[image: image2.wmf]

TD <>
Draft ETSI ES 202 391-1 V1.1.2 (2005-05)
ETSI Standard

Open Service Access (OSA);

Parlay X Web Services;

Part 1: Common

[image: image1.png]V- Y

7/

el

<
Reference

DES/TISPAN-01007-01-OSA

Keywords

API, OSA, service

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

© The Parlay Group 2005.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

7Intellectual Property Rights

Foreword
7
1
Scope
9
2
References
9
3
Definitions and abbreviations
10
3.1
Definitions
10
3.2
Abbreviations
10
4
Use of Web Services technologies
10
4.1
Web Service message content
10
4.1.1
SOAP
10
4.1.2
XML
10
4.1.3
HTTP
11
4.2
Web Service interface definitions
11
4.2.1
WSDL
11
4.3
Security for Parlay X Web Services
11
4.4
XML data types
11
5
Detailed service description
11
5.1
Address data items
11
5.2
Charging
12
5.2.1
Charging data type
12
5.3
Exception definition
12
5.4
Service exception
13
5.5
Policy exception
13
6
Namespaces
13
7
Sequence diagrams
13
8
XML Schema data type definition
13
8.1
TimeMetrics enumeration
13
8.2
TimeMetric structure
14
8.3
ChargingInformation structure
14
8.4
ServiceError structure
14
8.5
SimpleReference structure
14
9
Web Service interface definition
14
10
Fault definitions
15
10.1
ServiceException
15
10.1.1
SVC0001: Service error
15
10.1.2
SVC0002: Invalid input value
15
10.1.3
SVC0003: Invalid input value with list of valid values
15
10.1.4
SVC0004: No valid addresses
15
10.1.5
SVC0005: Duplicate correlator
15
10.1.6
SVC0006: Invalid group
16
10.1.7
SVC0007: Invalid charging information
16
10.1.8
SVC0008: Overlapping Criteria
16
10.2
PolicyException
16
10.2.1
POL0001: Policy error
16
10.2.2
POL0002: Privacy error
16
10.2.3
POL0003: Too many addresses
17
10.2.4
POL0004: Unlimited notifications not supported
17
10.2.5
POL0005: Too many notifications requested
17
10.2.6
POL0006: Groups not allowed
17
10.2.7
POL0007: Nested groups not allowed
17
10.2.8
POL0008: Charging not supported
17
10.2.9
POL0009: Invalid frequency requested
17
10.3
Fault number ranges by service
18
11
Service policies
18
12
WSDL usage and style
18
12.1
Service definition and documents
18
12.1.1
Interface sets
19
12.1.2
Preparing for document definition
19
12.1.3
Documents
19
12.1.4
Document separation rationale
20
12.1.5
Document version identifier
21
12.1.6
Document naming example
21
12.1.7
Service definitions for notification patterns
21
12.2
Namespaces
22
12.2.1
Namespaces for Parlay X Web Services
22
12.2.2
Use of namespaces
22
12.2.3
Namespace elements
22
12.2.4
Common namespaces
23
12.2.5
Target namespace
23
12.2.6
WSDL and Schema namespaces
23
12.2.7
Local namespace use
24
12.2.8
Examples
24
12.3
Authoring style - Document content and names
24
12.3.1
General WSDL document information
24
12.3.2
Names
24
12.3.3
Case usage for names
25
12.3.4
Naming conventions for special names
25
12.3.5
Document layout
25
12.4
Data type definitions
26
12.4.1
Types section declaration
26
12.5
Messages and interfaces (PortTypes)
28
12.5.1
Messages
28
12.5.2
Interfaces (PortTypes)
28
12.5.3
Faults (Exceptions)
28
12.6
Bindings and service definitions
29
12.6.1
Binding
29
12.6.2
Service definition
29
Annex A (normative): WSDL for common data definitions
30
History
31

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN), and is now submitted for the ETSI standards Membership Approval Procedure.

The present document is part 1 of a multi-part deliverable covering Open Service Access (OSA); Parlay X Web Services, as identified below:

Part 1:
"Common";
Part 2:
"Third Party Call";
Part 3:
"Call Notification";

Part 4:
"Short Messaging";

Part 5:
"Multimedia Messaging";

Part 6:
"Payment";
Part 7:
"Account Management";
Part 8:
"Terminal Status";

Part 9:
"Terminal Location";

Part 10:
"Call Handling";
Part 11:
"Audio Call";
Part 12:
"Multimedia Conference";
Part 13:
"Address List Management";
Part 14:
"Presence".

The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

The present document is equivalent to 3GPP TS 29.199-01 V6.1.0 (Release 6).
The Mapping specification of the Parlay X Web Services (ETSI ES 202 391) to the Parlay/OSA APIs (ETSI ES 20x 915) and, where applicable, to IMS, is also structured as above. A mapping of the Parlay X Web Services is however not applicable for all Parts (e.g. Part 13), but the numbering of Parts is kept.

