously to the same call.
The Multi-party Call Control Service is represented by the IpMultiPartyCallControlManager, IpMultiPartyCall, IpCallLeg interfaces that interface to services provided by the network. Some methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. In this way, the client machine can handle many more calls, than one that uses synchronous message calls. To handle responses and reports, the developer must implement IpAppMultiPartyCallControlManager, IpAppMultiPartyCall and IpAppCallLeg to provide the callback mechanism.

6.1 Interface Class IpMultiPartyCallControlManager

Inherits from: IpService
This interface is the 'service manager' interface for the Multi-party Call Control Service. The multi-party call control manager interface provides the management functions to the multi-party call control service. The application programmer can use this interface to provide overload control functionality, create call objects and to enable or disable call-related event notifications. The action table associated with the STD shows in what state the IpMultiPartyCallControlManager must be if a method can successfully complete. In other words, if the IpMultiPartyCallControlManager is in another state the method will throw an exception immediately.

This interface shall be implemented by a Multi Party Call Control SCF. As a minimum requirement either the createCall() method shall be implemented, or the createNotification() and destroyNotification() methods shall be implemented, or the enableNotifications() and disableNotifications() methods shall be implemented.
	<<Interface>>

IpMultiPartyCallControlManager

	

	createCall (appCall : in IpAppMultiPartyCallRef) : TpMultiPartyCallIdentifier

createNotification (appCallControlManager : in IpAppMultiPartyCallControlManagerRef, notificationRequest : in TpCallNotificationRequest) : TpAssignmentID

destroyNotification (assignmentID : in TpAssignmentID) : void

changeNotification (assignmentID : in TpAssignmentID, notificationRequest : in TpCallNotificationRequest) : void

setCallLoadControl (duration : in TpDuration, mechanism : in TpCallLoadControlMechanism, treatment : in TpCallTreatment, addressRange : in TpAddressRange) : TpAssignmentID

enableNotifications (appCallControlManager : in IpAppMultiPartyCallControlManagerRef) : TpAssignmentID

disableNotifications () : void

getNextNotification (reset : in TpBoolean) : TpNotificationRequestedSetEntry

6.1.1 Method createCall()

This method is used to create a new call object. An IpAppMultiPartyCallControlManager should already have been passed to the IpMultiPartyCallControlManager, otherwise the call control will not be able to report a callAborted() to the application. The application shall invoke setCallback() prior to createCall() if it wishes to ensure this.

Returns callReference: Specifies the interface reference and sessionID of the call created.

Parameters

appCall : in IpAppMultiPartyCallRef

Specifies the application interface for callbacks from the call created.
Returns

TpMultiPartyCallIdentifier

Raises

TpCommonExceptions, P_INVALID_INTERFACE_TYPE
6.1.2 Method createNotification()

This method is used to enable call notifications so that events can be sent to the application. This is the first step an application has to do to get initial notifications of calls happening in the network. When such an event happens, the application will be informed by reportNotification(). In case the application is interested in other events during the context of a particular call session it has to use the createAndRouteCallLegReq() method on the call object or the eventReportReq() method on the call leg object. The application will get access to the call object when it receives the reportNotification(). (Note that createNotification() is not applicable if the call is setup by the application).

The createNotification method is purely intended for applications to indicate their interest to be notified when certain call events take place. It is possible to subscribe to a certain event for a whole range of addresses, e.g. the application can indicate it wishes to be informed when a call is made to any number starting with 800.

If some application already requested notifications with criteria that overlap the specified criteria or the specified criteria overlap with criteria already present in the network (when provisioned from within the network), the request is refused with P_INVALID_CRITERIA. The criteria are said to overlap when it leads to more than one application controlling the call or session at the same point in time during call or session processing.

If a notification is requested by an application with monitor mode set to notify, then there is no need to check the rest of the criteria for overlapping with any existing request as the notify mode does not allow control on a call to be passed over. Only one application can place an interrupt request if the criteria overlaps.

If a notification is requested by an application with an event type that is mutually exclusive compared to existing requested event types, then there is no need to check against the rest of the criteria for overlap. An example could be one application that trigger on "user busy" together with another application that trigger on "answer" - both requests should be allowed as only one can occur on the same call or session.

The overlap criteria have been defined to prevent multiple points of control, leading to possible interaction problems in networks that have no multi service support. Notice that dynamic aspects cannot be taken into account in the overlap criteria check. Therefore where dynamic event arming from an application causes a persistent control relationship it can prevent other applications to be invoked in the case single point of application control applies in the network.

