Page 1

Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5) (
C5-06wxyz
Meeting #35, Prague, Czech Republic, 24 - 27 Apr 2006
	CR-Form-v8

	CHANGE REQUEST

	

	(

	29.198-03
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.5.0
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Remove deprecated items from Integrity Management: Fault and Load Management

	
	

	Source:
(

	ETSI PTCC

	
	

	Work item code:
(

	OSA7
	
	Date: (

	18/04/2006

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	Rel-7

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)
Rel-7
(Release 7)
Rel-8
(Release 8)

	
	

	Reason for change:
(

	CT5 have introduced rules for management of backwards compatibility in their specifications. These are described in TS 29.198-01. At each major release, deprecated items in the most recent version of the n-2 release are removed. This CR implements this rule for the Integrity Management interfaces in TS 29.198-03 for release 7.

	
	

	Summary of change:
(

	Remove the following deprecated methods and any reference to them:

IpAppFaultManager.svcUnavailableInd()

IpAppFaultManager.genFaultStatsRecordReq()

IpAppFaultManager.genFaultStatsRecordRes()

IpAppFaultManager.genFaultStatsRecordErr()

IpFaultManager.appUnavailableInd()

IpFaultManager.genFaultStatsRecordReq()

IpFaultManager.genFaultStatsRecordRes()

IpFaultManager.genFaultStatsRecordErr()

IpAppLoadManager.queryAppLoadReq()

IpAppLoadManager.queryLoadRes()

IpAppLoadManager.queryLoadErr()

IpLoadManager.queryLoadReq()

IpLoadManager.queryAppLoadRes()

IpLoadManager.queryAppLoadErr()

IpFwFaultManager.svcUnavailableInd()

IpFwFaultManager.genFaultStatsRecordReq()

IpFwFaultManager.genFaultStatsRecordRes()

IpFwFaultManager.genFaultStatsRecordErr()

IpFwFaultManager.generateFaultStatsRecordRes()

IpFwFaultManager.generateFaultStatsRecordErr()

IpSvcFaultManager.appUnavailableInd()

IpSvcFaultManager.genFaultStatsRecordReq()

IpSvcFaultManager.genFaultStatsRecordRes()

IpSvcFaultManager.genFaultStatsRecordErr()

IpSvcFaultManager.generateFaultStatsRecordReq()

IpFwLoadManager.queryLoadReq()

IpFwLoadManager.querySvcLoadRes()

IpFwLoadManager.querySvcLoadErr()

IpSvcLoadManager.querySvcLoadReq()

IpSvcLoadManager.queryLoadRes()

IpSvcLoadManager.queryLoadErr()

Delete the type TpSvcUnavailReason, which is only used in the two svcUnavailableInd() methods, also deleted in this CR.

	
	

	Consequences if
(

not approved:
	The backwards compatibilty rules will not be implemented consistantly, thereby confusing users of this specification.

Deprecated methods and other items, already demonstrated to be broken and already replaced, will remain in the specification, encouraging users of the specification to use these methods, which is contrary to the intention of deprecating them.

	
	

	Clauses affected:
(

	7.2, 7.3.3.1, 7.3.3.2, 7.3.3.7, 7.3.3.8, 7.4.3, 8.2, 8.3.4.1, 8.3.4.2, 8.3.4.7, 8.3.4.8, 8.4.4, 10.4.8

	
	

	
	Y
	N
	
	

	Other specs
(

	X
	
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

	1st Modified Section

7.2
Class Diagrams

[image: image1.wmf]IpAppEventNotification

reportNotification()

notificationTerminated()

(from App Interfaces)

<<Interface>>

IpEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Class Diagram

[image: image2]

Figure: Integrity Management Package Overview
[image: image3.wmf]IpServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listSubscribedServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image4.wmf]IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpInitial

<<deprecated>> initiateAuthentication()

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

<<deprecated>> endAccess()

listInterfaces()

<<deprecated>> releaseInterface()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod()

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image5.wmf]IpAppServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

(from App Interfaces)

<<Interface>>

IpServiceAgreementManagement

signServiceAgreement()

terminateServiceAgreement()

selectService()

initiateSignServiceAgreement()

(from Framework Interfaces)

<<Interface>>

<<uses>>

Figure: Service Agreement Management Package Overview
	Next Modified Section

7.3.3.1
Interface Class IpAppFaultManager

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application. The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appUnavailableInd (serviceID : in TpServiceID) : void

svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsErrorList, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

7.3.3.1.1
Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
7.3.3.1.2
Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly. The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
7.3.3.1.3
Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
7.3.3.1.4
Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified. The application may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.

