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7.2
Class Diagrams
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Figure: Event Notification Class Diagram 
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Figure: Integrity Management Package Overview 
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Figure: Service Discovery Package Overview 
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Figure: Trust and Security Management Package Overview 
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Figure: Service Agreement Management Package Overview 
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7.3.3.1
Interface Class IpAppFaultManager 

Inherits from: IpInterface.
This interface is used to inform the application of events that affect the integrity of the Framework, Service or Client Application.  The Fault Management Framework will invoke methods on the Fault Management Application Interface that is specified when the client application obtains the Fault Management interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface 

	<<Interface>>

IpAppFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void



<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

activityTestErr (activityTestID : in TpActivityTestID) : void


appUnavailableInd (serviceID : in TpServiceID) : void


svcAvailStatusInd (serviceID : in TpServiceID, reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsErrorList, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void




7.3.3.1.1
Method activityTestRes()

The framework uses this method to return the result of a client application-requested activity test. 

Parameters

activityTestID : in TpActivityTestID

Used by the client application to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
7.3.3.1.2
Method appActivityTestReq()

The framework invokes this method to test that the client application is operational. On receipt of this request, the application must carry out a test on itself, to check that it is operating correctly.  The application reports the test result by invoking the appActivityTestRes method on the IpFaultManager interface. 

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
7.3.3.1.3
Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable.

The framework invokes this method to notify the client application of a failure within the framework. The client application must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd).  

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
7.3.3.1.4
Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application when the Framework becomes available again.

The framework invokes this method to notify the client application that a previously reported fault has been rectified.  The application may then resume using the framework.  

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
















7.3.3.1.7
Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the client application that it is no longer available. 

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
7.3.3.1.8
Method activityTestErr()

The framework uses this method to indicate that an error occurred during an application-initiated activity test.  

Parameters

activityTestID : in TpActivityTestID

Used by the application to correlate this response (when it arrives) with the original request.








7.3.3.1.10
Method appUnavailableInd()

The framework invokes this method to indicate to the application that the service instance has detected that it is not responding. 

Parameters

serviceID : in TpServiceID

Specifies the service for which the indication of unavailability was received.






7.3.3.1.12
Method svcAvailStatusInd()

The framework invokes this method to inform the client application about the Service instance availability status, i.e. that it can no longer use its instance of the indicated service according to the reason parameter but as well information when the Service Instance becomes available again. On receipt of this request, the client application either acts to reset its use of the specified service (using the normal mechanisms, such as the discovery and authentication interfaces, to stop use of this service instance and begin use of a different service instance). The client application can also wait for the problem to be solved and just stop the usage of the service instance until the svcAvailStatusInd() is called again with the reason SVC_AVAILABLE.  

Parameters

serviceID : in TpServiceID

Identifies the affected service.
reason : in TpSvcAvailStatusReason

Identifies the reason why the service is no longer available or that it has become available again.

7.3.3.1.13
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a client application in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the general fault statistics record.  If the serviceIDs parameter is an empty list, then the fault statistics are for the framework. 
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics in the TpFaultStatsRecord returned.

7.3.3.1.14
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

Used by the client application to correlate this error (when it arrives) with the original request.
faultStatistics : in TpFaultStatsErrorList

The list of fault statistics errors returned.
serviceIDs : in TpServiceIDList

Specifies the framework or services that are included in the list of fault statistics errors returned.  If the serviceIDs parameter is an empty list, then the fault statistics error relates to the framework.
In the case where a list of services is present, this is an ordered list in which the location of the service in this list corresponds to the location of the related fault statistics error in the TpFaultStatsErrorList returned.

7.3.3.1.15
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the client application, for example when the framework was asked for these statistics by a service instance by using the generateFaultStatisticsRecordReq operation on the IpFwFaultManager interface. On receipt of this request, the client application must produce a fault statistics record, for the application during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFaultManager interface.  

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the client application.

7.3.3.1.16
Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the client application about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The client application may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE. 

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
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7.3.3.2
Interface Class IpFaultManager 

Inherits from: IpInterface.
This interface is used by the application to inform the framework of events that affect the integrity of the framework and services, and to request information about the integrity of the system.  The fault manager operations do not exchange callback interfaces as it is assumed that the client application supplies its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.


























If the IpFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented.  If the Framework is capable of invoking the IpAppFaultManager.appActivityTestReq() method, it shall implement appActivityTestRes() and appActivityTestErr() in this interface.  If the Framework is capable of invoking IpAppFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface. 

