Joint-Working-Group (Parlay, ETSI Project OSA, 3GPP CT5)
C5-050484
Meeting #32, London, UK, 30 August - 1 September 2005

Source:
BT (Heidi Thomson)
Title:
Parlay X 3.0 requirement
Agenda Item:
OSA4 (3GPP Rel-7)
Document for:
Discussion and Decision
This document describes an additional specification for messaging.

The current Parlay X standard (version 2.0) focuses on the processing of SMS (Short Message Service) and MMS (Multimedia Messaging Service) messages, but does not support the retrieval of voice mail messages.

The proposed Parlay X Generic Messaging API, as defined in this document, will fill this gap by defining a lightweight easy to use web services API that sits on top of, and uses the services of, the Parlay Generic Messaging SCF (Service Capability Feature).

The new specification would have the ability to:

· Manipulate a mailbox with multiple folders

· View, add and delete messages from the folders.

· Notification mechanism to provide information on new messages

The formal requirement has been reproduced here:

1.1 Generic Messaging

	Number
	Functional Description of Need
	Commercial Motivation

	1
	Manipulate a mailbox with multiple folders

Notification mechanism to provide information on new messages

View, add and delete messages from the folders.
	The current Parlay X Specifications for Messaging are specific to MMS or SMS. This requirement is to define a generic messaging requirement.

The ability to manipulate mailboxes with folders provides the ability to handle more complex voice call functionality.

Some work has already been performed on creating a specification which would address this requirement and is attached here for information.

[image: image1.emf]D:\Documents and Settings\701483874\My Documents\Projects\21c\CCR1\Interface Specifications\Parlay Specs\Parlay X 3 Generic Messaging.zip

Expected outcome:

The new requirement should be added into the ETSI Requirements specification

_1186333836/Parlay X 3 Generic Messaging.zip

Parlay X 3 Generic Messaging.doc

			Parlay X 3.0

			Parlay X Web Services – Generic Messaging

			Parlay X 3.0

			Parlay X Web Services

Generic Messaging Specification Contribution

Status
:
Draft – For Parlay Member Review Only

Issue
:
v0.1

Date
:
18/08/05

			Copyright © 2003, 2004 The Parlay Group, Inc.. All Rights Reserved.

This document and translations of it, and derivative works that comment on or otherwise explain it or assist in its implementation may be prepared, copied, published and distributed, in whole or in part, provided that the above copyright notice and this paragraph are included on all such copies and derivative works. However, this document itself may not be modified in any way, such as by removing the copyright notice or references to The Parlay Group, except as jointly determined by The Parlay Group and third party.

The limited permissions granted above are perpetual and will not be revoked by The Parlay Group or its successors or assigns.

This document and the information contained herein is provided on an "AS IS" basis and The Parlay Group DISCLAIMS ALL WARRANTIES, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO ANY WARRANTY THAT THE USE OF THE INFORMATION HEREIN WILL NOT INFRINGE ANY RIGHTS OR ANY IMPLIED WARRANTIES OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE."

The Parlay Group takes no position regarding the validity or scope of any intellectual property or other rights that might be claimed to pertain to the implementation or use of the technology described in this document or the extent to which any license under such rights might or might not be available; neither does it represent that it has made any effort to identify any such rights.

