Joint-Working-Group (Parlay, ETSI TISPAN Project OSA, 3GPP CT5)
C5-050616

Meeting #33, Boston, USA, 10 - 13 October 2005

Source:
Appium (Jørgen Dyst)

Title:
Parlay X 3.0 Enhanced Call Control
Agenda Item:
OSA4 (3GPP Rel-7)

Document for:
Discussion and Decision
This document proposes requirements for a new Parlay X Enhanced Call Control web service for Parlay X 3.0.

Background:

A contribution C5-050482 “Parlay X Call Control improvement” from Ericsson at the London meeting addressed the need to create a new web service specification “Extended/Advanced Call Control” for Parlay X3.0. It was pointed out that Parlay-X2 Call Control consists of five call control (CC) related web service specifications (Third Party Call, Audio Call, Call Handling, Call Notification, Multimedia conference). However, it is not possible to utilize these capabilities coherently and therefore there happens to be a number of use cases that cannot be realized with the current Parlay X2 specifications.. A more comprehensive Parlay-X Call Control web service specification is seen as needed to enable more advanced call control applications. This can be accomplished by combing capabilities as defined for the Parlay X2 Call Control web services and possibly complement this with some additional capabilities enabling the creation of a flexible and powerful Parlay X call control web service. For example the Parlay X 2.0 Call Notification and Third Party web services could be considered as the core functional base for the creation of such a new web service. This new web service should still adhere to the Parlay X rules on simplicity and provide a high abstraction level, though it may be envisaged that these rules may be relaxed where the Parlay X programming model for ease of use conflicts with the requirement for more powerful and flexible call control capabilities. Compared to the Parlay/OSA Call Control interfaces, the ParlayX Call Control web service is to be much simpler to use by applications and have a higher abstraction level. Furthermore Parlay X is to be designed for a loose coupling between application and service, and not for a tight integration like the Parlay solution over CORBA.

The ambition with Parlay X3.0 Call Control web service should be to maintain a high abstraction level in order to minimize the need for telecom knowledge for implementers.

A decision is requested by the JWG to decide upon inclusion of this requirement into the current ETSI requirements document. Furthermore we should decide if the requirement also has to be contributed to 3GPP SA1.

Proposal
Proposed requirements for a Parlay X3.0 Extended Call Control web service are listed below:

Y.x Parlay X advanced Call Control (#6Px)

Requirement: Applications using Parlay X for call control shall be offered flexible and powerful capabilities to allow advanced call control and invitation and disconnection of additional call parties for an ongoing call. This is to facilitate a number of use cases of significant commercial value that otherwise cannot be realized using Parlay X WS technology.

	Number
	Functional Description of Need
	Commercial Motivation
	Likely Network components used in realisation

	1
	Parlay X 3.0 Call Control Web Service:
 Applications should have the ability to apply powerful Call Control capabilities, when creating and managing a call initiated either by an application (third party call) or by the network. Applications should be able to invoke these call handling functions without knowledge of the underlying telecommunication network mechanisms, and the application developer should not require any detailed telecom knowledge. Simplicity is key to this web service. This signifies the need for a more flexible and powerful Parlay X web service for call control than those defined in Parlay X2

The call control capabilities enabled through this new web service should include those as defined for Parlay X2 for Third Party Call control (3PCC) and CallNotification, but with a number of functional extensions.

The capabilities required should include:

Parlay X2 Third Party Call and Call Nofication:

I) Application should be able to Create a Call
i.e. setup a call between two call parties application initiated, i.e. “make a call” capabilities as defined in Parlay X2 Third Party Call WS.

IIa) Application shall be able to be invoked on a call notification event (network initiated) for an outgoing or incoming call to a user and to act on the call event.
The specific type of Call Event should include Busy, NotReachable, NoAnswer and CalledNumber,. (i.e. hande<Event> capabilities as defined in Parlay X2 Call Notification WS.