	<<Interface>>

IpFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, svcID : in TpServiceID) : void

appActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcUnavailableInd (serviceID : in TpServiceID) : void


appActivityTestErr (activityTestID : in TpActivityTestID) : void




appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, serviceIDs : in TpServiceIDList) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void




7.3.3.2.1
Method activityTestReq()

The application invokes this method to test that the framework or its instance of a service is operational. On receipt of this request, the framework must carry out a test on itself or on the client's instance of the specified service, to check that it is operating correctly.  The framework reports the test result by invoking the activityTestRes method on the IpAppFaultManager interface.  If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.

For security reasons the client application has access to the service ID rather than the service instance ID. However, as there is a one to one relationship between the client application and a service, i.e. there is only one service instance of the specified service per client application, it is the obligation of the framework to determine the service instance ID from the service ID. 

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the client application to correlate the response (when it arrives) with this request.
svcID : in TpServiceID

Identifies either the framework or a service for testing. The framework is designated by an empty string.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.2
Method appActivityTestRes()

The client application uses this method to return the result of a framework-requested activity test. 

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
7.3.3.2.3
Method svcUnavailableInd()

This method is used by the client application to inform the framework that it can no longer use its instance of the indicated service (either due to a failure in the client application or in the service instance itself). On receipt of this request, the framework should take the appropriate corrective action.  

Parameters

serviceID : in TpServiceID

Identifies the service that the application can no longer use.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE










7.3.3.2.5
Method appActivityTestErr()

The client application uses this method to indicate that an error occurred during a framework-requested activity test. 

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
























7.3.3.2.9
Method appAvailStatusInd()

This method is used by the application to inform the framework of its availability status. If the Application has detected a failure it uses one of the APP_UNAVAILABLE reason types to indicate the problem and that it is ceasing its use of all of its subscribed service instances. When the Application is working again it shall call this method again with the APP_AVAILABLE reason to inform the Framework that it is working properly again. The Framework shall also attempt to inform all of the service instances used by the specific application and/or its administrator about the problem.  

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Framework and the Service that the Application is available again.
Raises

TpCommonExceptions
7.3.3.2.10
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the application to solicit fault statistics from the framework. On receipt of this request the framework must produce a fault statistics record, for either the framework or for the client's instances of the specified services during the specified time interval, which is returned to the client application using the generateFaultStatisticsRecordRes operation on the IpAppFaultManager interface.  If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the application to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
serviceIDs : in TpServiceIDList

Specifies either the framework or services to be included in the general fault statistics record.  If this parameter is not an empty list, the fault statistics records of the client's instances of the specified services are returned, otherwise the fault statistics record of the framework is returned.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.2.11
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the client application to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface.  

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
7.3.3.2.12
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the client application to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpAppFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
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7.3.3.7
Interface Class IpAppLoadManager 

Inherits from: IpInterface.
The client application developer supplies the load manager application interface to handle requests, reports and other responses from the framework load manager function.  The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface. 

	<<Interface>>

IpAppLoadManager

	

	


loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

resumeNotification () : void

suspendNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> queryAppLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void






















7.3.3.7.4
Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the SCFs or framework which have been registered for load level notifications) this method is invoked on the application.  In addition this method shall be invoked on the application in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
7.3.3.7.5
Method resumeNotification()

The framework uses this method to request the application to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.  Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager. 

Parameters

No Parameters were identified for this method.

7.3.3.7.6
Method suspendNotification()

The framework uses this method to request the application to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition. 

Parameters

No Parameters were identified for this method.

7.3.3.7.7
Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the application.  Upon receipt of this method the client application shall inform the framework of the current load using the reportLoad method on the corresponding IpLoadManager. 

Parameters

No Parameters were identified for this method.

7.3.3.7.8
Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the application. 

Parameters

No Parameters were identified for this method.

7.3.3.7.9
Method <<new>> queryAppLoadStatsReq()

The framework uses this method to request the application to provide load statistics records for the application.  

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.

7.3.3.7.10
Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the application that requested the information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface.  

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.

7.3.3.7.11
Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the application that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadStatsReq method on the IpLoadManager interface. 

Parameters

loadStatsReqID : in TpLoadTestID

Used by the client application to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
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7.3.3.8
Interface Class IpLoadManager 

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific client application. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed.  The framework load management function is represented by the IpLoadManager interface.  Most methods are asynchronous, in that they do not lock a thread into waiting whilst a transaction performs.  To handle responses and reports, the client application developer must implement the IpAppLoadManager interface to provide the callback mechanism.  The application supplies the identity of this callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.















If the IpLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented.  If suspendNotification() is implemented, then resumeNotification() shall be implemented also.  If a Framework is capable of invoking the IpAppLoadManager.queryAppLoadStatsReq() method, then it shall implement queryAppLoadStatsRes() and queryAppLoadStatsErr() methods in this interface. 