However, the criteria check for overlap may as a network option be overruled by Multi Service networks allowing more services or applications to gain control of the same call or session at the same point in time. Refer to Call Control Common Definitions subpart of this specification for further details on application control over a call or session.

Setting the callback reference:

The callback reference can be registered either in a) createNotication() or b) explicitly with a setCallBack() method e.g. depending on how the application provides its callback reference.

Case a:

From an efficiency point of view the createNotification() with explicit registration may be the preferred method.

Case b:

The createNotification() with no callback reference ("Null" value) is used where (e.g. due to distributed application logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised.

In case the createNotification() contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Setting additional callback:

If the same application invokes this method multiple times with exactly the same criteria but with different callback references, then these shall be treated as additional callback references. Each such notification request shall share the same assignmentID. The gateway shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

Returns assignmentID: Specifies the ID assigned by the call control manager interface for this newly-enabled event notification.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified previously via the setCallback() method.
notificationRequest : in TpCallNotificationRequest

Specifies the event specific criteria used by the application to define the event required. Only events that meet these criteria are reported. Examples of events are "incoming call attempt reported by network", "answer", "no answer", "busy". Individual addresses or address ranges may be specified for destination and/or origination.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_CRITERIA, P_INVALID_INTERFACE_TYPE, P_INVALID_EVENT_TYPE
6.1.3 Method destroyNotification()

This method is used by the application to disable call notifications. This method only applies to notifications created with createNotification().

Parameters

assignmentID : in TpAssignmentID

Specifies the assignment ID given by the multi party call control manager interface when the previous createNotification() was called. If the assignment ID does not correspond to one of the valid assignment IDs, the exception P_INVALID_ASSIGNMENTID will be raised. If two callbacks have been registered under this assignment ID both of them will be disabled.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID
6.1.4 Method changeNotification()

This method is used by the application to change the event criteria introduced with createNotification. Any stored criteria associated with the specified assignmentID will be replaced with the specified criteria.

Parameters

assignmentID : in TpAssignmentID

Specifies the ID assigned by the multi party call control manager interface for the event notification. If two callbacks have been registered under this assignment ID both of them will be changed.
notificationRequest : in TpCallNotificationRequest

Specifies the new set of event specific criteria used by the application to define the event required. Only events that meet these criteria are reported.
Raises

TpCommonExceptions, P_INVALID_ASSIGNMENT_ID, P_INVALID_CRITERIA, P_INVALID_EVENT_TYPE
6.1.5

6.1.6 Method setCallLoadControl()

This method imposes or removes load control on calls made to a particular address range within the call control service. The address matching mechanism is similar as defined for TpCallEventCriteria.

Returns assignmentID: Specifies the assignmentID assigned by the gateway to this request. This assignmentID can be used to correlate the callOverloadEncountered and callOverloadCeased methods with the request.

Parameters

duration : in TpDuration

Specifies the duration for which the load control should be set.
A duration of 0 indicates that the load control should be removed.
A duration of -1 indicates an infinite duration (i.e. until disabled by the application).
A duration of -2 indicates the network default duration.
mechanism : in TpCallLoadControlMechanism

Specifies the load control mechanism to use (for example, admit one call per interval), and any necessary parameters, such as the call admission rate. The contents of this parameter are ignored if the load control duration is set to zero.
treatment : in TpCallTreatment

Specifies the treatment of calls that are not admitted. The contents of this parameter are ignored if the load control duration is set to zero.
addressRange : in TpAddressRange

Specifies the address or address range to which the overload control should be applied or removed.
Returns

TpAssignmentID

Raises

TpCommonExceptions, P_INVALID_ADDRESS, P_UNSUPPORTED_ADDRESS_PLAN
6.1.7 Method enableNotifications()

This method is used to indicate that the application is able to receive notifications which are provisioned from within the network (i.e. these notifications are NOT set using createNotification() but via, for instance, a network management system). If notifications provisioned for this application are created or changed, the application is unaware of this until the notification is reported.

Setting the callback reference:

The callback reference can be registered either in a) enableNotications() or b) explicitly with a setCallback() method e.g. depending on how the application provides its callback reference.

Case a:

For an efficiency point of view the createNotification() with explicit registration may be the preferred method.

Case b:

The enableNotifications() with no callback reference ("Null" value) is used where (e.g. due to distributed application logic) the callback reference is provided previously in a setCallback(). If no callback reference has been provided previously to the service, the exception, P_NO_CALLBACK_ADDRESS_SET shall be raised.