Table: Overview of the Parlay X Web Services & OSA APIs mappings

Parlay X Web Services

(ETSI ES 202 391-family)
OSA APIs (& IMS) mappings

(ETSI TR 102 397-family)

202 391-01
Common
ETSI TR 102 397-01
Common mapping

202 391-02
Third party call
ETSI TR 102 397-02-1
Generic Call Control mapping

ETSI TR 102 397-02-2
Multi-Party Call Control mapping

202 391-03
Call notification
ETSI TR 102 397-03-1
Generic Call Control mapping

ETSI TR 102 397-03-2
Multi-Party Call Control mapping

202 391-04
Short messaging
ETSI TR 102 397-04-1
User Interaction mapping

ETSI TR 102 397-04-2
Multi-Media Messaging mapping

202 391-05
Multimedia messaging
ETSI TR 102 397-05-1
User Interaction mapping

ETSI TR 102 397-05-2
Multi-Media Messaging mapping

202 391-06
Payment
ETSI TR 102 397-06
Charging mapping

202 391-07
Account management
ETSI TR 102 397-07
Account Management mapping

202 391-08
Terminal status
ETSI TR 102 397-08
Mobility User Status mapping

202 391-09
Terminal location
ETSI TR 102 397-09-1
Mobility User Location mapping

ETSI TR 102 397-09-2
Mobility User Location CAMEL mapping

202 391-10
Call handling
ETSI TR 102 397-10-1
Generic Call Control & User Interaction mapping

ETSI TR 102 397-10-2
Multi-Party Call Control & User Interaction mapping

ETSI TR 102 397-10-3
Policy Management mapping

202 391-11
Audio call
ETSI TR 102 397-11-1
Generic Call Control & User Interaction mapping

ETSI TR 102 397-11-2
Multi-Party Call Control & User Interaction mapping

202 391-12
Multimedia conference
ETSI TR 102 397-12
Multi-Media Call Control mapping

202 391-13
Address list management
ETSI TR 102 397-13
Not Applicable

202 391-14
Presence
ETSI TR 102 397-14-1
Presence & Availability Management mapping

ETSI TR 102 397-14-2
SIP/IMS Networks mapping

1
Scope

The present document is part 1 of the Stage 3 Parlay X Web Services specification for Open Service Access (OSA).
The OSA specifications define an architecture that enables application developers to make use of network functionality through an open standardized interface, i.e. the OSA APIs.

The present document specifies the Common aspects of the Parlay X Web Services. The following are defined here:

· Name spaces.

· Data definitions.

· Fault definitions.

· WSDL Description of the interfaces.

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[3]
IETF RFC 2806: "URLs for Telephone Calls".

NOTE:
Available at http://www.ietf.org/rfc/rfc2806.txt.

[4]
IETF RFC 3261: "SIP: Session Initiation Protocol".

NOTE:
Available at http://www.ietf.org/rfc/rfc3261.txt.

[5]
WS-I Basic Profile Version 1.0: "Final Material".

NOTE:
Available at http://www.ws-i.org/Profiles/BasicProfile-1.0-2004-04-16.html.

[6]
W3C Note (15 March 2001): "Web Services Description Language (WSDL) 1.1".

NOTE:
Available at http://www.w3.org/TR/2001/NOTE-wsdl-20010315.

[7]
OASIS Standard 200401 (March 2004): "Web Services Security: SOAP Message Security 1.0 (WS-Security 2004)".

NOTE:
Available at http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0.pdf.

[8]
W3C Recommendation (12 February 2002): "XML-Signature Syntax and Processing".

NOTE:
Available at http://www.w3.org/TR/2002/REC-xmldsig-core-20020212/.

[9]
ISO 4217: "Codes for the representation of currencies and funds".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

application: computer program that accesses a Web Service

SOAP: not an acronym, protocol used for XML messaging

Web Service: software system designed to support interoperable machine-to-machine interaction over a network

Web Service Provider: entity which provides Web Services interfaces to capabilities offered

Web Service Requester: entity which operates Applications that access Web Services

3.2
Abbreviations

For the purposes of the present document, the abbreviations defined in TR 121 905 [1] and the following apply:
3GPP
Third Generation Partnership Project

ETSI
European Telecommunications Standards Institute

IP
Internet Protocol

IT
Information Technology

OASIS
Organization for the Advancement of Structured Information Standards

OSA
Open Service Access

RFC
Request For Comment

SIP
Session Initiation Protocol

SLA
Service Level Agreement

UDDI
Universal Description Discovery and Integration

URI
Uniform Resource Identifier

W3C
World Wide Web Consortium

WSDL
Web Service Definition Language

WS-I
Web Services-Interoperability Organization

XML
Extensible Markup Language

4
Use of Web Services technologies

4.1
Web Service message content

4.1.1
SOAP

All Web Service messages SHALL send and accept messages that conform to the SOAP use defined in the WS-I Basic Profile [5], using the document/literal encoding style.

4.1.2
XML

All Web Service messages SHALL send and accept messages that conform to the XML use defined in the WS-I Basic Profile [5].

4.1.3
HTTP

All Web Service messages SHALL send and accept messages that conform to the HTTP use defined in the WS-I Basic Profile [5].

4.2
Web Service interface definitions

All Parlay X Web Services are defined according to the following.

4.2.1
WSDL

All Web Service interfaces SHALL be defined using WSDL 1.1 as defined in the WSDL specification [6] and be conformant to the WSDL use defined in WS-I Basic Profile [5].