7.3.3.1.7
Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
7.3.3.1.8
Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.

7.3.3.1.10
Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not responding.

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.

7.3.3.1.12
Method svcAvailStatusInd()

The framework invokes this method to inform the client application about the Service instance availability status, i.e. that it can no longer use its instance of the indicated service according to the reason parameter but as well information when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance). The client application can also wait for the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with the reason SVC_AVAILABLE.

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again.

7.3.3.1.13
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record. If the serviceIDs parameter is an empty list, then the fault statistics are for the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.14
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.
faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned. If the serviceIDs parameter is an empty list, then the fault statistics error relates to the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.15
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for the application during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the client application.

7.3.3.1.16
Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The client application may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
	Next Modified Section

7.3.3.2
Interface Class IpFaultManager

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system. The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall implement appActivityTestRes() and appActivityTestErr() in this interface. If the Framework is capable of invoking IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void

appActivityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

7.3.3.2.1
Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as there is a one to one relationship between the client application and a service, i.e. there is only one service instance of the specified service per client application, it is the obligation of the framework to determine the service instance ID from the service ID.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.2
Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
7.3.3.2.3
Method svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use its instance of the indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this request, the framework should take the appropriate corrective action.

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE

7.3.3.2.5
Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

7.3.3.2.9
Method appAvailStatusInd()

This method is used by the application to inform the framework of its availability status. If the Application has detected a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of all of its subscribed service instances. When the Application is working again it shall call this method again with the APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework and the Service that the Application is available again.
Raises

TpCommonExceptions
7.3.3.2.10
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the client application using the generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record. If this parameter is not an empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault statistics record of the framework is returned.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.11
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
7.3.3.2.12
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
	Next Modified Section

7.3.3.7
Interface Class IpAppLoadManager

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

	<<Interface>>

IpAppLoadManager

	

	

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.7.4
Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application. In addition this method shall be invoked on the application in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
7.3.3.7.5
Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method.

7.3.3.7.6
Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method.

7.3.3.7.7
Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application. Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager.

Parameters

No Parameters were identified for this method.

7.3.3.7.8
Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application.

Parameters

No Parameters were identified for this method.

7.3.3.7.9
Method <<new>> queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

7.3.3.7.10
Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

7.3.3.7.11
Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
	Next Modified Section

7.3.3.8
Interface Class IpLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpLoadManager interface. Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs. To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism. The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement queryAppLoadStatsRes() and queryAppLoadStatsErr() methods in this interface.

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

<<new>> queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

7.3.3.8.1
Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load level on the application has changed.

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded. At level 2 load, the application is severely overloaded. In addition this method shall be called by the application in order to report current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpCommonExceptions

7.3.3.8.5
Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control. To register for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.6
Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the framework or with its instances of the individual services used by the application. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.7
Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID. Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.8
Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. while the application handles a temporary overload condition. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended. To suspend notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.9
Method <<new>> queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or for its instances of the individual services. If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown. The extraInformation field of the exception shall contain the corresponding serviceID.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.
serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.10
Method <<new>> queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
7.3.3.8.11
Method <<new>> queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
	Next Modified Section

7.4.3
Integrity Management State Transition Diagrams
7.4.3.1
State Transition Diagrams for IpLoadManager

[image: image6]

Figure : State Transition Diagram for IpLoadManager

7.4.3.1.1
Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.
7.4.3.1.2
Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load level notification information.
7.4.3.1.3
Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpLoadManager. The load manager can now request the application to supply load statistics information (by invoking queryAppLoadStatsReq()). Furthermore the LoadManager can request the application to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
7.4.3.2
State Transition Diagrams for LoadManagerInternal

[image: image7.wmf]Normal load

Application Overload

...

A necessary action can

be suspending the load

notifictions to the

application or enabling

load control mechanisms

on certain services.

Internal overload

...

A necessary action can be

suspending the load

notifictions from the

application by invoking

suspendNotification or

enabling load control

mechanisms on the

application by invoking

enableLoadControl.