	<<Interface>>

IpLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void




createLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

destroyLoadLevelNotification (serviceIDs : in TpServiceIDList) : void

resumeNotification (serviceIDs : in TpServiceIDList) : void

suspendNotification (serviceIDs : in TpServiceIDList) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, serviceIDs : in TpServiceIDList, timeInterval : in TpTimeInterval) : void

<<new>> queryAppLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryAppLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void




7.3.3.8.1
Method reportLoad()

The client application uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load level on the application has changed. 

At level 0 load, the application is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the application is overloaded.  At level 2 load, the application is severely overloaded.  In addition this method shall be called by the application in order to report current load status, when load notifications are first requested, or resumed after suspension. 

Parameters

loadLevel : in TpLoadLevel

Specifies the application's load level.
Raises

TpCommonExceptions


























7.3.3.8.5
Method createLoadLevelNotification()

The client application uses this method to register to receive notifications of load level changes associated with either the framework or with its instances of the individual services used by the application.  If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager. 

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or SCFs to be registered for load control.  To register for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.6
Method destroyLoadLevelNotification()

The client application uses this method to unregister for notifications of load level changes associated with either the framework or with its instances of the individual services used by the application.  If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID. 

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load level changes should no longer be reported. To unregister for framework load control, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.7
Method resumeNotification()

The client application uses this method to request the framework to resume sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. after a period of suspension during which the application handled a temporary overload condition.  If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  Upon receipt of this method the framework shall inform the client application of the current framework or service instance load using the loadLevelNotification method on the corresponding IpAppLoadManager. 

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications of load level changes by the framework should be resumed. To resume notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.8
Method suspendNotification()

The client application uses this method to request the framework to suspend sending it load management notifications associated with either the framework or with its instances of the individual services used by the application; e.g. while the application handles a temporary overload condition.  If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID. 

Parameters

serviceIDs : in TpServiceIDList

Specifies the framework or the services for which the sending of notifications by the framework should be suspended. To suspend notifications for the framework, the serviceIDs parameter must be an empty list.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.9
Method <<new>> queryLoadStatsReq()

The client application uses this method to request the framework to provide load statistic records for the framework or for its instances of the individual services.   If the application does not have access to a service instance with the specified serviceID, the P_UNAUTHORISED_PARAMETER_VALUE exception shall be thrown.  The extraInformation field of the exception shall contain the corresponding serviceID.  

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the application to correlate the response (when it arrives) with this request.
serviceIDs : in TpServiceIDList

Specifies the framework or the services for which load statistics records should be reported. If this parameter is not an empty list, the load statistics records of the client's instances of the specified services are returned, otherwise the load statistics record of the framework is returned.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions, P_INVALID_SERVICE_ID, P_SERVICE_NOT_ENABLED, P_UNAUTHORISED_PARAMETER_VALUE
7.3.3.8.10
Method <<new>> queryAppLoadStatsRes()

The client application uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface.  

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the application-supplied load statistics.
Raises

TpCommonExceptions
7.3.3.8.11
Method <<new>> queryAppLoadStatsErr()

The client application uses this method to return an error response to the framework that requested the application's load statistics information, when the application is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryAppLoadStatsReq method on the IpAppLoadManager interface. 

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the application's load statistics.
Raises

TpCommonExceptions
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7.4.3
Integrity Management State Transition Diagrams
7.4.3.1
State Transition Diagrams for IpLoadManager 


[image: image6] 

Figure : State Transition Diagram for IpLoadManager 

7.4.3.1.1
Idle State

In this state the application has obtained an interface reference of the LoadManager from the IpAccess interface.
7.4.3.1.2
Notification Suspended State

Due to e.g. a temporary load condition, the application has requested the LoadManager to suspend sending the load level notification information.
7.4.3.1.3
Active State

In this state the application has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpLoadManager.  The load manager can now request the application to supply load statistics information (by invoking queryAppLoadStatsReq()). Furthermore the LoadManager can request the application to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the application side of interface). In case the application detects a change in load level, it reports this to the LoadManager by calling the method reportLoad(). 
7.4.3.2
State Transition Diagrams for LoadManagerInternal 
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Figure : State Transition Diagram for LoadManagerInternal 

7.4.3.2.1
Normal load State

In this state none of the entities defined in the load balancing policy between the application and the framework / SCFs is overloaded.
7.4.3.2.2
Application Overload State

In this state the application has indicated it is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.2.3
Internal overload State

In this state the Framework or one or more of the SCFs within the specific load policy is overloaded. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.2.4
Internal and Application Overload State

In this state the application is overloaded as well as the Framework or one or more of the SCFs within the specific load policy. When entering this state the load policy is consulted and the appropriate actions are taken by the LoadManager.
7.4.3.3
State Transition Diagrams for IpOAM 
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Figure : State Transition Diagram for IpOAM 