See clause 12 for detailed information on the WSDL style to be followed by Parlay X Web Services.

4.3
Security for Parlay X Web Services

If a message contains an identifier and/or credentials representing the sender of the message then these SHALL be provided in a manner prescribed by WS-Security [7].

Encryption of message content MAY be required by the Web Service Provider. If this is required, then this SHALL be accomplished in one of the following manners:

· Use of a Virtual Private Network, to be administered independent of the Web Service implementation.

· Use of Transport Level Security using HTTP over TLS as specified in the WS-I Basic Profile [5].

Integrity of the message content MAY be required by the Web Service Provider. If this is required, then this SHALL be accomplished using XML Digital Signature [8].

4.4
XML data types

Where possible standard XML Schema data types are used, as defined in section 3 (Built-in datatypes) in XML Schema [2].

5
Detailed service description

5.1
Address data items

Addresses, unless the specification provides specific additional instruction, MUST conform to the address portion of the URI definition provided in RFC 2806 [3] for 'tel:' addresses or RFC 3261 [4] for 'sip:' addresses. Optional additions to the address portion of these URI definitions MUST NOT be considered part of the address accepted by the Parlay X Web Services interfaces, and an implementation MAY choose to reject an address as invalid if it contains any content other than the address portion.

When processing a 'tel:' URI, as specified in RFC 2806 [3], Parlay X Web Services MUST accept national addresses (those not starting with '+' and a country code) and MUST accept international addresses (those starting with '+' and a country code).

When specified in the definition of a service operation, the URI may contain wildcard characters in accordance with the appropriate specification (i.e. RFC 2806 [3] or RFC 3261 [4]).

5.2
Charging

Web Services may use a Web Service Provider to deliver content or function. In some cases, the producer of the content or capability will wish to use a bill-on-behalf-of capability offered by the Web Service Provider to charge for the content/function provided. For those services where the charge is part of a single activity, providing the charging related information as part of the message is very efficient.

An example is a messaging service, where a sports business collects information and distributes short messages with sports scores to its subscribers. The sports business has an agreement with a Web Service Provider where the charges for the messages are included in the bill provided by the Web Service Provider (thus the Web Service Provider is billing on behalf of the sports business.

To enable this capability to be provided across a variety of services in a consistent manner, thus making implementation easy and efficient, the information to be provided in the Web Service message for charging information is defined as part of the Parlay X Web Services Framework.

5.2.1
Charging data type

The charging information is provided in an XML data type, using the following schema:

<xsd:complexType name="ChargingInformation">

 <xsd:sequence>

 <xsd:element name="description" type="xsd:string"/>

 <xsd:element name="currency" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="amount" type="xsd:decimal" minOccurs="0" maxOccurs="1"/>

 <xsd:element name="code" type="xsd:string" minOccurs="0" maxOccurs="1"/>

 </xsd:sequence>

</xsd:complexType>

The application accessing the Web Service provides this information:

· Description text, which will often be used to provide billing text. This text does not have specific required content, but would likely include information on the business, the content or service provided, and a transaction identifier. Credit card statements are a good example of description text provided by different companies.

· Currency in which the charge is to be applied. Values for the currency field are defined by ISO 4217 [9].

· Defines the amount to be charged.

· Code specifies a charging code which references a contract under which this charge is applied. The code identifier is provided by the Web Service Provider.

The charging information provided may not be acceptable to the Web Service Provider. For example, the Web Service Provider may limit the amount that may be specified for a particular Web Service or for a particular Web Service Requester. If the information provided is not acceptable, an appropriate fault message may be returned to the Web Service Requester (SVC0007 is defined as a generic charging fault).

5.3
Exception definition

Exceptions are defined with three data items.

The first data item is a unique identifier for the message. This allows the receiver of the message to recognize the message easily in a language-neutral manner. Thus applications and people seeing the message do not have to understand the message text to be able to identify the message. This is very useful for customer support as well, since it does not depend on the reader to be able to read the language of the message.

The second data item is the message text, including placeholders (marked with %) for additional information. This form is consistent with the form for internationalization of messages used by many technologies (operating systems, programming environments, etc.). Use of this form enables translation of messages to different languages independent of program changes. This is well suited for Web Services messages, as a programming language is not defined.

The third data item is a list of zero or more strings that represent the content to put in each placeholder defined in the message in the second data item.

5.4
Service exception

When a service is not able to process a request, and retrying the request with the same information will also result in a failure, and the issue is not related to a service policy issue, then the service will issue a fault using the ServiceException fault message. A Service Exception uses the letters 'SVC' at the beginning of the message identifier.

Examples of service exceptions include invalid input, lack of availability of a required resource or a processing error.

5.5
Policy exception

When a service is not able to complete because the request fails to meet a policy criteria, then the service will issue a fault using the PolicyException fault message. To clarify how a Policy Exception differs from a Service Exception, consider that all the input to an operation may be valid as meeting the required input for the operation (thus no Service Exception), but using that input in the execution of the service may result in conditions that require the service not to complete. A Policy Exception uses the letters 'POL' at the beginning of the message identifier.

Examples of policy exceptions include privacy violations, requests not permitted under a governing service agreement or input content not acceptable to the service provider.