Internal and Application Overload

...

reportLoad[loadlevel != 0]

reportLoad[loadlevel = 0]

"internal load change detection"

"internal load change to non overloaded"

"internal load change to non overload"

reportLoad[loadlevel = 0]

reportLoad[loadlevel != 0]

"internal load change detection"

registerLoadController

ALL

STATES

unregisterLoadControler

Figure : State Transition Diagram for LoadManagerInternal

7.4.3.2.1
Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.
7.4.3.2.2
Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.2.3
Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.2.4
Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.3
State Transition Diagrams for IpOAM

[image: image8.wmf]Active

systemDateTimeQuery

IpAccess.endAccess

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

Figure : State Transition Diagram for IpOAM

7.4.3.3.1
Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.
7.4.3.4
State Transition Diagrams for IpFaultManager

[image: image9]

Figure : State Transition Diagram for IpFaultManager

7.4.3.4.1
Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
7.4.3.4.2
Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwAvailStatusInd message.
7.4.3.4.3
Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwAvailStatusInd message.
7.4.3.4.4
Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcAvailStatusInd message.
	Next Modified Section

8.2
Class Diagrams

[image: image10.wmf]IpFwServiceDiscovery

listServiceTypes()

describeServiceType()

discoverService()

listRegisteredServices()

(from Framework interfaces)

<<Interface>>

Figure: Service Discovery Package Overview
[image: image11.wmf]IpFwServiceRegistration

registerService()

announceServiceAvailability()

unregisterService()

describeService()

unannounceService()

<<new>> registerServiceSubType()

(from Framework interfaces)

<<Interface>>

Figure: Service Registration Package Overview
[image: image12.wmf]IpInitial

<<deprecated>> initiateAuthentication()

initiateAuthenticationWithVersion()

(from Framework interfaces)

<<Interface>>

IpClientAccess

terminateAccess()

(from Client interfaces)

<<Interface>>

IpAccess

obtainInterface()

obtainInterfaceWithCallback()

<<deprecated>> endAccess()

listInterfaces()

<<deprecated>> releaseInterface()

selectSigningAlgorithm()

terminateAccess()

relinquishInterface()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpClientAPILevelAuthentication

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

challenge()

(from Client interfaces)

<<Interface>>

IpAPILevelAuthentication

<<deprecated>> selectEncryptionMethod()

<<deprecated>> authenticate()

abortAuthentication()

authenticationSucceeded()

selectAuthenticationMechanism()

challenge()

(from Framework interfaces)

<<Interface>>

<<uses>>

IpAuthentication

requestAccess()

(from Framework interfaces)

<<Interface>>

Figure: Trust and Security Management Package Overview
[image: image13.wmf]IpServiceInstanceLifecycleManager

createServiceManager()

destroyServiceManager()

(from Service Interfaces)

<<Interface>>

Figure: Service Instance Lifecycle Manager Package Overview

[image: image14]

Figure: Integrity Management Package Overview
[image: image15.wmf]IpFwEventNotification

createNotification()

destroyNotification()

(from Framework Interfaces)

<<Interface>>

IpSvcEventNotification

reportNotification()

notificationTerminated()

(from Service Interfaces)

<<Interface>>

<<uses>>

Figure: Event Notification Package Overview
	Next Modified Section

8.3.4.1
Interface Class IpFwFaultManager

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework. The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented. If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement svcActivityTestRes() and svcActivityTestErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface. If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void

svcActivityTestErr (activityTestID : in TpActivityTestID) : void

svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void

8.3.4.1.1
Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).
Raises

TpCommonExceptions
8.3.4.1.2
Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.1.3
Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding. On receipt of this indication, the framework must act to inform the client application.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.1.6
Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.1.11
Method svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use according to the provided reason and as well to inform the Framework when the Service instance becomes available again. The framework should inform the client applications that are currently using this service instance that it is unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the IpAppFaultManager interface).

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions
8.3.4.1.12
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions
8.3.4.1.13
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
8.3.4.1.14
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
	Next Modified Section

8.3.4.2
Interface Class IpSvcFaultManager

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application. The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface.

If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented. If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement activityTestRes() and activityTestErr() in this interface. If the Service is capable of invoking IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.

	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void

activityTestErr (activityTestID : in TpActivityTestID) : void

appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void

8.3.4.2.1
Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.2
Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly. The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface.

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
8.3.4.2.3
Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
8.3.4.2.4
Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified. The service instance may then resume using the framework.

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
8.3.4.2.5
Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release. It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available.

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
Raises

TpCommonExceptions
8.3.4.2.6
Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions

8.3.4.2.9
Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID

8.3.4.2.13
Method appAvailStatusInd()

The framework invokes this method to inform the service instance that the client application is no longer available using different reasons for the unavailability. This may be a result of the application reporting a failure. Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again the reason APP_AVAILABLE shall be used to inform the Service about that.