7.4.3.3.1
Active State

In this state the application has obtained a reference to the IpOAM interface. The application is now able to request the date / time of the Framework.
7.4.3.4
State Transition Diagrams for IpFaultManager 
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Figure : State Transition Diagram for IpFaultManager 

7.4.3.4.1
Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and services capability features.
7.4.3.4.2
Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and services capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, applications with fault management callbacks will be notified via a fwAvailStatusInd message.
7.4.3.4.3
Framework Activity Test State

In this state, the framework is performing self-diagnostic test. If a problem is diagnosed, all applications with fault management callbacks are notified through a fwAvailStatusInd message.
7.4.3.4.4
Service Activity Test State

In this state, the framework is performing a test on one service capability feature. If the SCF is faulty, applications with fault management callbacks are notified accordingly through a svcAvailStatusInd message.
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8.2
Class Diagrams
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Figure: Service Discovery Package Overview 
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Figure: Service Registration Package Overview 
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Figure: Trust and Security Management Package Overview 
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Figure: Service Instance Lifecycle Manager Package Overview 
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Figure: Integrity Management Package Overview 
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8.3.4.1
Interface Class IpFwFaultManager 

Inherits from: IpInterface.
This interface is used by the service instance to inform the framework of events which affect the integrity of the API, and request fault management status information from the framework.  The fault manager operations do not exchange callback interfaces as it is assumed that the service instance has supplied its Fault Management callback interface at the time it obtains the Framework's Fault Management interface, by use of the obtainInterfaceWithCallback operation on the IpAccess interface.



























If the IpFwFaultManager interface is implemented by a Framework, at least one of these methods shall be implemented.  If the Framework is capable of invoking the IpSvcFaultManager.svcActivityTestReq() method, it shall implement svcActivityTestRes() and svcActivityTestErr() in this interface.  If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.  If the Framework is capable of invoking IpSvcFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface.  

	<<Interface>>

IpFwFaultManager

	

	activityTestReq (activityTestID : in TpActivityTestID, testSubject : in TpSubjectType) : void

svcActivityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

appUnavailableInd () : void



svcActivityTestErr (activityTestID : in TpActivityTestID) : void





svcAvailStatusInd (reason : in TpSvcAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError) : void




8.3.4.1.1
Method activityTestReq()

The service instance invokes this method to test that the framework or the client application is operational. On receipt of this request, the framework must carry out a test on itself or on the application, to check that it is operating correctly. The framework reports the test result by invoking the activityTestRes method on the IpSvcFaultManager interface. 

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
testSubject : in TpSubjectType

Identifies the subject for testing (framework or client application).
Raises

TpCommonExceptions
8.3.4.1.2
Method svcActivityTestRes()

The service instance uses this method to return the result of a framework-requested activity test. 

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.1.3
Method appUnavailableInd()

This method is used by the service instance to inform the framework that the client application is not responding.  On receipt of this indication, the framework must act to inform the client application. 

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions


















8.3.4.1.6
Method svcActivityTestErr()

The service instance uses this method to indicate that an error occurred during a framework-requested activity test.  

Parameters

activityTestID : in TpActivityTestID

Used by the framework to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID




































8.3.4.1.11
Method svcAvailStatusInd()

This method is used by the service instance to inform the framework that it is about to become unavailable for use according to the provided reason and as well to inform the Framework when the Service instance becomes available again. The framework should inform the client applications that are currently using this service instance that it is unavailable and as well when it becomes available again for use (via the svcAvailStatusInd method on the IpAppFaultManager interface). 

Parameters

reason : in TpSvcAvailStatusReason

Identifies the reason for the service instance's unavailability and also the reason SERVICE_AVAILABLE to be used to inform the Framework when the Service instance becomes available again.
Raises

TpCommonExceptions
8.3.4.1.12
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the service instance to solicit fault statistics from the framework. On receipt of this request, the framework must produce a fault statistics record, for the framework or for the application during the specified time interval, which is returned to the service instance using the generateFaultStatisticsRecordRes operation on the IpSvcFaultManager interface.  

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the framework.
recordSubject : in TpSubjectType

Specifies the subject to be included in the general fault statistics record (framework or application).
Raises

TpCommonExceptions
8.3.4.1.13
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the service to provide fault statistics to the framework in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
Raises

TpCommonExceptions
8.3.4.1.14
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the service to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpSvcFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

Used by the framework to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
Raises

TpCommonExceptions
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8.3.4.2
Interface Class IpSvcFaultManager 

Inherits from: IpInterface.
This interface is used to inform the service instance of events that affect the integrity of the Framework, Service or Client Application.  The Framework will invoke methods on the Fault Management Service Interface that is specified when the service instance obtains the Fault Management Framework interface: i.e. by use of the obtainInterfaceWithCallback operation on the IpAccess interface. 