IIb) The action requested by application in response to a call event (invocation of a handle<Event>) is used as an indication on how the call should be handled in the network. It shall be possible to request Call Setup Continuation, Call Route/Redirection and Call Release.

Extensions to Parlay X2 3PCC and Call Notification:

1) Service Identifier:
From a notification (handleXXX), it should be possible by means of a service identifier to correlate the notification with the criteria which triggered this notification.
For an application initiated call (3PCC) it should be possible to include a service identifier in the call setup request.
A SP may have multiple applications/services for a single user. These applications should be triggered differently depending on the event which triggered the notification.

2) Persistent application call control:
The application should be able to keep control over the call after handling the event in II) or after the request to create a call in I). Applications should to be able to make a request for an event subscription to subsequent call events (in call interrupt mode) for an ongoing call as an extension compared to PX2. This should be possible by asking for a specific type of Call Event (Busy, NotReachable, NoAnswer, CallProgress, CallSetupFailure, CallPartyAnswer, CallPartyDisconnect) and to act on the reported call event. This subscription request should be made with the call setup request. Enabling capabilities such as call forwarding, call redirection and follow-on call.

3) Add an additional call party, disconnect a call party:
Applications should be able to request a call party to be invited (add call leg) to the ongoing established call, i.e. expanding the call beyond two call parties . Furthermore to disconnect a single call party (remove call leg), when more than 2 call parties are present. The result of invite party (add call leg) is to alert the user of the incoming connection request (e.g. the user's terminal rings). Enabling applications such as multi-party call and call transfer. This support for multi-party call extends the number of “call states”as currently defined for Parlay X2 Third Party Call.

4) Application initiated call control:
Application should be able to interact on an ongoing call without prior event from the network. Such allowed interactions should include add and remove of call legs, the ability to make a forced release of the ongoing call, (i.e. request End Call) and for the application to leave the ongoing call (deassign call control).

5) Call Hunting:
Application should be able to request Call Hunting (route to many - in sequence or in parallel), i.e. provide a list (one to may) of destination numbers when a requested action is call routing.

6) Call charging:
Application should have the ability to request call charging. Simple call charging capabilities as defined for 3PCC and Call Notification with the use of the Parlay X2 common charging data type (provided in an XML data type) should be enabled. This should allow for offline charging to specify a billing text, the currency in which the charge is to be applied, the amount to be charged, and a charging code.

7) Media Control:
An application should be informed in the call notification 2a) about which media the call is intended for and be able to enable /disable offered media as an action IIb).

For an application initiated call I) it should be possible to include information about what media the session is intended for (e.g. voice and video) .
For an ongoing call it should be possible to make an event subscription 2) for any requested media change for a call party in the call and to act on a media modification request in the ongoing call (allow/disallow media change).
An application may for a user read the media used and request a change in the applied media of a user – For example in order to put a call party “on hold” (mute) or to make a user only receive video (IN), not send (OUT)).

8) IVR Interaction:
Application should be able to request IVR Interaction on a call. It should include simple Play Announcement and Play and Collect information capabilities.
Extensions to 3PCC should allow to make an audio call for the playing of audio messages to calling party using different forms of audio content. The call created should be simply between calling party and a called party, where the latter is represented by a media server (acting like an end-user) for the IVR interaction.

Extensions to Call Notification should allow to make an action request to route the call to a media server (acting like an end-user) for IVR interaction.

When the application requests a call party to be invited (add call leg) to the ongoing established call, the request for the invitation of a new party should allow for a call setup to a media server in the network for IVR interaction. An IVR call connection should be handled as a particular case of a call leg.
The forms of audio content needed for IVR interaction should include:

· Predefined announcement (announcement id)

· Text (to be rendered using a Text-To-Speech (TTS) engine

· Audio Content (URI- location of audio content to be played by an audio player)

· VoiceXML (URI location of VoiceXml to be rendered by a VoiceXML browser.