Contents

41.1
Revision Control

41.2
Specification Status

41.3
Contact Information

41.4
Template Information

52
Purpose of this document

52.1
Brief Specification Overview

52.2
Rationale

52.2.1
Commercial & Technical Rationale

52.2.2
Relationship to Similar or Supplanted Specifications

53
References

53.1
Normative References

53.2
Informative References

54
Definitions and Abbreviations

54.1
Definitions

54.2
Abbreviations

55
Detailed Service Description

66
Namespaces

67
Sequence Diagrams

67.1
Interface Flow overview

77.2
openMailbox Sequence Diagram

87.3
getMessageHeaders Sequence Diagram

97.4
getMessageContent Sequence Diagram

107.5
deleteMessage Sequence Diagram

117.6
addMessage Sequence Diagram

127.7
updateMessageHeaders Sequence Diagram

137.8
closeMailbox Sequence Diagram

147.9
notifyMessageReception Sequence Diagram

158
XML Schema Data Type Definition

158.1
EndUserIdentifier

158.2
MailboxFolders

158.3
TpSessionID

158.4
MessageHeader

158.5
TpMessage

158.6
TpMessagingEventInfo

158.7
TpAssignmentId

169
Web Service Interface Definition

169.1
Interface: GenericMessaging

169.1.1
Operation: openMailbox

179.1.2
Operation: getMessageHeaders

179.1.3
Operation: getMessageContent

189.1.4
Operation: deleteMessage

189.1.5
Operation: addMessage

199.1.6
Operation: updateMessageHeaders

209.1.7
Operation: closeMailbox

209.2
Interface: GenericMessagingNotification

209.2.1
Operation: notifyMessageReception

2110
Service Policies

2111
Mapping

2111.1
Operations

2111.1.1
openMailbox

2111.1.2
getMessageHeaders

2111.1.3
getMessageContent

2211.1.4
deleteMessage

2211.1.5
addMessage

2211.1.6
updateMessageHeaders

2211.1.7
closeMailbox

2211.1.8
notifyMessageReception

2312
Data Types

2312.1
MailboxFolders

2312.2
Folder

2412.3
MessageHeader

2513
Annex A: WSDL

1.1
 Revision Control

Revisions of this document are controlled using a numeric system where the first number represents major revisions (the last approved version) and the second number represents minor revisions (revisions within the major version). For initial specification drafts, the major number will always be zero (0) until approved at which point it will become a 1.0 issue, and all draft version information will be removed.

			Issue

			Date

			Editor

			Reason for Change

			0.1

			18/08/05

			BT

			Initial Version for comment

The master copy of this document is held in electronic format on the Parlay website at http://www.parlay.org.

1.2 Specification Status

This contribution document is at version 0.1 and is a part of the working group documents that will be contributed to version 3.0 of the Parlay X Specifications.

1.3 Contact Information

Contact information for the Parlay Group can be found on the Parlay website at http://www.parlay.org.

All product names mentioned within this specification are the trademarks of their respective owners.

1.4 Template Information

This contribution is based on the Parlay X v2.0 contribution template Version 0.2 22/4/05

2 Purpose of this document

This document is an input contribution that addresses a generic messaging service capability. Generic Messaging is a potential Parlay X API for the retrieval and processing of Generic Messages stored within a telephony network (PSTN and/or PLMN).

2.1 Brief Specification Overview

This specification describes a lightweight Parlay X web services API for the retrieval and processing of Generic Messages stored within a telephony network (PSTN and/or PLMN).

2.2 Rationale

2.2.1 Commercial & Technical Rationale

The current Parlay X standard (version 2.0) focuses on the processing of SMS (Short Message Service) and MMS (Multimedia Messaging Service) messages, but does not support the retrieval of voice mail messages.

2.2.2 Relationship to Similar or Supplanted Specifications

The proposed Parlay X Generic Messaging API, as defined in this document, will fill this gap by defining a lightweight easy to use web services API that sits on top of, and uses the services of, the Parlay Generic Messaging SCF (Service Capability Feature).

3 References

3.1 Normative References

			

			Not Known

			

			Not Known

3.2 Informative References

			

			Not Known

4 Definitions and Abbreviations

4.1 Definitions

4.2 Abbreviations

5 Detailed Service Description

TBC

6 Namespaces

The GenericMessagingStatic interface uses the namespace:

www.csapi.org/wsdl/parlayx/cbs/send/v1_0/ [TBD]

The GenericMessagingDynamic interface uses the namespace:

www.csapi.org/wsdl/parlayx/cbs/send/v1_0/ [TBD]

The GenericMessagingNotification uses the namespace:

www.csapi.org/wsdl/parlayx/cbs/send/v1_0/ [TBD]

The data types are defined in the namespace:

 www.csapi.org/schema/parlayx/cbs/send/v1_0/local [TBD]

The ‘xsd’ namespace is used in the present document to refer to the XML schema data types defined in XML schema, The use of the name ‘xsd’ is not semantically significant.

7 Sequence Diagrams

7.1 Interface Flow overview

The sequence diagrams show the interaction where the Service Provider has a Web Service compliant Application through which it can send requests to the service and receive notifications from the service.