If the IpSvcFaultManager interface is implemented by a Service, at least one of these methods shall be implemented.  If the Service is capable of invoking the IpFwFaultManager.activityTestReq() method, it shall implement activityTestRes() and activityTestErr() in this interface.  If the Service is capable of invoking IpFwFaultManager.generateFaultStatisticsRecordReq(), it shall implement generateFaultStatisticsRecordRes() and generateFaultStatisticsRecordErr() in this interface. 

	<<Interface>>

IpSvcFaultManager

	

	activityTestRes (activityTestID : in TpActivityTestID, activityTestResult : in TpActivityTestRes) : void

svcActivityTestReq (activityTestID : in TpActivityTestID) : void

<<deprecated>> fwFaultReportInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwFaultRecoveryInd (fault : in TpInterfaceFault) : void

<<deprecated>> fwUnavailableInd (reason : in TpFwUnavailReason) : void

svcUnavailableInd () : void



activityTestErr (activityTestID : in TpActivityTestID) : void




appAvailStatusInd (reason : in TpAppAvailStatusReason) : void

<<new>> generateFaultStatisticsRecordRes (faultStatsReqID : in TpFaultReqID, faultStatistics : in TpFaultStatsRecord, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordErr (faultStatsReqID : in TpFaultReqID, faultStatisticsError : in TpFaultStatisticsError, recordSubject : in TpSubjectType) : void

<<new>> generateFaultStatisticsRecordReq (faultStatsReqID : in TpFaultReqID, timePeriod : in TpTimeInterval) : void

<<new>> fwAvailStatusInd (reason : in TpFwAvailStatusReason) : void




8.3.4.2.1
Method activityTestRes()

The framework uses this method to return the result of a service-requested activity test. 

Parameters

activityTestID : in TpActivityTestID

Used by the service to correlate this response (when it arrives) with the original request.
activityTestResult : in TpActivityTestRes

The result of the activity test.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID
8.3.4.2.2
Method svcActivityTestReq()

The framework invokes this method to test that the service instance is operational. On receipt of this request, the service instance must carry out a test on itself, to check that it is operating correctly.  The service instance reports the test result by invoking the svcActivityTestRes method on the IpFwFaultManager interface. 

Parameters

activityTestID : in TpActivityTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
Raises

TpCommonExceptions
8.3.4.2.3
Method <<deprecated>> fwFaultReportInd()

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service the reason why the Framework is unavailable.

The framework invokes this method to notify the service instance of a failure within the framework. The service instance must not continue to use the framework until it has recovered (as indicated by a fwFaultRecoveryInd). 

Parameters

fault : in TpInterfaceFault

Specifies the fault that has been detected by the framework.
Raises

TpCommonExceptions
8.3.4.2.4
Method <<deprecated>> fwFaultRecoveryInd()

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Service when the Framework becomes available again.

The framework invokes this method to notify the service instance that a previously reported fault has been rectified.  The service instance may then resume using the framework. 

Parameters

fault : in TpInterfaceFault

Specifies the fault from which the framework has recovered.
Raises

TpCommonExceptions
8.3.4.2.5
Method <<deprecated>> fwUnavailableInd()

This method is deprecated and will be removed in a later release.  It is strongly recommended not to implement this method. The new method fwAvailStatusInd shall be used instead, using the new type of reason parameter to inform the Application the reason why the Framework is unavailable and also when the Framework becomes available again.

The framework invokes this method to inform the service instance that it is no longer available. 

Parameters

reason : in TpFwUnavailReason

Identifies the reason why the framework is no longer available.
Raises

TpCommonExceptions
8.3.4.2.6
Method svcUnavailableInd()

The framework invokes this method to inform the service instance that the client application has reported that it can no longer use the service instance. 

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions

















8.3.4.2.9
Method activityTestErr()

The framework uses this method to indicate that an error occurred during a service-requested activity test.  

Parameters

activityTestID : in TpActivityTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
Raises

TpCommonExceptions, P_INVALID_ACTIVITY_TEST_ID




























8.3.4.2.13
Method appAvailStatusInd()

The framework invokes this method to inform the service instance that the client application is no longer available using different reasons for the unavailability. This may be a result of the application reporting a failure.  Alternatively, the framework may have detected that the application has failed: e.g. non-response from an activity test, failure to return heartbeats, using the reason APP_UNAVAILABLE_NO_RESPONSE. When the application becomes available again the reason APP_AVAILABLE shall be used to inform the Service about that. 

Parameters

reason : in TpAppAvailStatusReason

Identifies the reason why the application is no longer available. APP_AVAILABLE is used to inform the Service that the Application is available again. 
Raises

TpCommonExceptions
8.3.4.2.14
Method <<new>> generateFaultStatisticsRecordRes()

This method is used by the framework to provide fault statistics to a service instance in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface.  