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that the Application is available again.
Raises

TpCommonExceptions
8.3.4.2.14
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.4.2.15
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.4.2.16
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFwFaultManager interface.

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.4.2.17
Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The service instance may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
	Next Modified Section

8.3.4.7
Interface Class IpFwLoadManager

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface. To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.

If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented. If suspendNotification() is implemented, then resumeNotification() shall be implemented also. If a Framework is capable of invoking the IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall implement querySvcLoadStatsRes() and querySvcLoadStatsErr() methods in this interface.

	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void

createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

<<new>> querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLoadStatisticError) : void

8.3.4.7.1
Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load level on the service instance has changed.

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded. In addition this method shall be called by the service instance in order to report current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions

8.3.4.7.5
Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported.
Raises

TpCommonExceptions
8.3.4.7.6
Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions
8.3.4.7.7
Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended.
Raises

TpCommonExceptions
8.3.4.7.8
Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition. Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager.

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.
Raises

TpCommonExceptions
8.3.4.7.9
Method <<new>> queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
8.3.4.7.10
Method <<new>> querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.7.11
Method <<new>> querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
	Next Modified Section

8.3.4.8
Interface Class IpSvcLoadManager

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function. The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.

If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented. If a Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement queryLoadStatsRes() and queryLoadStatsErr() methods in this interface.

	<<Interface>>

IpSvcLoadManager

	

	

loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void

8.3.4.8.4
Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF. In addition this method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension.

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
8.3.4.8.5
Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.6
Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.7
Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the service instance. Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.8
Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance.

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.9
Method <<new>> querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
8.3.4.8.10
Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.8.11
Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
	Next Modified Section

8.4.4
Integrity Management State Transition Diagrams
8.4.4.1
State Transition Diagrams for IpFwLoadManager

[image: image16]

Figure : State Transition Diagram for IpFwLoadManager

8.4.4.1.1
Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.
8.4.4.1.2
Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level notification information.
8.4.4.1.3
Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager. The load manager can now request the service to supply load statistics information (by invoking querySvcLoadStatsReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad().
8.4.4.2
State Transition Diagrams for IpFwFaultManager

[image: image17]

Figure : State Transition Diagram for IpFwFaultManager

8.4.4.2.1
Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and service capability features.
8.4.4.2.2
Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fault management callbacks are notified through an fwAvailStatusInd message.
8.4.4.2.3
Application Activity Test State

In this state, the framework is performing a test on one client application. If the application is faulty, services that are used by the application and that have provided fault management callbacks are notified accordingly through an appAvailStatusInd message.
8.4.4.2.4
Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, services with fault management callbacks will be notified via a fwAvailStatusInd message.
	Next Modified Section

10.4.7
TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

10.4.9
TpFwUnavailReason

Defines the reason why the Framework is unavailable.

	Name
	Value
	Description

	FW_UNAVAILABLE_UNDEFINED
	0
	Undefined

	FW_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	FW_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	FW_UNAVAILABLE_OVERLOADED
	3
	The Framework is fully overloaded

	FW_UNAVAILABLE_CLOSED
	4
	The Framework has closed itself (e.g. to protect from fraud or malicious attack)

	FW_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed

	End of modifications

Annex E (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Mar 2001
	CN_11
	NP-010134
	047
	--
	CR 29.198: for moving TS 29.198 from R99 to Rel 4 (N5-010158)
	3.2.0
	4.0.0

	Jun 2001
	CN_12
	NP-010330
	001
	--
	Corrections to OSA API Rel4
	4.0.0
	4.0.1

	Sep 2001
	CN_13
	NP-010466
	002
	--
	Changing references to JAIN
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	003
	--
	Update to the definitions of method svcUnavailableInd
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	004
	--
	Only one subject per method invocation for fault and load management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	005
	--
	Fault management is missing some *Err methods
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	006
	--
	Method balance on Fault management interfaces
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	007
	--
	Change "TpString" into "TpOctetSets" in authentication and access
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	008
	--
	Replacement of register/unregisterLoadController
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	009
	--
	Redundant Framework Heartbeat Mechanism
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	010
	--
	Add a releaseInterface() method to IpAccess
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	011
	--
	Removal of serviceID from queryAppLoadReq()
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	012
	--
	Addition of listInterfaces() method
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	013
	--
	Introduction and use of new Service Instance ID
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	014
	--
	P_UNAUTHORISED_PARAMETER_VALUE thrown if non-accessible serviceID is provided
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	015
	--
	Introduction of Service Instance Lifecycle Management
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	016
	--
	Add support for multi-vendorship
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	017
	--
	Removal of P_SERVICE_ACCESS_TYPE
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	018
	--
	Confusing meaning of prescribedMethod
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	019
	--
	A client should only have one instance of a given service
	4.1.0
	4.2.0