6
Namespaces

The namespace for the common data types is:

http://www.csapi.org/schema/common/v2_0

The namespace for the common faults is:

http://www.csapi.org/wsdl/common_faults/v2_0

The 'xsd' namespace is used in the present document to refer to the XML Schema data types defined in XML Schema [2]. The use of the name 'xsd' is not semantically significant.

7
Sequence diagrams

Not applicable.

8
XML Schema data type definition

8.1
TimeMetrics enumeration

List of time metric values.

Enumeration
Description

Millisecond
Millisecond

Second
Second

Minute
Minute

Hour
Hour

Day
Day

Week
Week

Month
Month

Year
Year

8.2
TimeMetric structure

For services that provide service based on a time interval or duration or similar metric, this type is used to specify the time metric.

Element name
Element type
Description

metric
TimeMetrics
Metric to use for time measurement

units
xsd:int
Number of units of TimeMetrics

8.3
ChargingInformation structure

For services that include charging as an inline message part, the charging information is provided in this data structure.

Element name
Element type
Description

description
xsd:string
Description text to be use for information and billing text

currency
xsd:string
Currency identifier as defined in ISO 4217 [9] (optional)

amount
xsd:decimal
Amount to be charged (optional)

code
xsd:string
Charging code, referencing a contract under which the charge is applied (optional)

8.4
ServiceError structure

Some services that process requests for both single addresses and group of addresses return a fault message for the single request, and a data item for the group response. This data structure allows the data item returned for a group response to contain the same level of information as the fault message response.

Element name
Element type
Description

messageId
xsd:string
Message identifier (take from fault definitions)

text
xsd:string
Message text, with replacement variables marked with %#

variables
xsd:string [0..unbounded]
Variables to substitute into Text string

8.5
SimpleReference structure

For those services that require a reference to a Web Service, the information required to create the endpoint information is contained in this type.

Element name
Element type
Description

endpoint
xsd:anyURI
Endpoint address

interfaceName
xsd:string
Name of interface

correlator
xsd:string
Correlation information

9
Web Service interface definition

Not applicable.

10
Fault definitions

10.1
ServiceException

Faults related to the operation of the service, not including policy related faults, result in the return of a ServiceException message. Service exception messages use the reserved message identifier 'SVC', and are defined with numbers from 0001 to 0999, with numbers 0001 to 0199 reserved for common exceptions and 0200 to 0999 for Parlay X Web Services specification use. Numbers from '1000' to '9999' may be used by third parties.

Element name
Element type
Description

messageId
xsd:string
Message identifier, with prefix SVC

text
xsd:string
Message text, with replacement variables marked with %#

variables
xsd:string [0..unbounded]
Variables to substitute into Text string

10.1.1
SVC0001: Service error

Element name
Description

messageId
SVC0001

text
A service error occurred. Error code is %1

variables
%1 Error code from service - meaningful to support, and may be documented in product documentation

10.1.2
SVC0002: Invalid input value

Element name
Description

messageId
SVC0002

text
Invalid input value for message part %1

variables
%1 - message part

10.1.3
SVC0003: Invalid input value with list of valid values

Element name
Description

messageId
SVC0003

text
Invalid input value for message part %1, valid values are %2

variables
%1 - message part

%2 - list of valid values

10.1.4
SVC0004: No valid addresses

Element name
Description

messageId
SVC0004

text
No valid addresses provided in message part %1

variables
%1 - message part

10.1.5
SVC0005: Duplicate correlator

Element name
Description

messageId
SVC0005

text
Correlator %1 specified in message part %2 is a duplicate

variables
%1 - correlator

%2 - message part

10.1.6
SVC0006: Invalid group

Element name
Description

messageId
SVC0006

text
Group %1 in message part %2 is not a valid group

variables
%1 - identifier for the invalid group

%2 - message part

10.1.7
SVC0007: Invalid charging information

Element name
Description

messageId
SVC0007

text
Invalid charging information

variables
None

10.1.8
SVC0008: Overlapping Criteria

Name
Description

message Id
SVC0008

text
Overlapped Criteria %1

variables
%1 Message part with the overlapped criteria

10.2
PolicyException

Faults related to policies associated with the service, result in the return of a PolicyException message. Policy exception messages use the reserved message identifier 'POL', and are defined with numbers from 0001 to 0999, with numbers 0001 to 0199 reserved for common exceptions and 0200 to 0999 for Parlay X Web Services specification use. Numbers from '1000' to '9999' may be used by third parties.