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this response (when it arrives) with the original request.
faultStatistics : in TpFaultStatsRecord

The fault statistics record.
recordSubject : in TpSubjectType

Specifies the entity (framework or application)  whose fault statistics record has been provided.
Raises

TpCommonExceptions
8.3.4.2.15
Method <<new>> generateFaultStatisticsRecordErr()

This method is used by the framework to indicate an error fulfilling the request to provide fault statistics, in response to a generateFaultStatisticsRecordReq method invocation on the IpFwFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

Used by the service instance to correlate this error (when it arrives) with the original request.
faultStatisticsError : in TpFaultStatisticsError

The fault statistics error.
recordSubject : in TpSubjectType

Specifies the entity (framework or application) whose fault statistics record was requested.
Raises

TpCommonExceptions
8.3.4.2.16
Method <<new>> generateFaultStatisticsRecordReq()

This method is used by the framework to solicit fault statistics from the service instance, for example when the framework was asked for these statistics by the client application using the generateFaultStatisticsRecordReq operation on the IpFaultManager interface. On receipt of this request the service instance must produce a fault statistics record during the specified time interval, which is returned to the framework using the generateFaultStatisticsRecordRes operation on the IpFwFaultManager interface. 

Parameters

faultStatsReqID : in TpFaultReqID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timePeriod : in TpTimeInterval

The period over which the fault statistics are to be generated. Supplying both a start time and stop time as empty strings leaves the time period to the discretion of the service.
Raises

TpCommonExceptions
8.3.4.2.17
Method <<new>> fwAvailStatusInd()

The framework invokes this method to inform the service instance about the Framework availability status, i.e. that it can no longer use the Framework according to the reason parameter or that the Framework has become available again. The service instance may wait for the problem to be solved and just stop the usage of the Framework until the fwAvailStatusInd() is called again with the reason FRAMEWORK_AVAILABLE.   

Parameters

reason : in TpFwAvailStatusReason

Identifies the reason why the framework is no longer available or that it has become available again.
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8.3.4.7
Interface Class IpFwLoadManager 

Inherits from: IpInterface.
The framework API should allow the load to be distributed across multiple machines and across multiple component processes, according to a load management policy. The separation of the load management mechanism and load management policy ensures the flexibility of the load management services. The load management policy identifies what load management rules the framework should follow for the specific service. It might specify what action the framework should take as the congestion level changes. For example, some real-time critical applications will want to make sure continuous service is maintained, below a given congestion level, at all costs, whereas other services will be satisfied with disconnecting and trying again later if the congestion level rises. Clearly, the load management policy is related to the QoS level to which the application is subscribed. The framework load management function is represented by the IpFwLoadManager interface.  To handle responses and reports, the service developer must implement the IpSvcLoadManager interface to provide the callback mechanism.















If the IpFwLoadManager interface is implemented by a Framework, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, the createLoadLevelNotification() and destroyLoadLevelNotification() methods shall be implemented.  If suspendNotification() is implemented, then resumeNotification() shall be implemented also.  If a Framework is capable of invoking the IpSvcLoadManager.querySvcLoadStatsReq() method, then it shall implement querySvcLoadStatsRes() and querySvcLoadStatsErr() methods in this interface. 

	<<Interface>>

IpFwLoadManager

	

	reportLoad (loadLevel : in TpLoadLevel) : void




createLoadLevelNotification (notificationSubject : in TpSubjectType) : void

destroyLoadLevelNotification (notificationSubject : in TpSubjectType) : void

suspendNotification (notificationSubject : in TpSubjectType) : void

resumeNotification (notificationSubject : in TpSubjectType) : void

<<new>> queryLoadStatsReq (loadStatsReqID : in TpLoadTestID, querySubject : in TpSubjectType, timeInterval : in TpTimeInterval) : void

<<new>> querySvcLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> querySvcLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticError : in TpLoadStatisticError) : void




8.3.4.7.1
Method reportLoad()

The service instance uses this method to report its current load level (0, 1, or 2) to the framework: e.g. when the load level on the service instance has changed. 

At level 0 load, the service instance is performing within its load specifications (i.e. it is not congested or overloaded). At level 1 load, the service instance is overloaded. At level 2 load, the service instance is severely overloaded.  In addition this method shall be called by the service instance in order to report current load status, when load notifications are first requested, or resumed after suspension. 

Parameters

loadLevel : in TpLoadLevel

Specifies the service instance's load level.
Raises

TpCommonExceptions


























8.3.4.7.5
Method createLoadLevelNotification()

The service instance uses this method to register to receive notifications of load level changes associated with the framework or with the application that uses the service instance.  Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager. 