Every method defined in the interface is synchronous, in the sense, that the response to the request is instantaneous and contains the status of the request. There is no polling required on part of the Application to determine the status of a request.

Notifications are unsolicited. The Application should indicate their interest in receiving notifications by registering for events. When an event occurs in the network that merits a notification to be raised, interested Applications will receive a notification informing them about the occurrence of the event.

The sequence diagrams do not show the internal communication within the server hosting the service. It is assumed that such a server is capable of interacting with the network to service requests sent by the Service Provider.

This section shows the message sequence in support of the above operations.

7.2 openMailbox Sequence Diagram

[image: image1.png]Client Application

Parlay X Generic Messaging

IpMessagingManager

IpMailbox

IpMailboxFolder

T
| 1:openhtailbox 1

1.4: openFolder

1.1 opentailbox 1
T2 gelinfoPraperties

1
I
AT s pyncessrnwueypvnpe1\es

T
|
|
|
|
|
|
i
il
1
i
|
|
|
|

1 Client application invokes the openMailbox web service operation.

1.1 Open the Mailbox referenced by the above mailbox id.

1.2 Get reference to all properties for the mail box.

1.3 Process mailbox properties, specifically retrieve:

P_MESSAGING_MAILBOX_ID

P_MESSAGING_MAILBOX_OWNER

P_MESSAGING_MAILBOX_FOLDER

P_MESSAGING_MAILBOX_DATE_CREATED

1.4 Open the mailbox folder. Steps 5 to 7 encompass recursive processing of each folder assigned to the currently opened Mailbox. On first iteration this would be the INBOX folder, for subsequent recursive calls this would be a subfolder of the INBOX folder.

1.5 Get reference to the folder properties.

1.6 Process folder properties, specifically retrieve:

P_MESSAGING_FOLDER_MESSAGE (Ids of messages in the folder

P_MESSAGING_FOLDER_SUBFOLDER (Ids of any subfolders

P_MESSAGING_FOLDER_ID

P_MESSAGING_FOLDER_DATE_CREATED

P_MESSAGING_FOLDER_DATE_CHANGED

7.3 getMessageHeaders Sequence Diagram

[image: image2.png]Client Application

Parlay X Generic Messaging

IpMailboxFolder

IpMessage

| 1:getiessageHeaders |

|

1.1: getinfoPraperties

77 getiessage ’L

3 geloPToperes |

)

|
R LU S

1. Client application invokes the getMessageHeaders web service operation.

1.1 Get reference to the folder properties, specifically retrieve a list of the folders messages:

P_MESSAGING_FOLDER_MESSAGE (Ids of messages in the folder

1.2 Get a message from the current open mailbox folder. Steps 3 to 5 encompass recursive processing of each Message stored in the currently opened Mailbox folder.