	Currently, in order to perform advanced call control in telecommunication networks we have to write applications using specific protocols to access Call Control functions provided by network elements. This approach requires a high degree of network expertise. We can also use the OSA gateway approach, invoking standard interfaces such as MPCC to gain access to call control capabilities, but these interfaces are usually perceived to be quite complex by application IT developers. Developers must have advanced telecommunication skills to use Call Control OSA interfaces. The Parlay X2 offers simple call control capabilities. The call control web services such as Call Notification and Third Party offers simple call control capabilities, but are not found flexible and powerful enough to realize a number of use cases of significant commercial value such as VPBX , Call Center applications, Personalized Call Completion, Call Hunting, and Call Transfer..

A more flexible web service for call control is needed expanding the Parlay X2 call control capabilities. More powerful call control capabilities may lead to demand to be capable to handle asynchronous traffic events and stateful call control. The occasional use of state and an asynchronous traffic model may be difficult to understand for some IT application developers and conflict with the Parlay-X programming model. However, the added commercial value of the suggested changes outweighs these disadvantages
	Media Server

Expected outcome:

The JWG is asked to review and comment this proposal. The JWG should come to an agreement on to accept or reject this as an ETSI requirement for Parlay-X 3.0 for inclusion in the ETSI Parlay Requirements document. If accepted a decision should be made if a requirement also has to be submitted to 3GPP SA1.

[image: image1.emf]

APPENDIX

The information flows demonstrated below make an informative attempt to illustrate some of the call control capabilies that may be enabled through the proposed requirements; when considered as functional extensions to Parlay X2 Third Party Call and Call Notification web services.

The information flows are informative and NOT intended to imply or suggest any specific Parlay X realization/implementation. The information flows are kept network agnostic . The mapping from Parlay X gateway toward the telecom network is left open, it could for example equally well apply to OSA/Parlay APIs (e.g. MPCC, MMCC) as well as to SIP and SDP protocols.

The information flows is concluded with a quite a comprehensive use case example: Main Number Call.

1 Information Flows

1.1 Create an aplication initiated two-party call
-with call events notifications

1.2 Create an Application initiated Audio Call
 – connect A-party to media server for play announcement

1.3 Handling a Network-related Call Event – Action: Route Call
- with request for call events - persistent control

1.4 Application initiated Action: Invite call party (add leg)

1.5 Application initiated Action: Disconnect call party (remove leg)

1.6 Application initiated Action: Add media for participant

2 USE Case Example: Main Number Call

Following shows a possible sequence for a call center application. The application has a graphical user interface (GUI), where attendants can announce themselves available and unavailable, and perform other actions. When a user calls the company number, the call center application checks whether any attendants are available. If they are not available (busy or out of office), then the user is put in waiting queue.

When the user and the attendant are connected, the user tells the attendant that he would like to be connected to a certain employee. The attendant looks up the employee in the company phone book, and first connects himself with the employee, putting the user on hold. When the employee indicates that he wants to receive the call, the attendant connects user and employee together.

getCallInfoRequest

Read call state status: A and B connected

store call status an notify application about B answer-start announcement playing– audio call established

callEventResult

eventReportResult-(answer leg B- audio player)

invitePartyResponse

routeReq()

eventReportReq(

eg C)

routeReq (Leg B – media server�(announcement id- e.g. B number info)

createCallLeg(leg C)

eventReportRequest (leg b: answer)

optional: setChargePlan (leg B –media server)

eventReportResult(Answer A party)

InvitePartyRequest (leg C-Attendant)

callEventResult: Answer leg B (media server-start�announcement playing)

Attendant available

event Report Result: answer�

Attendant

routeRequest-leg B (call to media server)

EvenReportRequest

OPTIONAL: setChargePlan

handleCalledNumberResponse:�

(Action: Route to media server B�-+ announcement info (NEW)