In case the enableNotification() contains no callback, at the moment the application needs to be informed the gateway will use as callback the callback that has been registered by setCallback().

Setting additional Call back:

If the same application invokes this method multiple times with different IpAppMultiPartyCallControlManager references, then these shall be treated as additional callback references. Each such notification request shall share the same assignmentID. The gateway shall use the most recent callback interface provided by the application using this method. In the event that a callback reference fails or is no longer available, the next most recent callback reference available shall be used.

When this method is used, it is still possible to use createNotification() for service provider provisioned notifications on the same interface as long as the criteria in the network and provided by createNotification() do not overlap. However, it is NOT recommended to use both mechanisms on the same service manager.

The methods changeNotification(), getNextNotification(), and destroyNotification() do not apply to notifications provisioned in the network and enabled using enableNotifications(). These only apply to notifications created using createNotification().

Returns assignmentID: Specifies the ID assigned by the manager interface for this operation. This ID is contained in any reportNotification() that relates to notifications provisioned from within the networkRepeated calls to enableNotifications() return the same assignment ID.

Parameters

appCallControlManager : in IpAppMultiPartyCallControlManagerRef

If this parameter is set (i.e. not NULL) it specifies a reference to the application interface, which is used for callbacks. If set to NULL, the application interface defaults to the interface specified previously via the setCallback() method.
Returns

TpAssignmentID

Raises

TpCommonExceptions
6.1.8 Method disableNotifications()

This method is used to indicate that the application is not able to receive notifications for which the provisioning has been done from within the network. (i.e. these notifications that are NOT set using createNotification() but via, for instance, a network management system). After this method is called, no such notifications are reported anymore.

Parameters

No Parameters were identified for this method

Raises

TpCommonExceptions
6.1.9 Method getNextNotification()

This method is used by the application to query the event criteria set with createNotification or changeNotification. Since a lot of data can potentially be returned (which might cause problem in the middleware), this method must be used in an iterative way. Each method invocation may return part of the total set of notifications if the set is too large to return it at once. The reset parameter permits the application to indicate whether an invocation to getNextNotification is requesting more notifications from the total set of notifications or is requesting that the total set of notifications shall be returned from the beginning.

Returns notificationRequestedSetEntry: The set of notifications and an indication whether all off the notifications have been obtained or if more notifications are available that have not yet been obtained by the application. If no notifications exist, an empty set is returned and the final indication shall be set to TRUE.

Note that the (maximum) number of items provided to the application is determined by the gateway.

Parameters

reset : in TpBoolean

TRUE: indicates that the application is intended to obtain the set of notifications starting at the beginning.
FALSE: indicates that the application requests the next set of notifications that have not (yet) been obtained since the last call to this method with this parameter set to TRUE.
The first time this method is invoked, reset shall be set to TRUE. Following the receipt of a final indication in TpNotificationRequestedSetEntry, for the next call to this method reset shall be set to TRUE. P_TASK_REFUSED may be thrown if these conditions are not met.
Returns

TpNotificationRequestedSetEntry

Raises

TpCommonExceptions
	Next Modified Section

7 MultiParty Call Control Service State Transition Diagrams

7.1 State Transition Diagrams for IpMultiPartyCallControlManager

[image: image3.wmf]Active

Interrupted

'new'

 ^managerResumed

IpAccess.terminateServiceAgreement

 ^managerInterrupted

IpAccess.terminateServiceAgreement

Figure : Application view and the Multi-Party Call Control Manager

7.1.1 Active State

In this state a relation between the Application and the Service has been established. The state allows the application to indicate that it is interested in call related events. In case such an event occurs, the Manager will create a Call object with the appropriate number of Call Leg objects and inform the application. The application can also indicate it is no longer interested in certain call related events by calling destroyNotification().
7.1.2 Interrupted State

When the Manager is in the Interrupted state it is temporarily unavailable for use. Events requested cannot be forwarded to the application and methods in the API cannot successfully be executed. A number of reasons can cause this: for instance the application receives more notifications from the network than defined in the Service Agreement. Another example is that the Service has detected it receives no notifications from the network due to e.g. a link failure.
7.1.3 Overview of allowed methods