	Sep 2001
	CN_13
	NP-010466
	020
	--
	Some methods on the IpApp interfaces should throw exceptions
	4.1.0
	4.2.0

	Dec 2001
	CN_14
	NP-010596
	021
	--
	Replace Out Parameters with Return Types
	4.2.0
	4.3.0

	Dec 2001
	CN_14
	NP-010596
	022
	--
	Correctionto Framework (FW)
	4.2.0
	4.3.0

	Mar 2002
	CN_15
	NP-020105
	023
	--
	Add P_INVALID_INTERFACE_TYPE exception to IpService.setCallback() and IpService.setCallbackWithSessionID()
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	024
	--
	Replace erroneous mention of P_OSA_ACCESS by the correct value P_OSA_AUTHENTICATION
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	025
	--
	Add missing inheritance in service agreement management interfaces
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	026
	--
	Include Operation Set as part of General Service Properties
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	027
	--
	Improved description of activityTestReq with respect to ServiceInstanceID
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	028
	--
	OSA Framework - Generate statistics records on behalf of another entity using genFaultStatsRecordReq
	4.3.0
	4.4.0

	Mar 2002
	CN_15
	NP-020105
	029
	--
	Update the interface names for alignment between 3GPP and ETSI/Parlay
	4.3.0
	4.4.0

	Jun 2002
	CN_16
	NP-020179
	030
	--
	Solving the problem in the OSA Framework with method appUnavailableInd() in a scenario with multiple service sessions per access session
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020179
	031
	--
	Adding missing mandatory method (authenticationSucceeded) to sequence flow
	4.4.0
	4.5.0

	Jun 2002
	CN_16
	NP-020186
	032
	--
	Remove redundant data type definition TpServiceSpecString
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020181
	033
	--
	Addition of support for Java API technology realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020182
	035
	--
	Addition of support for WSDL realisation
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	036
	--
	Clarify semantics of service properties of type BOOLEAN_SET
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	037
	--
	Addition of version management support to the Framework (29.198-03) in run-time
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	038
	--
	Enhancements on subscription management error information
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	039
	--
	Delete conflicting description of P_APPLICATION_NOT_ACTIVATED
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	040
	--
	Note added for P_SERVICE_INSTANCE Choice Element Name
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	041
	--
	Correcting the method descriptions for abortAuthentication and for initiateAuthentication
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	042
	--
	Correcting the description of heartbeat failure
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	043
	--
	Correcting erroneous FW<->Service instance sequence diagrams
	4.5.0
	5.0.0

	Jun 2002
	CN_16
	NP-020186
	044
	--
	Correcting the scope of TpFwID, which currently is giving it false limitations
	4.5.0
	5.0.0

	Sep 2002
	CN_17
	NP-020428
	046
	
	Correction to description of TpServicePropertyTypeName
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	047
	
	Remove undefined exception in registerService
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	048
	
	Remove ServiceIDs from IpFwFaultManager.genFaultStatsRecordReq()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	049
	
	Correct appUnavailableInd and related methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	050
	
	Remove unusable exception from IpFaultManager.appActivityTestRes()
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	051
	
	Clarify the sequence of events in signing the service agreement
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	052
	
	Correct use of electronic signatures
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	053
	
	Addition of Sequence Diagrams for terminateAccess
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	054
	
	Add indication what part of service agreement must be signed
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	055
	
	Add text to clarify requirements on support of methods
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	056
	
	Introduce types and modes for generic properties
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	057
	
	Correction on use of NULL in Framework API
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020428
	058
	
	Add Negotiation of Authentication Mechanism for OSA level Authentication
	5.0.0
	5.1.0

	Sep 2002
	CN_17
	NP-020395
	058
	
	Add text to clarify relationship between 3GPP and ETSI/Parlay OSA specifications
	5.0.0
	5.1.0