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should be reported. 
Raises

TpCommonExceptions
8.3.4.7.6
Method destroyLoadLevelNotification()

The service instance uses this method to unregister for notifications of load level changes associated with the framework or with the application that uses the service instance. 

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which load level changes should no longer be reported.
Raises

TpCommonExceptions
8.3.4.7.7
Method suspendNotification()

The service instance uses this method to request the framework to suspend sending it notifications associated with the framework or with the application that uses the service instance; e.g. while the service instance handles a temporary overload condition.  

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications by the framework should be suspended. 
Raises

TpCommonExceptions
8.3.4.7.8
Method resumeNotification()

The service instance uses this method to request the framework to resume sending it notifications associated with the framework or with the application that uses the service instance; e.g. after a period of suspension during which the service instance handled a temporary overload condition.  Upon receipt of this method the framework shall inform the service instance of the current framework or application load using the loadLevelNotification method on the corresponding IpSvcLoadManager. 

Parameters

notificationSubject : in TpSubjectType

Specifies the entity (framework or application) for which the sending of notifications of load level changes by the framework should be resumed.  
Raises

TpCommonExceptions
8.3.4.7.9
Method <<new>> queryLoadStatsReq()

The service instance uses this method to request the framework to provide load statistics records for the framework or for the application that uses the service instance. 

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the service instance to correlate the response (when it arrives) with this request.
querySubject : in TpSubjectType

Specifies the entity (framework or application) for which load statistics records should be reported.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistics records should be reported.
Raises

TpCommonExceptions
8.3.4.7.10
Method <<new>> querySvcLoadStatsRes()

The service instance uses this method to send load statistic records back to the framework that requested the information; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.  

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the service-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.7.11
Method <<new>> querySvcLoadStatsErr()

The service instance uses this method to return an error response to the framework that requested the service instance's load statistics information, when the service instance is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the querySvcLoadStatsReq method on the IpSvcLoadManager interface.  

Parameters

loadStatsReqID : in TpLoadTestID

Used by the framework to correlate this error (when it arrives) with the original request.
loadStatisticError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the service instance's load statistics.
Raises

TpCommonExceptions
	Next Modified Section


8.3.4.8
Interface Class IpSvcLoadManager 

Inherits from: IpInterface.
The service developer supplies the load manager service interface to handle requests, reports and other responses from the framework load manager function.  The service instance supplies the identity of its callback interface at the time it obtains the framework's load manager interface, by use of the obtainInterfaceWithCallback() method on the IpAccess interface.































If the IpSvcLoadManager interface is implemented by a Service, at least one of the methods shall be implemented as a minimum requirement. If load level notifications are supported, then loadLevelNotification() shall be implemented.  If a Service is capable of invoking the IpFwLoadManager.queryLoadStatsReq() method, then it shall implement queryLoadStatsRes() and queryLoadStatsErr() methods in this interface. 

	<<Interface>>

IpSvcLoadManager

	

	


loadLevelNotification (loadStatistics : in TpLoadStatisticList) : void

suspendNotification () : void

resumeNotification () : void

createLoadLevelNotification () : void

destroyLoadLevelNotification () : void

<<new>> querySvcLoadStatsReq (loadStatsReqID : in TpLoadTestID, timeInterval : in TpTimeInterval) : void

<<new>> queryLoadStatsRes (loadStatsReqID : in TpLoadTestID, loadStatistics : in TpLoadStatisticList) : void

<<new>> queryLoadStatsErr (loadStatsReqID : in TpLoadTestID, loadStatisticsError : in TpLoadStatisticError) : void




























8.3.4.8.4
Method loadLevelNotification()

Upon detecting load condition change, (e.g. load level changing from 0 to 1, 0 to 2, 1 to 0, for the application or framework which has been registered for load level notifications) this method is invoked on the SCF.  In addition this method shall be invoked on the SCF in order to provide a notification of current load status, when load notifications are first requested, or resumed after suspension. 

Parameters

loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics, which include the load level change(s).
Raises

TpCommonExceptions
8.3.4.8.5
Method suspendNotification()

The framework uses this method to request the service instance to suspend sending it any notifications: e.g. while the framework handles a temporary overload condition. 

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.6
Method resumeNotification()

The framework uses this method to request the service instance to resume sending it notifications: e.g. after a period of suspension during which the framework handled a temporary overload condition.  Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager. 

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.7
Method createLoadLevelNotification()

The framework uses this method to register to receive notifications of load level changes associated with the  service instance.  Upon receipt of this method the service instance shall inform the framework of the current load using the reportLoad method on the corresponding IpFwLoadManager. 

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.8
Method destroyLoadLevelNotification()

The framework uses this method to unregister for notifications of load level changes associated with the service instance. 

Parameters

No Parameters were identified for this method.