Element name
Element type
Description

messageId
xsd:string
Message identifier, with prefix POL

text
xsd:string
Message text, with replacement variables marked with %#

variables
xsd:string [0..unbounded]
Variables to substitute into Text string

10.2.1
POL0001: Policy error

Element name
Description

messageId
POL0001

text
A policy error occurred. Error code is %1

variables
%1 Error code from service - meaningful to support, and may be documented in product documentation

10.2.2
POL0002: Privacy error

Element name
Description

messageId
POL0002

text
Privacy verification failed for address %1, request is refused

variables
%1 - address privacy verification failed for

10.2.3
POL0003: Too many addresses

Element name
Description

messageId
POL0003

text
Too many addresses specified in message part %1

variables
%1 - message part

10.2.4
POL0004: Unlimited notifications not supported

Element name
Description

messageId
POL0004

text
Unlimited notification request not supported

variables
None

10.2.5
POL0005: Too many notifications requested

Element name
Description

messageId
POL0005

text
Too many notifications requested

variables
None

10.2.6
POL0006: Groups not allowed

Element name
Description

messageId
POL0006

text
Group specified in message part %1 not allowed

variables
%1 - message part

10.2.7
POL0007: Nested groups not allowed

Element name
Description

messageId
POL0007

text
Nested group specified in message part %1 not allowed

variables
%1 - message part

10.2.8
POL0008: Charging not supported

Element name
Description

messageId
POL0008

text
Charging is not supported

variables
None

10.2.9
POL0009: Invalid frequency requested

Element name
Description

messageId
POL0009

text
Invalid frequency requested

variables
None

10.3
Fault number ranges by service

The following table includes fault number ranges are reserved for use by specific Parlay X Web Services.

Web Service
SVC range
POL range

Third Party Call
0260 to 0264

Multimedia Conference

0240 to 0244

Short Messaging
0280 to 0284

Terminal Status

0200 to 0204

Terminal Location
0200 to 0204
0230 to 0234

Payment
0270 to 0274

Account Management
0250 to 0254
0220 to 0224

Address List Management

0210 to 0214

Presence
0220 to 0224

11
Service policies

Not applicable.

12
WSDL usage and style

Parlay X Web Services definitions:

· SHALL specify services using document forms as described in clause 12.1.

· SHALL use namespaces as defined in clause 12.2.

· SHALL follow the authoring style as defined in clause 12.3.

· SHALL follow data type definitions as defined in clause 12.4.

· SHALL define messages and interfaces as defined in clause 12.5 using document/literal definitions.

· SHALL define bindings and services as defined in clause 12.6 using document/literal definitions.

12.1
Service definition and documents

Service definitions are expressed using the facilities of WSDL. While it is possible to produce a single document that represents an entire service definition, this is not a desirable approach for any non-trivial Web Service.

Decomposition provides the following benefits:

· XML Schema is used for data type definitions.

· Faults that are shared across interfaces are defined independently.

· Service interface definitions are defined independent of bindings.

· Bindings are defined independently and consistent with UDDI best practices.

Following these conventions improves the overall definition and maintenance process and improves deployment by supporting separation of interface and binding.

12.1.1
Interface sets

A Web Service definition may contain one or more interfaces (or portTypes in WSDL 1.1 [6]). The characteristics of the Web Service being considered will determine whether one interface or multiple interfaces are appropriate.

The term Interface Set will be used to describe the group of interfaces that comprise a Web Service. The Interface Set provides a mechanism to group a set of related interfaces using well defined conventions for document and namespace naming.

For reference, other technologies group related interfaces using 'module' or 'package' conventions, achieving a similar result for organizing related interfaces.

12.1.2
Preparing for document definition

To provide a consistent use of naming within document sets, and across document sets, a number of conventions are defined that rely on a small amount of preparation to be done before creating the documents.

For each Interface Set, a Base Name is selected. For each interface within the Interface Set, a Short Name is selected. These names will be used as part of a common naming convention for the related set of documents defined and for definition naming within the documents. This approach ensures name consistency through Web Service evolution, whether it starts with one interface or multiple interfaces.

An example will demonstrate the naming convention. A group of interfaces for a short messaging service (SMS) are defined. This Web Service contains multiple interfaces.

· An Interface Set is defined (SMS Interface Set).

· The Base Name for the Interface Set is assigned the name 'sms'.

· Each interface within the Interface Set is assigned a Short Name:

-
The SendSms interface is assigned the Short Name 'send'.

-
The RetrieveSms interface is assigned the Short Name 'retrieve'.

Base Names and Short Names are always defined using only lower case letters, numbers or underscore characters. They must not start with a non-alphabetic character. An underscore should be used to separate words when the name consists of multiple words. These restrictions apply since these names are used in the construction of file names and URI content.

With these preparations complete, the document set may be created.

12.1.3
Documents

There are four document types that can be utilized in a Web Service definition. Each has a specific role, and contributes to the goal of supporting a well organized and useful decomposition of the individual elements of a Web Service definition.

12.1.3.1
Types definition document

The Type Definitions Document contains data type definitions within a schema namespace.

When the document is related to a specific Interface Set, it will use the Base Name with the suffix '_types' and the extension '.xsd'. When the Type Definitions Document is used across multiple Interface Sets, it will use an independent name with the suffix '_types' and the extension '.xsd'.

The present document is optional, since not all services will define new data types.

12.1.3.2
Shared faults document

The Shared Faults Document contains fault definitions that are shared across multiple interfaces in an Interface Set, or across Interface Sets.

The faults are defined within their own namespace within the WSDL definition namespace. The document name for the present document will use the suffix '_faults' and the extension 'wsdl'. The first part of the name of the document is based on its usage, with the following guidance:

· If it is used by multiple Interface Sets, an independent name reflective of the faults defined will be chosen by the author.

· If it used only by multiple interfaces within an Interface Set, then the Base Name will be used for the first part of the name.