1.3 Get a reference to the message properties.

1.4 Process the message properties, collating the following info needed to generate the response:

P_MESSAGING_MESSAGE_ID

P_MESSAGING_MESSAGE_SUBJECT

P_MESSAGING_MESSAGE_DATE_SENT

P_MESSAGING_MESSAGE_DATE_CHANGED

P_MESSAGING_MESSAGE_DATE_RECEIVED

P_MESSAGING_MESSAGE_SENT_FROM

P_MESSAGING_MESSAGE_SENT_TO

P_MESSAGING_MESSAGE_CC_TO

P_MESSAGING_MESSAGE_BCC_TO

P_MESSAGING_MESSAGE_SIZE

P_MESSAGING_MESSAGE_PRIORITY

P_MESSAGING_MESSAGE_FORMAT

P_MESSAGING_MESSAGE_FOLDER

P_MESSAGING_MESSAGE_STATUS

7.4 getMessageContent Sequence Diagram

[image: image3.png]Client Application

Parlay X Generic Messaging

IpMailboxFolder

IpMessage

T
| 1:getiessageContent |
I

=

1.1: getitessage |

1.2: getConent D‘
!
|

1 Client application invokes the getMessageContent web service operation.

1.1 Get a message from the current open mailbox folder.

1.2 Retrieve the content of the Message.

7.5 deleteMessage Sequence Diagram

[image: image4.png]Client Application

Parlay X Generic Messaging

IpMailboxFolder

IpMessage

| 1: deletetessage |

gl 11:getiessage

T2 remove

1 Client application invokes the deleteMessage web service operation.

1.1 Get the message from the current open mailbox folder.

1.2 Remove the message from the mailbox folder.

7.6 addMessage Sequence Diagram

[image: image5.png]Client Application

Parlay X Generic Messaging

IpMailboxFolder

T T amiMessage

T
gL 11:putifessage |

e

1 Client application invokes the addMessage web service operation.

1.1 Put the message into the current open mailbox folder.

7.7 updateMessageHeaders Sequence Diagram

[image: image6.png]Client Application

Parlay X Generic Messaging

IpMailboxFolder

IpMessage

|1 updtaMessageHsadts | oo o }

=

N
!
|

Repeat per message 5

1 Client application invokes the updateMessageHeaders web service operation.

1.1 Get the message from the current open mailbox folder.

1.2 Update the message header properties.

7.8 closeMailbox Sequence Diagram

[image: image7.png]Client Application

Parlay X Generic Messaging

IpMailbox

1: closeMtailio:

gl 11 closenailbox

LL

U

1 Client application invokes the closeMailbox web service operation.

1.1 Close mailbox.

7.9 notifyMessageReception Sequence Diagram

[image: image8.png]Client Appiication | [Pariay X Generic Messaging |~ [IpMessagingManager

e R ———
[FRR——

T
rfation

.
J .
Ty

! | | 2 messagingEventotiy

21notifMessagReception |y
j |
|
! |
i

Registration is performed
offine and is not part o this.

Parlay X Access Interface

!
!

1 In an offline step the application registers for the reception of Messaging events. The request includes a URI for a Web Service implementing the GenericMessagingNotification interface on the client application side. The Parlay X Generic Messaging Web Service creates a registration identifier (Step 2 enableMessagingNotification() call) and returns it to the application.

1.1 See step 1.

2 The Parlay Generic Messaging SCS sends a messageEventNotify to notify the Parlay X Generic Messaging service of the arrival of a messaging-related event.

2.1 The Parlay X Generic Messaging service notifies the application of the received Messaging event information by invoking the notifyMessageReception method on the application Web Service.

8 XML Schema Data Type Definition

8.1 EndUserIdentifier

			Element name

			Element type

			Description

			EndUserIdentifier

			type=TpAddress

			The address of the mailbox to be operated on

8.2 MailboxFolders

See Section 12.1 for more information.

8.3 TpSessionID

			Element name

			Element type

			Description

			TpSessionID

			type=TpInt32

			As defined in SCF Generic Definitions

8.4 MessageHeader

This is defined in Section 12.3

8.5 TpPropertySet

An array of TpProperty

8.6 TpProperty

			Element name

			Element type

			Description

			TpParameterLabel

			type=TpString

			A string which contains the label

			TpParameterValue

			type=TpString

			A string which contains a value which is associated with the label.

8.7 TpMessage

			Element name

			Element type

			Description

			TpMessage

			type=TpLongstring

			

8.8 TpMessagingEventInfo

Defines the Tagged Choice of Data Elements that specifies the information returned to the application in an event notification. This is described in more detail in the Parlay Generic Mesasging Interface

8.9 TpAssignmentId

Generic Definition

			Element name

			Element type

			Description

			TpAssignmentId

			type=TpInt32

			As defined in SCF Generic Messaging

9 Web Service Interface Definition

9.1 Interface: GenericMessaging

This section identifies and describes the GenericMessaging Interface synchronous operations to be supported by a Parlay X Generic Messaging API.

The ability to delete and add messages will be supported. Further discussion needs to take place on whether we should also extend the API to support the ability to delete and add Mailbox folders. The thinking behind this is that the proposed API is viewed as a lightweight API, and Mailbox folder deletion/addition is a heavyweight operation since this has a structural impact on the Mailbox itself.

9.1.1 Operation: openMailbox

The openMailbox operation opens the mailbox associated with the user identifier and returns a list of folders (including sub-folders) associated with the opened mailbox.

The Parlay X Generic Messaging implementation may or may not need to authenticate the application before it accesses the mailboxes and subsequent folders. If authentication is required, then this needs to be passed in as part of the SOAP Header part of the SOAP message.