	Call Control Manager State
	Methods applicable

	Active
	createCall,

createNotification,

destroyNotification,

changeNotification,

getNextNotification,

setCallLoadControl,

enableNotifications,

disableNotifications

	Interrupted
	
getNextNotification,

enableNotifications,

disableNotifications

	Next Modified Section

8.2 Service Property values for the CAMEL Service Environment.

Implementations of the MultiParty Call Control API relying on the CSE of CAMEL phase 4 shall have the Service Properties outlined above set to the indicated values :
P_OPERATION_SET = {
“IpMultiPartyCallControlManager.createCall”,
“IpMultiPartyCallControlManager.createNotification”,
“IpMultiPartyCallControlManager.destroyNotification”,
“IpMultiPartyCallControlManager.changeNotification”,

“IpMultiPartyCallControlManager.getNextNotification”,
“IpMultiPartyCallControlManager.enableNotifications”,
“IpMultiPartyCallControlManager.disableNotifications”,
“IpMultiPartyCallControlManager.setCallLoadControl”
“IpMultiPartyCall.getCallLegs”,
“IpMultiPartyCall.createCallLeg”,
“IpMultiPartyCall.createAndRouteCallLegReq”,
“IpMultiPartyCall.release”,
“IpMultiPartyCall.deassignCall”,
“IpMultiPartyCall.getInfoReq”,
“IpMultiPartyCall.setChargePlan”,
“IpMultiPartyCall.setAdviceOfCharge”,
“IpMultiPartyCall.superviseReq”,
“IpCallLeg.routeReq”,
“IpCallLeg.eventReportReq”,
“IpCallLeg.release”,
“IpCallLeg.getInfoReq”,
“IpCallLeg.getCall”,
“IpCallLeg.continueProcessing”
}

P_TRIGGERING_EVENT_TYPES = {
P_CALL_EVENT_ADDRESS_COLLECTED,
P_CALL_EVENT_ADDRESS_ANALYSED,

P_CALL_EVENT_ORIGINATING_RELEASE,

P_CALL_EVENT_TERMINATING_CALL_ATTEMPT_AUTHORISED,

P_CALL_EVENT_TERMINATING_RELEASE

}

NOTE:
P_CALL_EVENT_ORIGINATING_RELEASE only for the routing failure case, TpReleaseCause = P_ROUTING_FAILURE.
P_DYNAMIC_EVENT_TYPES = {
P_CALL_EVENT_ALERTING,
P_CALL_EVENT_ANSWER,

P_CALL_EVENT_ORIGINATING_RELEASE,

P_CALL_EVENT_ORIGINATING_SERVICE_CODE,
P_CALL_EVENT_TERMINATING_RELEASE,

P_CALL_EVENT_TERMINATING_SERVICE_CODE
}

P_ADDRESS_PLAN = {
P_ADDRESS_PLAN_E164

}

P_UI_CALL_BASED = {
TRUE

}

P_UI_AT_ALL_STAGES = {
FALSE

}

P_MEDIA_TYPE = {
P_AUDIO

}

P_MAX_CALLLEGS_PER_CALL = {
1,

2,

3,

4,

5,

6

}

P_UI_CALLLEG_BASED = {
TRUE
}

P_MEDIA_ATTACH_EXPLICIT = {
FALSE

}
	End of modifications

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	-
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	1.0.0

	June 2001
	CN_12
	NP-010327
	--
	--
	Approved at TSG CN#12 and placed under Change Control
	2.0.0
	4.0.0

	Sep 2001
	CN_13
	NP-010467
	001
	--
	Changing references to JAIN
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	002
	--
	Correction of text descriptions for methods enableCallNotification and createNotification
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	003
	--
	Specify the behaviour when a call leg times out
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	004
	--
	Removal of Faulty state in MPCCS Call State Transition Diagram and method callFaultDetected in MPCCS in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	005
	--
	Missing TpCallAppInfoSet description in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	006
	--
	Redirecting a call leg vs. creating a call leg clarification in OSA R4
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	007
	--
	Introduction of MPCC Originating and Terminating Call Leg STDs for IpCallLeg
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	008
	--
	Corrections to SetChargePlan() Addition of PartyToCharge parmeter
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	009
	--
	Corrections to SetChargePlan()
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	010
	--
	Remove distinction between final- and intermediate-report
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	011
	--
	Inclusion of TpMediaType
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	012
	--
	Corrections to GCC STD
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	013
	--
	Introduction of sequence diagrams for MPCC services
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	014
	--
	The use of the REDIRECT event needs to be illustrated
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	015
	--
	Corrections to SetCallChargePlan()
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	016
	--
	Add one additional error indication
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	017
	--
	Corrections to Call Control – GCCS Exception handling
	4.0.0
	4.1.0