The present document is optional, since not all WSDL definitions will define faults that are shared with other WSDL definitions.

12.1.3.3
Service interface document

The Service Interface Document contains the message and interface (portTypes in WSDL 1.1 [6]) definitions. One interface definition is included in each document. The present document may import Type Definition Documents and Shared Faults Documents. The present document may be used for a variety of Service Bindings Documents without change.

The document name for the present document will use the suffix '_interface' and the extension 'wsdl'. The name of the document is determined as follows:

· For each interface in an Interface Set, the name is a combination of the Base Name followed by an underscore followed by the Short Name for the interface defined in the present document. Thus multiple documents will have the same Base Name as the first portion of the name and the individual interface Short Name as the second portion.

12.1.3.4
Service bindings document

The Service Bindings Document contains both the binding to be used and the service definition associated with the binding. One service definition is defined in each document. The present document imports one Service Interface Document.

The document name for the present document will use the suffix '_service' with the extension 'wsdl'. Optionally, text representing the specific binding may be added immediately before the '_service' suffix. The name of the document is determined as follows:

· For each interface in an Interface Set, the name is a combination of the Base Name followed by an underscore followed by the Short Name for the interface defined in the present document. Thus multiple documents will have the same Base Name as the first portion of the name and the individual interface Short Name as the second portion.

12.1.4
Document separation rationale

The four document types approach satisfies a number of desirable goals for WSDL creation, use and maintenance.

· Types and shared faults are defined in common documents, eliminating redundant definitions.

· Interfaces are defined in individual documents, providing easier reading (only relevant message definitions in same document), while using a naming convention that group related interfaces together.

· Services are defined in individual documents, providing easy consumption by service registries and easy creation of alternate binding documents. Like the interface documents, the naming conventions for these documents group related services together.

By following this approach, the document decomposition supports modularization for reuse goals, in a manner that reflects a useful level of granularity, and useful document form for use with tools and for deployment use.

12.1.5
Document version identifier

Just like namespaces may have naming conflicts, document names may also have naming conflicts. It is not always predictable how documents will be stored and used, or when multiple versions of a service may be co-deployed. For this reason, documents may include version identifiers in their naming.

Documents may be assigned a version identifier, corresponding to version information provided in the namespace (see clause 12.2.3 for more information on the version identifier).

If used, the identifier is added to the end of the name following an underscore. For example, a namespace version of v2_0 would be expressed as _2_0 added to the end of the document name and before its extension.

12.1.6
Document naming example

Using the SMS Interface Set described previously, the following document set would be produced. Additional assumptions for this example are that there are some data type definitions and that multiple interfaces in the Interface Set use a common set of faults.

The names provided include the use of version identifiers, where this Web Service is at the v1_0 level.

· One Type Definitions Document - sms_types_1_0.xsd.

· One Shared Faults Document - sms_faults_1_0.wsdl.

· Two Service Interface Documents - sms_send_interface_1_0.wsdl and sms_retrieve_interface_1_0.wsdl.

· Two Service Bindings Documents - sms_send_service_1_0.wsdl and sms_retrieve_service_1_0.wsdl.

The two Service Interface Documents import the Type Definition Document and Shared Faults Document. The two Service Bindings Documents import their respective Service Interface Document.

12.1.7
Service definitions for notification patterns

A Service Interface Document provides the messages and interfaces for a Web Service. It does not distinguish any deployment relationship, though there are specific uses intended for some Web Services definitions.

A common message pattern, defined in the Message Patterns section, is notification. The Web Service has a corresponding facility, such as a Web page, that provides the information required to define the notification, and a WSDL definition that represents the notification definition.

For message patterns that include notifications, the Web Service definition approach is the same, but the roles of the Web Service Provider and Web Service Requestor become a peer-to-peer or a producer-consumer relationship instead of a requestor-provider relationship.

To provide a practical example, the SMS Interface Set described previously will be extended to include two additional interfaces - RegisterSms and SmsNotify. The interfaces will use the Short Names 'register' and 'notify' respectively.

The RegisterSms interface will reuse the current Type Definitions Document (sms_types.xsd) and Shared Faults Document (sms_faults.wsdl), and adds its own Service Interface Document (sms_register_interface.wsdl) and Service Bindings Document (sms_register_service.wsdl).

The SmsNotify interface will reuse the current Type Definitions Document (sms_types.xsd) and Shared Faults Document (sms_faults.wsdl), and adds its own Service Interface Document (sms_notify_interface.wsdl) and Service Bindings Document (sms_notify_service.wsdl).

The RegisterSms interface is deployed in the same manner as the SendSms and RetrieveSms services at the Web Service Provider. The Web Service Requestor uses the RegisterSms interface to indicate the criteria to be used to determine when a notification is appropriate to send.

Although the notification will be delivered to the entity that had been using the SMS Interface Set in a requestor role, the definition of the SmsNotify service is consistent with the other services in the Interface Set. The only difference is that at the time of deployment, the SmsNotify implementation will be deployed in the environment of the entity that deploys the requester side of the other SMS Interface Set interfaces.

Following this approach, a consistent use of document conventions simplifies the process of defining Web Services, regardless of the deployment configurations or roles that deployed services may assume.