 + call event list (NEW)

handleCalledNumberRequest

reportNotification: Call event: ADDRESS_ANALYSED

“no free attendant, put call in queue –play announcement to user A

“User A calls company� number”

createNotification: ADDRESS_ANALYSED: i.e. INTERRUPT mode

Call Control�Network

PX Call Control�web service

PX�Application

Call Control�Network

continueProcessing

getMediaStreams()

getMediaStreams()

A requests to add Video IN�(e.g. SIP�Re-INVITE) SIP)

PX�Application

mediaStreamChangeRes()

mediaStreamChangeReq()

PX Call Control�service

eventReportRequest (leg b: answer), leg b)

eventReportResult-(answer leg B)

routeReq (Leg B)

makeCallRequest�(A-party, B-party +call events B)

getCallInfoRequest

Read call state status: A and B connected

callEventResult

“Attempting to call A”

routeReq (Leg A)

PX�Application

�Application

EventReportRequest (leg a, leg b)

continueProcessing-leg A

OPTIONAL: setChargePlan

handleCalledNumberRequest

handleCalledNumberResponse:�

(Action: CONTINUE + eventlist)

reportNotification: Call event: ADDRESS_ANALYSED

“new”

“A attempting to call B”

createNotification: P_CALL_EVENT_ADDRESS_ANALYSED: i.e. INTERRUPT mode

Netoerk�Call Controll

ACCl �Web service

changeMediaForPartyResponse

changeMediaForPartyRequest: “Add Video IN”

getPartyInfoResponse: �“Connected, with Audio IN/OUT”

getPartyInfoRequest

continue Processing

FREE ATTENDANT

getPartyInfoResponse: �“Connected, with Audio IN/OUT & Video IN”

getPartyInfoRequest

PX Call Control�service

Call Control�Network

Call Control�Network

PX Call Control�service

application reads actual call status after�disconnect A

releaseLeg (leg A)

disconnectPartyResponse

disconnectPartyRequest�(call ref, Leg A)

getCallInfoResponse: “Connected”�(Leg s A, B, C, call ref)

application reads actual call status before�disconnect A

getCallInfoRequest

getCallInfoResponse: “Connected”�(Legs B, C, call ref)

getCallInfoRequest

PX Call Control�service

PX�Application

PX�Application

routeReq()

eventReportReq(leg C)

getCallInfoResponse: �“Active call state” -3 party call (Leg A, B,and C)

getCallInfoRequest

getCallInfoResponse: “connected-two-call party Leg A, B”

getCallInfoRequest

invitePartyResponse

callEventResult: Answer leg C

eventReportRes()CALL_EVENT_ANSWER

createCallLeg(leg C)

invitePartyRequest (Leg C)

Call Control�Network

PX Call Control�service

PX�Application

eventReportRes (B- answer)

routeReq (leg B)

OPTIONAL: setCallChargePlan()

“A requests a call setup to B”

handleCalledNumberRequest

callEventNotify

handleCalledNumberResponse: �Action: ROUTE + eventlist (NEW)

enableCallNotification: P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT: i.e. INTERRUPT mode

Call Control�Network

makeCallResponse

(call reference)

routeReq (Leg A)

event

 Report Result: answer (leg C)�

continue Processing

callEventResult: Answer�(leg C –attendant - connected with user A)

eventReportRequest(Answer A)

createCall Leg(leg A)

makeCallResponse

(call reference)

continueProcessing

PX call control updates its call state status (can be read by application any time) and notifies application about answer event from B

callEventResult:� (Answer leg C)

disconnectPartyRequest�(call ref, Leg B)

releaseLeg(leg B)

disconnectPartyResponse

eventReportReq (answer and call failure events)

mediaStreamChangeRes

mediaStreamChangeReq

Played announcement to user A is stopped-path to media server (leg B) is disconnected�User A (leg A) and Attendant (leg C) are connected