	Sep 2001
	CN_13
	NP-010467
	018
	--
	Corrections to Call Control – Errors in Exceptions
	4.0.0
	4.1.0

	Dec 2001
	CN_14
	NP-010597
	019
	--
	Replace Out Parameters with Return Types
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	020
	--
	Removal of time based charging property
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	021
	--
	Make attachMedia() and detachMedia() asynchronous
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	022
	--
	Correction of treatment datatype in superviseReq on call leg
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	023
	--
	Corrections to Call Control Data Types
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	024
	--
	Correction to Call Control (CC)
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	025
	--
	Amend the Generic Call Control introductory part
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	026
	--
	Correction in TpCallEventType
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	027
	--
	Addition of missing description of RouteErr()
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	028
	--
	Misleading description of createAndRouteCallLegErr()
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010597
	029
	--
	Correction to values of TpCallNotificationType, TpCallLoadControlMechanismType
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010695
	030
	--
	Correction of method getLastRedirectionAddress
	4.1.0
	4.2.0

	Mar 2002
	CN_15
	NP-020106
	031
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	032
	--
	Correction of Event Subscription/Notification Data Type
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	033
	--
	Correction of parameter name in IpCallLeg.routeReq() and in IpCallLeg.setAdviceOfCharge()
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020106
	034
	--
	Clarification of ambiguous Event handling rules
	4.2.0
	4.3.0

	Jun 2002
	CN_16
	NP-020180
	035
	--
	Correction to TpCallChargePlan
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020180
	036
	--
	Correction to CAMEL Service Property values
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020181
	037
	-
	Addition of support for Java API technology realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	038
	-
	Addition of support for WSDL realisation
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	039
	-
	Addition of support for Emergency Telecommunications Service
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020183
	040
	-
	Addition of support for Network Controlled Notifications MPCC
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	041
	-
	Changes to getNotification()
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	042
	-
	Addition of P_UNSUPPORTED_MEDIA release cause to TpReleaseCause
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	043
	-
	Addition of CAMEL Phase 4 Service Property values
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	044
	-
	Addition of indication whether SCS supports initially multiple routeReqs in parallel
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	045
	-
	Explicit exception for continueProcessing when not in interrupted mode
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	046
	-
	Indication needed that supervision will be ended when call or callLeg is deassigned
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	047
	-
	Clarify ambiguous Supervision duration
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	048
	-
	Detach/Attach request illegal during pending Attach/Detach request
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	049
	-
	Correction of Multi-Party Call Control properties
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	050
	-
	Correcting the sequence diagram descriptions in GCC and MPCC
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	051
	-
	Correcting erroneous description of UI behaviour in call control
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	052
	-
	Correcting the descriptions of sequence diagrams that don't match the diagram
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	053
	-
	Correcting erroneous references to GCC in MPCC
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	054
	-
	Addition of the Multi-media APIs to Call control SCF (29.198-4)
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020187
	055
	-
	Updating Clause 4 for Release 5
	4.4.0
	5.0.0

	Jun 2002
	CN_16
	NP-020188
	056
	-
	Spliting of 29.198-04 into 4 separate TSs (sub-parts)
	4.4.0
	5.0.0

	Sep 2002
	CN_17
	NP-020431
	001
	
	29.198-04-3 Correction of error in Call Forward on Busy sequence diagram
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020431
	002
	
	Correct inconsistencies in IpCallLeg state transition diagrams
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020431
	003
	
	Clarification of the overlapping criteria definition and eventType mapping to IN TDPs
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020431
	004
	
	Add support for Carrier selection
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020431
	005
	
	Correction on use of NULL in Call Control API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	006
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030031
	007
	--
	Correction of status of MPCC methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030031
	008
	--
	Inconsistent description of use of secondary callback
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030020
	009
	--
	Correction to TpReleaseCauseSet in Multi Party Call Control IDL
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030130
	010
	--
	Correction of definition of the P_MAX_CALLLEGS_PER_CALL
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030238
	011
	--
	Correction of the description for callEventNotify & reportNotification
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030305
	012
	1
	Unclear overlap criteria for rejection of createNotification
	5.3.0
	6.0.0

	Jun 2003
	CN_20
	NP-030247
	013
	--
	Add support for advanced subscriber presentation
	5.3.0
	6.0.0