12.2
Namespaces

The definitions tag has a number of attributes for namespace definitions. These definitions will include a set of common definitions and WSDL specific definitions. The common definitions will be provided in all WSDL documents.

12.2.1
Namespaces for Parlay X Web Services

For Parlay X Web Services, the scheme is 'http', domain is www.csapi.org, and root is parlayx. Thus for XML Schema namespaces 'http://www.csapi.org/schema/parlayx' is the base name, and for WSDL 'http://www.csapi.org/wsdl/parlayx' is the base name.

12.2.2
Use of namespaces

Correct use of namespaces is essential for both creating WSDL that will be usable by a variety of tools, and creating references that allow use of reusable content across the set of documents for a Web Service.

The following are the key namespaces defined:

· XML Schema namespaces for data type definitions.

· Shared fault namespaces, for easy sharing of common fault definitions.

· WSDL interface namespace for Web Service interface definitions.

· WSDL schema local interface namespace for XML Schema definitions contained in the WSDL interface definition.

· WSDL binding namespace for service bindings definitions.

Each namespace has a distinct role. Managing them in a consistent way provides highly flexible definitions, while ensuring easy use by WSDL creators and readers.

12.2.3
Namespace elements

The namespace definition includes three defined elements - the hierarchical name element, the version element and the namespace type element.

The hierarchical name element provides a fully qualified name in a hierarchical form for the namespace. This element is the Web Service specific information.

If a namespace contains a version number it will be a separate namespace element, immediately following the hierarchical name element, and preceding the namespace type. Version numbers are recommended, and are used in the examples.

A version number is based on release numbering, consisting of the lowercase letter 'v', followed by a number indicating major version number, followed by an underscore '_', followed by a minor version number. Any numbering beyond the minor version number follows the same convention with an underscore separator. Numbers are not limited to single digits.

Following the version number is the namespace type, which is always the last element in the namespace. The namespace type is one of 'faults' for Shared Faults Documents, 'interface' or 'local' for Service Interface Documents, or 'service' for Service Bindings Documents. The Type Definitions Document does not have a namespace type; since it does not share its namespace 'schema' (XML Schema definitions in the Service Interface Document use the 'local' namespace type).

12.2.4
Common namespaces

Each document type has some common namespaces will be used in every instance of that document type.

Type Definition Documents

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

Shared Faults Documents and Service Interface Documents
 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

Service Bindings Documents for SOAP over HTTP

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd=http://www.w3.org/2001/XMLSchema

Other bindings will have other namespace definitions that will be common to all Service Bindings Documents using that binding.

12.2.5
Target namespace

The target namespace defines the namespace that is the default namespace for the elements within a document. A special case is the target namespace defined for the schema section within the wsdl:types section of a Service Interface Document, where the target namespace applies specifically to the XML Schema definitions within this section.

The base namespace for WSDL related elements is http://www.example.com/wsdl. For sub-namespaces, they will extend this namespace. All elements defined within the root namespace are defined within this base target namespace.

For example target namespaces may include:

· Root namespace, http://www.example.com/wsdl/v1_0/service.

· Sub-namespace, http://www.example.com/wsdl/accounts/v1_0/service.

· Multi-level sub-namespace, http://www.example.com/wsdl/accounts/payables/v1_0/service.

The target namespace is the same namespace that will be defined later as the XML Schema or WSDL namespace.

12.2.6
WSDL and Schema namespaces

Namespaces are defined for the WSDL and Schema elements that are defined within the present document, and for those that are referenced by elements in the present document. For each instance, a pair of namespaces may be defined (if applicable). The WSDL namespace is defined with its Short Name. The Schema namespace is defined with the Short Name plus the suffix '_xsd'.

For the WSDL reference used for the present document, the name space definition is the same as the targetNamespace. For the Schema reference, the base namespace is http://www.example.com/schema, with the same hierarchy reference following the base namespace, but without an ending qualifier since the schema namespace is not shared across documents.

EXAMPLES:

Base namespace

 xmlns:example="http://www.example.com/wsdl/v1_0"

 xmlns:example_xsd=http://www.example.com/schema/v1_0

Sub-namespace

 xmlns:accounts="http://www.example.com/wsdl/accounts/v1_0/service"

 xmlns:accounts_xsd=http://www.example.com/schema/accounts/v1_0

12.2.7
Local namespace use

Within the WSDL service definition, XML Schema is used to define messages. These are defined within the wsdl:types section of the Service Interface Document. Since namespaces must be unique across documents, and within different sections of the same document, a local namespace is used for the XML Schema types defined within the wsdl:types section.

The local namespace definition within a Service Interface Document uses the 'schema' namespace, with the Base Name and Short Name elements followed by the version element and '/local'. The namespace is defined as the Short Name plus '_local_xsd'. This approach guarantees unique and predictable name use.