The following is a description of a mailbox folder as defined in the Parlay Generic Messaging API document [1]:

“A mailbox will have at least an inbox and outbox folder associated with it. The name of the inbox is ‘INBOX’, and the name of the outbox folder is ‘OUTBOX’. The names of sub-folders are appended to their parent’s name with a ’/’ as delimiter. For example, If there is a subfolder in INBOX called ‘Personal’ and a subfolder in that folder called ‘archive’, then the fully qualified name which are required for all operations of the four folders are ‘INBOX’, ‘OUTBOX’, ‘INBOX/Personal’ ‘INBOX/Personal/archive’. The names are case sensitive.”

The proposed message signature for the openMailbox operation is

MailboxFolders openMailbox(EnduserIdentifier userIdentifier);

9.1.1.1 Input Parameters: openMailboxRequest

			Part Name

			Part Type

			Description

			userIdentifier

			EndUserIdentifier

			The address of the User whose mailbox folders is being retrieved. Corresponds to the URI syntax as defined in RFC2806 and RFC 3261.

9.1.1.2 Output Parameters: openMailboxResponse

			Part Name

			Part Type

			Description

			

			MailboxFolders

			

9.1.1.3 Referenced Faults

O Service specific faults

O Common faults

9.1.2 Operation: getMessageHeaders

Messages are stored in folders, and the getMessageheaders operation returns one or all Message headers associated with a particular mailbox folder.

The proposed message signature for the getMessageHeaders operation is

MessageHeader[] getMessageHeaders(TpSessionID mailboxSessionId, TpSessionID folderSessionId, TpString messageId);

9.1.2.1 Input Parameters: getMailboxHeadersRequest

			Part Name

			Part Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID for the currently opened mailbox.

			folderSessionId

			TpSessionID

			Folder session ID for the identified Message folder.

			messageId

			TpString

			The ID of the Message. If null, then the headers of ALL messages in the folder will be returned.

9.1.2.2 Output Parameters: getMailboxHeadersResponse

			Part Name

			Part Type

			Description

			

			MessageHeader[]

			

9.1.2.3 Referenced Faults

O Service specific faults

O Common faults

9.1.3 Operation: getMessageContent

Messages are stored in folders, and the getMessageContent operation returns the Message content. It is the client application’s responsibility to convert the returned byte array to the relevant media format (see getMessageheaders operation for a message’s content format).

The proposed message signature for the getMessageContent operation is

TpMessage getMessageContent (TpSessionID mailboxSessionId, TpSessionID folderSessionId, TpString messageID);

9.1.3.1 Input Parameters: getMessageContentRequest

			Name

			Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID for the currently opened mailbox.

			folderSessionId

			TpSessionID

			Folder session ID for the identified Message folder.

			messageId

			TpString

			The ID of the Message.

9.1.3.2 Output Parameters: getMessageContentResponse

			Name

			Type

			Description

			

			TpMessage

			

9.1.4 Operation: deleteMessage

Messages are stored in folders, and the deleteMessage operation deletes/removes a Message from the Mailbox folder.

The proposed message signature for the deleteMessage operation is

void deleteMessage(TpSessionID mailboxSessionId, TpSessionID folderSessionId, TpString[] messageID);

9.1.4.1 Input Parameters: deleteMessageRequest

			Name

			Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID for the currently opened mailbox.

			folderSessionId

			TpSessionID

			Folder session ID for the identified Message folder.

			messageId

			TpString[]

			The IDs of Messages to delete.

9.1.4.2 Output Parameters: deleteMessageResponse

No return parameters

9.1.4.3 Referenced Faults

O Service specific faults

O Common faults

9.1.5 Operation: addMessage

Messages are stored in folders, and the addMessage operation adds a Message to a Mailbox folder.

The proposed message signature for the addMessage operation is

void addMessage(TpSessionID mailboxSessionId, TpSessionID folderSessionId, TpMessage messageContent, MessageHeader messageHeader);

9.1.5.1 Input Parameters: addMessageRequest

			Name

			Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID for the currently opened mailbox.

			folderSessionId

			TpSessionID

			Folder session ID for the identified Message folder.

			messageContent

			TpMessage

			The Message content.

			messageHeader

			MessageHeader

			The Message header properties (at a minimum it should define the message content format).