	Mar 2003
	CN_19
	NP-030019
	063
	-
	Correction to Initial Access Sequence Diagram
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	065
	-
	Enable creation/destruction of load level notifications at the request of Framework
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	067
	-
	Correction of Sequence for Framework – Service load management
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030019
	074
	-
	Add Initial Load Notification report for Framework Integrity Management Load Notification model
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	068
	--
	Correction to Application's requirements for supporting methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	069
	--
	Correction of status of methods to interfaces in clause 7.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	070
	--
	Correction of status of methods to interfaces in clause 8.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	071
	--
	Correction of status of methods to interfaces in clause 6.3
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	075
	--
	Adding the appAvailStatusInd() and svcAvailStatusInd() methods
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	076
	--
	Remove race condition in signServiceAgreement
	5.1.0
	5.2.0

	Mar 2003
	CN_19
	NP-030028
	077
	--
	Change reference to deprecated method "authenticate" in TpAuthMechanism to "challenge"
	5.1.0
	5.2.0

	Jun 2003
	CN_20
	NP-030237
	079
	--
	Correction to TpEncryptionCapability to correct support for Triple-DES
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	081
	--
	Correction of the Framework Service Instance Lifecycle Manager Sequence Diagram
	5.2.0
	5.3.0

	Jun 2003
	CN_20
	NP-030237
	083
	--
	Correction of the use of TpDomainID in Framework initiateAuthentication method
	5.2.0
	5.3.0

	Sep 2003
	CN_21
	NP-030352
	085
	--
	Correction to Java Realisation Annex
	5.3.0
	5.4.0

	Dec 2003
	CN_22
	NP-030549
	086
	--
	Correction of the sequence diagram for Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	087
	--
	Correction of State Transition Diagram for IpAccess
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	088
	--
	Correction of Correlation Behaviour in Load Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	089
	--
	Correction of Correlation Behaviour in Fault Management
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030549
	090
	--
	Correction and Clarification of Framework Access Session Behaviour
	5.4.0
	5.5.0

	Dec 2003
	CN_22
	NP-030553
	091
	--
	Add OSA API support for 3GPP2 networks
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	092
	--
	Add description for service super and sub types
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	093
	--
	Add support for registration of additional service property types and modes
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	094
	--
	Improve User Interaction message management functions
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	095
	--
	Add new values for TpServiceTypeName for Policy Management
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	096
	--
	Allow for applications to re-obtain the reference to the service manager
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	097
	--
	Add support in OSA to inform applications about new SCSs and their level of Backward compatibility – Align with SA1's 22.127
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	098
	--
	Add “Extended User Status” as service type name - Align with 29.198-06
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	099
	--
	Add P_USER_BINDING to TpServiceTypeName
	5.5.0
	6.0.0

	Dec 2003
	CN_22
	NP-030554
	100
	--
	Modify Framework Availability Indication in Fault Management
	5.5.0
	6.0.0

	Feb 2004
	--
	--
	--
	--
	Added Java code attachment 2919803J2EE.zip which was delivered late by outside developers. See Annex C.
	6.0.0
	6.0.1

	Jun 2004
	CN_24
	NP-040261
	103
	--
	Add ability to identify when a client app/service contract/service profile is being used - Align between ETSI/Parlay and 3GPP
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040265
	104
	--
	Add events to allow an entop to identify when a client app/service contract/service profile is being used
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040253
	106
	--
	Correct alignment between ETSI/Parlay version of OSA and the 3GPP OSA, by clarifying erroneous field in TpServiceProfileDescription
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	108
	--
	Introduce a ServiceID field to TpServiceProfileDescription
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040254
	112
	--
	Correct the service property type used for address ranges
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040273
	113
	--
	Remove the <> stereotype from methods which are no longer new
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	115
	--
	Correct description of availStatusReason codes
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	117
	--
	Correct description for the use of selectSigningAlgorithm
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	119
	--
	Correct the description of the usage of CHAP within authentication
	6.0.1
	6.1.0

	Jun 2004
	CN_24
	NP-040261
	121
	--
	Correct TpSignatureAndServiceMgr to align with description in signServiceAgreement
	6.0.1
	6.1.0

	Sep 2004
	CN_25
	NP-040355
	124
	--
	Correct J2EE source
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040356
	125
	--
	Remove unused Deprecated items
	6.1.0
	6.2.0

	Sep 2004
	CN_25
	NP-040358
	126
	--
	Support High Availability at API Level
	6.1.0
	6.2.0

	Dec 2004
	CN_26
	NP-040485
	128
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.2.0
	6.3.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.3.0
	6.3.1

	Mar 2005
	CN_27
	NP-050020
	129
	--
	Add TpServiceTypeName for Multimedia Messaging SCF
	6.3.1
	6.4.0