	Dec 2003
	CN_22
	NP-030550
	017
	--
	Correction of description of TpNotificationRequestedSetEntry
	6.0.0
	6.1.0

	Dec 2003
	CN_22
	NP-030553
	019
	--
	Add OSA API support for 3GPP2 networks
	6.0.0
	6.1.0

	Jun 2004
	CN_24
	NP-040267
	021
	--
	Correction of description in superviseRes - Align with Rel-5
	6.1.0
	6.2.0

	Jun 2004
	CN_24
	NP-040256
	023
	--
	Correct the P_TRIGGERING_ADDRESSES service property
	6.1.0
	6.2.0

	Jun 2004
	CN_24
	NP-040273
	024
	--
	Remove the <> stereotype from methods which are no longer new
	6.1.0
	6.2.0

	Jun 2004
	CN_24
	NP-040257
	026
	--
	Correction of callbacks sequence and timing conditions in MPCCS
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040354
	019
	--
	Correction to Java Realisation Annex
	6.2.0
	6.3.0

	Sep 2004
	CN_25
	NP-040358
	021
	--
	Support High Availability at API Level
	6.2.0
	6.3.0

	Dec 2004
	CN_26
	NP-040485
	035
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.3.0
	6.4.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.4.0
	6.4.1

	Jun 2005
	CT_28
	CP-050155
	0037
	--
	Correct support for Emergency Telecommunications Service
	6.4.1
	6.5.0

	Jun 2005
	--
	--
	--
	--
	Java code attachments not available at TS delivery deadline
	6.4.1
	6.5.0

	Jul 2005
	--
	--
	--
	--
	Added the missing Java code attachments
	6.5.0
	6.5.1

IpAppMultiPartyCallControlManager

reportNotification()

callAborted()

managerInterrupted()

managerResumed()

callOverloadEncountered()

callOverloadCeased()

<<new>> abortMultipleCalls()

(from mpccs)

<<Interface>>

IpAppMultiPartyCall

getInfoRes()

getInfoErr()

superviseRes()

superviseErr()

callEnded()

createAndRouteCallLegErr()

(from mpccs)

<<Interface>>

IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

changeNotification()

<<deprecated>> getNotification()

setCallLoadControl()

enableNotifications()

disableNotifications()

getNextNotification()

(from mpccs)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

createAndRouteCallLegReq()

release()

deassignCall()

getInfoReq()

setChargePlan()

setAdviceOfCharge()

superviseReq()

(from mpccs)

<<Interface>>

IpCallLeg

routeReq()

eventReportReq()

release()

getInfoReq()

getCall()

attachMediaReq()

detachMediaReq()

getCurrentDestinationAddress()

continueProcessing()

setChargePlan()

setAdviceOfCharge()

superviseReq()

deassign()

<<new>> getProperties()

<<new>> setProperties()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

IpAppCallLeg

eventReportRes()

eventReportErr()

attachMediaRes()

attachMediaErr()

detachMediaRes()

detachMediaErr()

getInfoRes()

getInfoErr()

routeErr()

superviseRes()

superviseErr()

callLegEnded()

(from mpccs)

<<Interface>>

1

0..n

<<uses>>

1

0..n

<<uses>>

IpInterface

(from csapi)

<<Interface>>

1

0..n

IpMultiPartyCallControlManager

createCall()

createNotification()

destroyNotification()

changeNotification()

<<deprecated>> getNotification()

setCallLoadControl()

enableNotifications()

disableNotifications()

getNextNotification()

(from mpccs)

<<Interface>>

IpService

setCallback()

setCallbackWithSessionID()

(from csapi)

<<Interface>>

IpMultiPartyCall

getCallLegs()

createCallLeg()

createAndRouteCallLegReq()

release()

deassignCall()

getInfoReq()

setChargePlan()

setAdviceOfCharge()

superviseReq()

(from mpccs)

<<Interface>>

1

0..n

IpCallLeg

routeReq()

eventReportReq()

release()

getInfoReq()

getCall()

attachMediaReq()

detachMediaReq()

getCurrentDestinationAddress()

continueProcessing()

setChargePlan()

setAdviceOfCharge()

superviseReq()

deassign()

<<new>> getProperties()

<<new>> setProperties()

(from mpccs)

<<Interface>>

1

0..n

�PAGE \# "'Page: '#'�'" �� Document number

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

[image: image4.emf][image: image5.emf][image: image6.emf][image: image7.emf][image: image8.emf][image: image9.emf]