Attendant

PX�Application

PX Call Control�web service

Call Control�Network

ATTENDANT: REQUEST TO PUT USER A ON MUSIC HOLD AND TO CALL EMPLOYEE

“User A gets connected to audio player”

createCallLeg(leg D)

changeMediaForPartyRequest: �(connect A and E with conversational audio- speech)

releaseLeg (leg D- Audio Player)

disconnectPartyResponse)

continueProcessing

EvenReportRequest (leg D ”Answer + call failure”)

mediaStreamChangeRes

callEventResult: Answer leg D (audio server-start�music playing)

event Report Result: answer�

invitePartyRequest (leg E)

Attendant (Leg C) gets connected with employee (leg E):

CALL TRANSFER : USER AND EMPLYEE GETS CONNECTED ATTENDANT

InvitePartyRequest �(leg D- media server/audio player)

routeReq (leg E)

eventReportReq(leg E)

routeReq (leg D-call to audio server)

invitePartyResponse

event Report Result: answer (leg E) �

callEventResult: Answer�(leg E –employee connected)

continue Processing

disconnectPartyRequest�(call ref, Leg C, Leg D)

createCallLeg (leg E- employee) Attendant)

changeMediaForPartyResponse

Attendant becomes free- User A (leg A) and Attendant (leg C) are connected :

mediaStreamChangeReq

deassignCall

deassign call control

getCallInfoResponsest

makeCallRequest�(A-party, B-party +call events B� + announcement id info)

“Attempting to call A”

Call Control�Network

PX Call Control�service

PX�Application

�Application

EventReportRequest (leg a, leg b)

continueProcessing-leg A

OPTIONAL: setChargePlan

handleCalledNumberRequest

handleCalledNumberResponse:�

(Action: CONTINUE + eventlist)

reportNotification: Call event: ADDRESS_ANALYSED

“new”

“A attempting to call B”

releaseLeg (leg C- Attendant)

createNotification: P_CALL_EVENT_ADDRESS_ANALYSED: i.e. INTERRUPT mode

Netoerk�Call Controll

ACCl �Web service

store call status an notify application about B answer-call established

getCallInfoResponsest

eventReportRequest(Answer A)

changeMediaForPartyRequest: �(“A on Mute Hold- audio player)

chageMediaForPartyResponse: �“Connected, with music IN”

invitePartyResponse

REQUEST TO REMOVE MUSIC HOLD AND TRANSFER CALL TO EMPLOYEE

eventReportResult(Answer A)

optional: setChargePlan (leg B)

createCall Leg(leg A)

� See TR 23.816 for 3GPP rel7 addressing the need for an IMS service identifier. Source: http://www.3gpp.org

_1190037598.doc
Error! Style not defined.

2

Error! Style not defined.

1 Sequence Diagrams

1.1 Create a Call

Sequence Diagrams

5.1 Handling a Network-related Call Event – Action: Continue

Handling a Network-related Call Event – Action: Route

5.2 Handling a Network-related Call Event – Action: Route Call

1.2 Handling a Network-related Call Event – Action: Route

xx

x

Invite Participant –

5.1 Disconnect Participant

Simple Media Control- Add Media For Participant

xx

5.2 Delete Media For Participant

Simple Media Control- Delete Media For Participant

xx

notifyCallStatusResponsequest

notifyCallStatus

A

continueProcessing (call leg B)

eventReportResult(Answer B)

eventReportResult(Answer A)

continueProcessing (call leg A)

createAndRouteCallLegReq(call leg B)

optional: setChargePlan

A party Answer

createCallResponse

createAndRouteCallLegReq(call leg A)

createCall()

Ip�MPCall

createCallRequest

�Appl

ACC Service

ACCl �Web service

Netoerk�Call Controll

createNotification: P_CALL_EVENT_ADDRESS_ANALYSED: i.e. INTERRUPT mode

“A attempting to call B”