Raises

TpCommonExceptions
8.3.4.8.9
Method <<new>> querySvcLoadStatsReq()

The framework uses this method to request the service instance to provide its load statistic records.  

Parameters

loadStatsReqID : in TpLoadTestID

The identifier provided by the framework to correlate the response (when it arrives) with this request.
timeInterval : in TpTimeInterval

Specifies the time interval for which load statistic records should be reported.
Raises

TpCommonExceptions
8.3.4.8.10
Method <<new>> queryLoadStatsRes()

The framework uses this method to send load statistic records back to the service instance that requested the information; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface. 

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this response (when it arrives) with the original request.
loadStatistics : in TpLoadStatisticList

Specifies the framework-supplied load statistics.
Raises

TpCommonExceptions
8.3.4.8.11
Method <<new>> queryLoadStatsErr()

The framework uses this method to return an error response to the service that requested the framework's load statistics information, when the framework is unsuccessful in obtaining any load statistic records; i.e. in response to an invocation of the queryLoadStatsReq method on the IpFwLoadManager interface.  

Parameters

loadStatsReqID : in TpLoadTestID

Used by the service instance to correlate this error (when it arrives) with the original request.
loadStatisticsError : in TpLoadStatisticError

Specifies the error code associated with the failed attempt to retrieve the framework's load statistics.
Raises

TpCommonExceptions
	Next Modified Section


8.4.4
Integrity Management State Transition Diagrams
8.4.4.1
State Transition Diagrams for IpFwLoadManager 


[image: image16] 

Figure : State Transition Diagram for IpFwLoadManager 

8.4.4.1.1
Idle State

In this state the service has obtained an interface reference of the LoadManager from the IpAccess interface.
8.4.4.1.2
Notification Suspended State

Due to e.g. a temporary load condition, the service has requested the LoadManager to suspend sending the load level notification information.
8.4.4.1.3
Active State

In this state the service has indicated its interest in notifications by performing a createLoadLevelNotification() invocation on the IpFwLoadManager.  The load manager can now request the service to supply load statistics information (by invoking querySvcLoadStatsReq()). Furthermore the LoadManager can request the service to control its load (by invoking loadLevelNotification(), resumeNotification() or suspendNotification() on the service side of interface). In case the service detects a change in load level, it reports this to the LoadManager by calling the method reportLoad(). 
8.4.4.2
State Transition Diagrams for IpFwFaultManager 
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Figure : State Transition Diagram for IpFwFaultManager 

8.4.4.2.1
Framework Active State

This is the normal state of the framework, which is fully functional and able to handle requests from both applications and service capability features.
8.4.4.2.2
Framework Activity Test State

In this state, the framework is performing a self-diagnostic test. If a problem is diagnosed, all services with fault management callbacks are notified through an fwAvailStatusInd message.
8.4.4.2.3
Application Activity Test State

In this state, the framework is performing a test on one client application. If the application is faulty, services that are used by the application and that have provided fault management callbacks are notified accordingly through an appAvailStatusInd message.
8.4.4.2.4
Framework Faulty State

In this state, the framework has detected an internal problem with itself such that application and service capability features cannot communicate with it anymore; attempts to invoke any methods that belong to any SCFs of the framework return an error. If the framework ever recovers, services with fault management callbacks will be notified via a fwAvailStatusInd message.
	Next Modified Section


10.4.7
TpInterfaceFault

Defines the cause of the interface fault detected.

	Name
	Value
	Description

	INTERFACE_FAULT_UNDEFINED
	0
	Undefined

	INTERFACE_FAULT_LOCAL_FAILURE
	1
	A fault in the local API software or hardware has been detected

	INTERFACE_FAULT_GATEWAY_FAILURE
	2
	A fault in the gateway API software or hardware has been detected

	INTERFACE_FAULT_PROTOCOL_ERROR
	3
	An error in the protocol used on the client-gateway link has been detected




	
	
	

	
	
	

	
	
	

	
	
	

	
	
	

	
	
	


10.4.9
TpFwUnavailReason

Defines the reason why the Framework is unavailable.

	Name
	Value
	Description

	FW_UNAVAILABLE_UNDEFINED
	0
	Undefined

	FW_UNAVAILABLE_LOCAL_FAILURE
	1
	The Local API software or hardware has failed

	FW_UNAVAILABLE_GATEWAY_FAILURE
	2
	The gateway API software or hardware has failed

	FW_UNAVAILABLE_OVERLOADED
	3
	The Framework is fully overloaded

	FW_UNAVAILABLE_CLOSED
	4
	The Framework has closed itself (e.g. to protect from fraud or malicious attack)

	FW_UNAVAILABLE_PROTOCOL_FAILURE
	5
	The protocol used on the client-gateway link has failed


	End of modifications
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