	Dec 2005
	CT-30
	CP-050564
	0130
	--
	Definition of floating point service property types
	6.4.0
	6.5.0

	
	
	
	
	
	
	
	

IpAppFaultManager

activityTestRes()

appActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> svcUnavailableInd()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> fwUnavailableInd()

activityTestErr()

<<deprecated>> genFaultStatsRecordErr()

appUnavailableInd()

<<deprecated>> genFaultStatsRecordReq()

svcAvailStatusInd()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<new>> generateFaultStatisticsRecordReq()

<<new>> fwAvailStatusInd()

<<Interface>>

IpFaultManager

activityTestReq()

appActivityTestRes()

svcUnavailableInd()

<<deprecated>> genFaultStatsRecordReq()

appActivityTestErr()

<<deprecated>> appUnavailableInd()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> genFaultStatsRecordErr()

appAvailStatusInd()

<<new>> generateFaultStatisticsRecordReq()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

IpHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpAppHeartBeat

pulse()

<<Interface>>

<<uses>>

IpAppHeartBeatMgmt

enableAppHeartBeat()

disableAppHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpAppLoadManager

<<deprecated>> queryAppLoadReq()

<<deprecated>> queryLoadRes()

<<deprecated>> queryLoadErr()

loadLevelNotification()

resumeNotification()

suspendNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

<<new>> queryAppLoadStatsReq()

<<new>> queryLoadStatsRes()

<<new>> queryLoadStatsErr()

<<Interface>>

IpLoadManager

reportLoad()

<<deprecated>> queryLoadReq()

<<deprecated>> queryAppLoadRes()

<<deprecated>> queryAppLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

resumeNotification()

suspendNotification()

<<new>> queryLoadStatsReq()

<<new>> queryAppLoadStatsRes()

<<new>> queryAppLoadStatsErr()

<<Interface>>

IpOAM

systemDateTimeQuery()

<<Interface>>

IpAppOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

<<uses>>

Framework

Active

Framework Faulty

entry/ ^fwAvailStatusInd to all applications with callback

exit/ ^fwAvailStatusInd to all applications with callback

Framework Activity Test

entry/ test activity of framework

exit/ ^IpAppFaultManager.activityTestRes

exit/ ^IpAppFaultManager.activityTestErr

Service Activity Test

entry/ test activity of service

exit/ ^IpAppFaultManager.activityTestRes

exit/ ^IpAppFaultManager.activityTestErr

generateFaultStatisticsRecordReq ^app.generateFaultStatisticsRecordRes/Err

svcUnavailableInd / test the service, inform service that application is not using it

'change in service availability' ^svcAvailStatusInd to all applications using the service

IpAccess.endAccess / remove

application from load management

IpAccess.obtainInterfaceWithCallback("FaultManagement") /

add application to fault management

fault detected in fw

no fault detected

IpAccess.endAccess / Abort

pending test request

fault resolved

fault detected in fw

activityTestReq[

empty string]

activityTestReq[scfID]

IpAccess.endAccess

service fault ^svcAvailStatusInd to all applications using the service

no fault detected

IpAccess.endAccess /

Abort pending test request

'change in framework availabililty (non fault)' ^fwAvailStatusInd to all applications with callback

Idle

Notification

Suspended

Active

IpAccess.obtainInterface

reportLoad

querySvcAppLoadStatsRes[load statistics requested by LoadManager]

querySvcAppLoadStatsErr[load statistics requested by LoadManager]

reportLoad

querySvcAppLoadStatsRes[load statistics requested by LoadManager]

querySvcAppLoadStatsErr[load statistics requested by LoadManager]

IpAccess.obtainInterfaceWithCallback

All States

IpAccess.endAccess

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification[all notifications

suspended]

queryLoadStatsReq

queryLoadStatsReq

"load change" ^loadLevelNotification

destroyLoadLevelNotification

resumeNotification

^loadLevelNotification

IpSvcHeartBeatMgmt

enableSvcHeartBeat()

disableSvcHeartBeat()

changeInterval()

<<Interface>>

IpSvcHeartBeat

pulse()

<<Interface>>

1

0..n

1

0..n

IpFwHeartBeat

pulse()

<<Interface>>

<<uses>>

IpFwHeartBeatMgmt

enableHeartBeat()

disableHeartBeat()

changeInterval()

<<Interface>>

<<uses>>

0..n

1

0..n

1

IpFwLoadManager

reportLoad()

<<deprecated>> queryLoadReq()