“new”

reportNotification: Call event: ADDRESS_ANALYSED

handleCalledNumberResponse:�

(Action: CONTINUE + eventlist)

handleCalledNumberRequest

OPTIONAL: setChargePlan

continueProcessing-leg A

EventReportRequest (leg a, leg b)

�Application

Netoerk�Call Controll

�Application

ACC �Web service

createAndRouteCallLegC

requestcallEventss (leg A, Leg C)

OPTIONAL: setChargePlan

handleBusyResponse: ROUTE

handleBusy

createNotification: P_CALL_EVENT_ADDRESS_ANALYSED: i.e. INTERRUPT mode

reportNotification: Call Event: Busy

“new”

“A calls B, but B is Busy”

handleCalledNumberResponse: �Action: ROUTE + eventlist

“A requests a call setup to B”

callEventNotify

enableCallNotification: P_EVENT_GCCS_ADDRESS_ANALYSED_EVENT: i.e. INTERRUPT mode

Network

routedeassignCall()???

routeReq()

OPTIONAL: setCallChargePlan()

handleCalledNumberRequest

Call Notification

Application

�Application

ACC�Service

Ip�MMCall

inviteParticipantRequest (Leg C)

createCallLeg(leg C)

eventReportRes()CALL_EVENT_ANSWER

InviteParticipantResult event”

inviteParticipantResponse

getCallInfoRequest

getCallInfoResponse: “Initial”

getCallInfoRequest

getCallInfoResponse: “Active”

eventReportReq(leg C)

routeReq()

�Appl

ACC�service

Network�Call

getCallInfoRequest

getCallInfoResponse: “Active”

getCallInfoRequest

getCallInfoResponse: “Active, multiple participants connected”

getCallInfoResponse: “Connected”

disconnectParticipantRequest

disconnectParticipantResponse

releaseLeg(leg A)

�Appl

ACC�Service

Network

call and media control

getCallInfoRequest

getCallInfoResponse: “Active”

getParticipantInfoRequest

getParticipantInfoResponse: “Connected, with Audio IN/OUT & Video IN”

getCallInfoRequest

getCallInfoResponse: “Active”

getParticipantInfoRequest

getParticipantInfoResponse: “Connected, with Audio IN/OUT”

addMediaForParticipantRequest: “Add Video IN”

addMediaForParticipantResponse

mediaStreamMonitorReq()

mediaStreamMonitorRes()

mediaStreamAllow()

A requests to add Video IN

getMediaStreams()

getMediaStreams()

Network

call and media control

getParticipantInfoResponse: “Connected, with Audio IN/OUT & Video IN”

getMediaStreams()

getParticipantInfoRequest

getCallInfoResponse: “Active”

getCallInfoRequest

mediaStreamMonitorReq()

getMediaStreams()

getCallInfoRequest

A requests to add Video IN

mediaStreamAllow()

mediaStreamMonitorRes()

addMediaForParticipantResponse

addMediaForParticipantRequest: “Add Video IN”

getParticipantInfoResponse: “Connected, with Audio IN/OUT”

getParticipantInfoRequest

getCallInfoResponse: “Active”

ACC�Service

�Appl

�Appl

Multimedia Conference

IpApp�MMCallLeg:A

IpApp�MMCC�Manager

Ip�MMCC�Manager

IpApp�MMCall

Ip�MMCall

Ip�MMCallLeg:A

getConferenceInfoRequest

getConferenceInfoResponse: “Active”

getParticipantInfoRequest

getParticipantInfoResponse: “Connected, with Audio IN & Video IN”

getConferenceInfoRequest

getConferenceInfoResponse: “Active”

getParticipantInfoRequest

getParticipantInfoResponse: “Connected, with Audio IN/OUT & Video IN”

deleteMediaForParticipantRequest: “Delete Audio OUT”

deleteMediaForParticipantResponse

subtract()

Ip�MM�Stream

getMediaStreams()

getMediaStreams()