9.1.5.2 Output Parameters: addMessageResponse

No returns from this method

9.1.5.3 Referenced Faults

O Service specific faults

O Common faults

9.1.6 Operation: updateMessageHeaders

Messages are stored in folders, and the updateMessageHeaders operation updates message headers in a specific Mailbox folder.

The proposed message signature for the updateMessageHeaders operation is

void updateMessageHeaders(TpSessionID mailboxSessionId, TpSessionID folderSessionId, MessageHeader[] messageHeaders);

9.1.6.1 Input Parameters: updateMessageHeadersRequest

			Name

			Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID for the currently opened mailbox.

			folderSessionId

			TpSessionID

			Folder session ID for the identified Message folder.

			messageHeaders

			MessageHeader[]

			The Message header properties to update. For example, you could use this method to indicate that a message has been read.

9.1.6.2 Output Parameters: updateMessageHeadersResponse

No return parameters from this request

9.1.6.3 Referenced Faults

O Service specific faults

O Common faults

9.1.7 Operation: closeMailbox

This operation closes the currently opened mailbox and any opened folders.

The proposed message signature for the closeMailbox operation is

void closeMailbox(TpSessionID mailboxSessionId);

9.1.7.1 Input Parameters: closeMailboxRequest

			Name

			Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID for the currently opened mailbox.

9.1.7.2 Output Parameters: closeMailboxResponse

No return parameters for this request

9.1.7.3 Referenced Faults

O Service specific faults

O Common faults

9.2 Interface: GenericMessagingNotification

9.2.1 Operation: notifyMessageReception

The notifyMessageReception method must be implemented by a web service at the application side. It will be invoked by the Parlay X Generic Messaging server to notify the application of the reception of a Message. The notification will occur if and only if the Message received fulfils the criteria specified in an off-line provisioning step, identified by the registrationIdentifier. The criteria must include the MailboxID and AuthenticationInfo, i.e. The Messaging account id and password.

Upon reception, the application can call the relevant operations defined in the GenericMessaging interface 9.1 to retrieve and process the Message.

void notifyMessageReception(TpMessagingEventInfo eventInfo, TpAssignmentID assignmentId);

9.2.1.1 Input Parameters: notifyMessageReceptionRequest

			Name

			Type

			Description

			eventInfo

			TpMessagingEventInfo

			Specifies the data associated with this event.

			assignmentId

			TpAssignmentId

			Assignment ID issued by the off-line provisioning step that enabled the application to receive Message notifications.

9.2.1.2 Output Parameters: notifyMessageReceptionResponse

No return parameters for this request

10 Service Policies

TBD

11 Mapping

As mentioned previously, the proposed Parlay X Generic Messaging API will use the services of the Parlay Generic Messaging SCF. The Parlay X operations to Parlay mappings is described in this section.

11.1 Operations

11.1.1 openMailbox

The sequence diagram in 7.2 illustrates the flow for the openMailbox operation. The openMailbox operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMessagingManager.openMailbox

· IpMailbox.getInfoProperties

· IpMailbox.openFolder

· IpMailboxFolder.getInfoProperties

11.1.2 getMessageHeaders

The sequence diagram in 7.3 illustrates the flow for the getMessageHeaders operation. The getMessageHeaders operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMailboxFolder.getInfoProperties

· IpMailboxFolder.getMessage

· IpMessage.getInfoProperties

11.1.3 getMessageContent

The sequence diagram in 7.4 illustrates the flow for the getMessageContent operation. The getMessageContent operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMailboxFolder.getMessage

· IpMessage.getContent

11.1.4 deleteMessage

The sequence diagram in 7.5 illustrates the flow for the deleteMessage operation. The deleteMessage operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMailboxFolder.getMessage

· IpMessage.remove

11.1.5 addMessage

The sequence diagram in 7.6 illustrates the flow for the addMessage operation. The addMessage operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMailboxFolder.putMessage

11.1.6 updateMessageHeaders

The sequence diagram in 7.7 illustrates the flow for the updateMessageHeaders operation. The updateMessageHeaders operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMailboxFolder.getMessage

· IpMessage.setInfoProperties

11.1.7 closeMailbox

The sequence diagram in 7.8 illustrates the flow for the closeMailbox operation. The closeMailbox operation is synchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMailbox.close

11.1.8 notifyMessageReception

The sequence diagram in 7.9 illustrates the flow for the notifyMessageReception operation. The notifyMessageReception operation is asynchronous from the Parlay X client point of view and it is mapped to the following Parlay/OSA methods:

· IpMessagingManager.enableMessagingNotification

12 Data Types

In addition to the data types specified in [1] and [2], the following data types are common to this service.