<<deprecated>> querySvcLoadRes()

<<deprecated>> querySvcLoadErr()

createLoadLevelNotification()

destroyLoadLevelNotification()

suspendNotification()

resumeNotification()

<<new>> queryLoadStatsReq()

<<new>> querySvcLoadStatsRes()

<<new>> querySvcLoadStatsErr()

<<Interface>>

IpSvcLoadManager

<<deprecated>> querySvcLoadReq()

<<deprecated>> queryLoadRes()

<<deprecated>> queryLoadErr()

loadLevelNotification()

suspendNotification()

resumeNotification()

createLoadLevelNotification()

destroyLoadLevelNotification()

<<new>> querySvcLoadStatsReq()

<<new>> queryLoadStatsRes()

<<new>> queryLoadStatsErr()

<<Interface>>

<<uses>>

IpSvcFaultManager

activityTestRes()

svcActivityTestReq()

<<deprecated>> fwFaultReportInd()

<<deprecated>> fwFaultRecoveryInd()

<<deprecated>> fwUnavailableInd()

svcUnavailableInd()

<<deprecated>> appUnavailableInd()

<<deprecated>> genFaultStatsRecordRes()

activityTestErr()

<<deprecated>> genFaultStatsRecordErr()

<<deprecated>> genFaultStatsRecordReq()

<<deprecated>> generateFaultStatsRecordReq()

appAvailStatusInd()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<new>> generateFaultStatisticsRecordReq()

<<new>> fwAvailStatusInd()

<<Interface>>

IpFwFaultManager

activityTestReq()

svcActivityTestRes()

appUnavailableInd()

<<deprecated>> genFaultStatsRecordReq()

<<deprecated>> svcUnavailableInd()

svcActivityTestErr()

<<deprecated>> genFaultStatsRecordRes()

<<deprecated>> genFaultStatsRecordErr()

<<deprecated>> generateFaultStatsRecordRes()

<<deprecated>> generateFaultStatsRecordErr()

svcAvailStatusInd()

<<new>> generateFaultStatisticsRecordReq()

<<new>> generateFaultStatisticsRecordRes()

<<new>> generateFaultStatisticsRecordErr()

<<Interface>>

<<uses>>

IpFwOAM

systemDateTimeQuery()

<<Interface>>

IpSvcOAM

systemDateTimeQuery()

<<Interface>>

<<uses>>

Idle

Notification

Suspended

Active

All States

reportLoad

queryAppSvcLoadStatsRes[load statistics requested by LoadManager]

queryAppSvcLoadStatsErr[load statistics requested by LoadManager]

destroyLoadLevelNotification

queryLoadStatsReq

reportLoad

querySvcAppLoadStatsRes[load statistics requested by LoadManager]

queryAppSvcLoadStatsErr[load statistics requested by LoadManager]

createLoadLevelNotification ^loadLevelNotification

destroyLoadLevelNotification

suspendNotification

[all notifications suspended]

resumeNotification

^loadLevelNotification

queryLoadStatsReq

"load change" ^loadLevelNotification

IpAccess.obtainInterface

IpAccess.obtainInterfaceWithCallback

IpAccess.endAccess

Framework

Active

Framework Activity Test

entry/ test activity of framework

exit/ ^IpSvcFaultManager.activityTestRes

exit/ ^IpSvcFaultManager.activityTestErr

Application Activity Test

entry/ test activity of application

exit/ ^IpSvcFaultManager.activityTestRes

exit/ ^IpSvcFaultManager.activityTestErr

Framework Faulty

entry/ ^fwAvailStatusInd to all services with callback

exit/ ^fwAvailStatusInd to all services with callback

IpAccess.obtainInterfaceWithCallback("FaultManagement")

/ add service to fault management

generateFaultStatisticsRecordReq ^svc.generateFaultStatisticsRecordRes/Err

appUnavailableInd / test the application, inform application that service is not using it

'change in application availability' ^appAvailStatusInd to all services used by application

'change in framework availability (non fault)' ^fwAvailStatusInd to all services with callback

no fault detected

fault detected in fw

IpAccess.endAccess / Abort

pending test request

activityTestReq[framework]

IpAccess.endAccess

fault detected in fw

activityTestReq[client]

fault resolved

IpAccess.endAccess / remove service

from load management

application fault ^appAvailStatusInd to all

services used by the application

no fault detected

IpAccess.endAccess / Abort

pending test request

�PAGE \# "'Page: '#'�'" �� Document number

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 2