12.1 MailboxFolders

The MailboxFolders is a data structure containing the following parameters:

			Name

			Type

			Description

			mailboxSessionId

			TpSessionID

			Session ID to be used by the application for the opened Mailbox. Equivalent to a 32 bit integer.

			mailboxId

			EndUserIdentifier

			The ID of the Mailbox.

			mailboxOwner

			TpString

			The owner of the Mailbox.

			created

			TpDateAndTime

			Indicates the date the mailbox was created

			changed

			TpDateAndTime

			Indicates the date the mailbox was last changed.

			folders

			Folder[]

			An array of top level Folders (E.g. INBOX, OUTBOX, etc) associated with the mailbox.

12.2 Folder

The Folder is a data structure containing the following parameters:

			Name

			Type

			Description

			folderSessionId

			TpSessionID

			Session ID to be used by the application to identify the opened Folder. Equivalent to a 32 bit integer.

			folderId

			TpString

			The fully qualified ID of the folder (i.e. including parent folder ID and mailbox ID).

			Created

			TpDateAndTime

			Indicates the date the mailbox folder was created

			Changed

			TpDateAndTime

			Indicates the date the mailbox folder was last changed.

			messageIds

			TpString[]

			An array of Message IDs associated with the current mailbox folder.

			subFolders

			Folder[]

			An array of sub folders associated with the current folder (E.g. OUTBOX/Personal, etc).

12.3 MessageHeader

The MessageHeader is a data structure containing the following parameters:

			Name

			Type

			Description

			messageId

			TpString

			The identity of the Message.

			Subject

			TpString

			The subject of the message.

			Sent

			TpDateAndTime

			Indicates the date the message was sent.

			received

			TpDateAndTime

			Indicates the date the message was received.

			changed

			TpDateAndTime

			Indicates the date the message was last changed.

			From

			EndUserIdentifier

			Indicates the sender. Corresponds to the URI syntax as defined in RFC2806 and RFC 3261.

			sentTo

			EndUserIdentifier[]

			Indicates the sent to addresses. Corresponds to the URI syntax as defined in RFC2806 and RFC 3261.

			ccTo

			EndUserIdentifier[]

			Indicates the copied to addresses. Corresponds to the URI syntax as defined in RFC2806 and RFC 3261.

			bccTo

			EndUserIdentifier[]

			Indicates the blind copied to addresses. Corresponds to the URI syntax as defined in RFC2806 and RFC 3261.

			size

			TpInt32

			Indicates the message size.

			priority

			TpMessagePriority

			An enumeration that indicates the priority of the message. Possible values are:

· UNDEFINED

· HIGH

· LOW

			Format

			TpMessageFormat

			An enumeration that indicates the format of the message. Possible values are:

· UNDEFINED

· TEXT

· BINARY

· UUENCODED

· MIME

· WAV

· AU

			folderId

			TpString

			The fully qualified ID of a folder (i.e. including parent folder ID and mailbox ID).

			Status

			TpMessageStatus

			An enumeration that indicates the status of the message. Possible values are:

· READ_MESSAGE

· UNREAD_MESSAGE

· FORWARDED_MESSAGE

· REPLIED_TO_MESSAGE

· SAVED_OR_UNSENT_MESSAGE

· NOTIFICATION_THAT_A_MESSAGE_WAS_DELIVERED

· NOTIFICATION_THAT_A_MESSAGE_WAS_READ

· NOTIFICATION_THAT_A_MESSAGE_WAS_NOT_DELIVERED

· NOTIFICATION_THAT_A_MESSAGE_WAS_NOT_READ

13 Annex A: WSDL

TBA

			<date of contribution>

			 Page 23 of 23

			This is a Draft Document of The Parlay Group, Inc.