12.2.8
Examples

Base definitions:

<definitions

 name="example"

 targetNamespace="http://www.example.com/wsdl/v1_0/service"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:example="http://www.example.com/wsdl/v1_0/service"

 xmlns:example_xsd="http://www.example.com/schema/v1_0">

Sub-namespace definitions:

<definitions

 name="accounts"

 targetNamespace="http://www.example.com/wsdl/accounts/v1_0/service"

 xmlns="http://schemas.xmlsoap.org/wsdl/"

 xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/"

 xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema"

 xmlns:example="http://www.example.com/wsdl/v1_0"

 xmlns:example_xsd="http://www.example.com/schema/v1_0"

 xmlns:accounts="http://www.example.com/wsdl/accounts/v1_0/service"

 xmlns:accounts_xsd="http://www.example.com/schema/accounts/v1_0">

12.3
Authoring style - Document content and names

12.3.1
General WSDL document information

The following are general guidelines for WSDL document information:

· WSDL documents will use UTF-8 as their encoding. UTF-16 may also be used if required.

· A date in a comment at the top of the WSDL document will indicate the last revision date of the definition.

12.3.2
Names

Names will be normal language names, without prefixes (e.g. type or interface markers). The names will be meaningful, and not abbreviated in a way that makes the name hard to understand for users of the WSDL that are not literate in computer programming.

As a guideline, a person using the WSDL will be able to load the WSDL file into an XML viewer and see the names displayed and have reasonable understanding of the content.

This does not preclude the use of commonly understood acronyms within names (e.g. ATM) or commonly used abbreviations (e.g. max). However, the resulting name must still be meaningful.

12.3.3
Case usage for names

Two general cases are provided for, both using mixed case names; one with a leading capital letter, the other with a leading lowercase letter.

Names for all elements (all cases where the text name='Name' is used) will start with a letter and be mixed case, with the leading letter of each word capitalized. Words will not be separated by white space, underscore, hyphen or other non-letter character.

The following elements will have a leading uppercase letter - simpleType name, complexType name, interface (portType) name, binding name, service name, union element name.

The following elements will have a leading lowercase letter - field names (those names used for elements within other elements), message name (message name portion, service prefix will have uppercase letter if used), message part name, interface operation name, binding operation name.

For example, valid names include 'Name', 'FirstName', 'Name1', 'mixedCaseName'. Invalid names include '1Name', 'NAME', 'nAME'.

12.3.4
Naming conventions for special names

Some names have special meaning, and are often recognized by a naming convention. For example, in some conventions constants are identified by using all upper case letters and underscores between words.

In WSDL, the case usage for names will be followed as described in the previous clause. No other conventions for case usage will be used.

For faults, the fault name will be suffixed with the word 'Exception'.

In many technologies, the return value of an operation is not named. However, in WSDL the response message contains a named part. The part representing the response message content will use the name 'result'.

12.3.5
Document layout

To provide easy and consistent reading of WSDL files, the following layout patterns are recommended.

Each tag level is indented one level relative to the previous tag indent level. The xml tag, date comment and root tag are not indented, they are on the left margin.

Indents of 3 spaces are used, and tabs are not used for storage (store files with spaces).

Namespaces are defined one per line, single spaced, indented one indent level.

Import statements are defined one per line, single spaced, with attributes on the same line.

Each primary element within the schema is separated by one blank line.

Each element within a primary element is single spaced.

Restrictions, extensions and elements are defined on a single line with their attributes.

XML Schema types are laid out according to their respective sections in the present document.

Messages are defined single spaced, with one blank line separating each message definition. Messages with no parts are defined with one tag.

Interfaces (portTypes) are defined with its attributes on a single line, with one blank line separating each interface definition. The first operation starts on the line following the interface definition, with each operation defined single spaced and with a blank line separating each operation definition. Each element defined within an operation (input, output and fault) is defined on a single line with its attributes within one tag.

Bindings will be laid out consistently with interfaces.

Each service is defined single spaced.

12.4
Data type definitions

All data type definition examples are shown using XML Schema.

12.4.1
Types section declaration

All data types are defined using XML Schema in the Type Definitions Document.

Base document definition:

<xsd:schema>

 targetNamespace="http://www.example.com/schema/v1_0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- types -->

</xsd:schema>

Sub-namespace document definition:

<xsd:schema>

 targetNamespace="http://www.example.com/schema/accounts/v1_0"

 xmlns:xsd="http://www.w3.org/2001/XMLSchema">

 <!-- types -->

</xsd:schema>

12.4.1.1
Optional elements

XML Schema allows elements to be defined as optional, meaning that the element may or may not be present within an XML document. Elements may be declared as optional by use of the minOccurs attribute with a value of zero.

<xsd:element name="example" type="xsd:int" minOccurs="0" maxOccurs="1"/>

12.4.1.2
Nillable elements

XML Schema allows elements to be declared as nillable, indicating that the value may be nil (unspecified, not just a zero value).

<xsd:element name="example" type="xsd:int" nillable="true" />

12.4.1.3
User defined simple data types

User defined simple data types are defined as XML Schema simpleType elements with a name attribute and a restriction to the base XML Schema type. Simple data types do not extend other simple data types.

<xsd:simpleType name="Example">

 <xsd:restriction base="xsd:int"/>

</xsd:simpleType>

12.4.1.4
Data structures

Data structures are defined as complex types with a sequence of elements within the complex type.

<xsd:complexType name="Account">

 <xsd:sequence>

 <xsd:element name="name" type="xsd:string"/>

 <xsd:element name="address" type="example_xsd:Address"/>

 </xsd:sequence>

</xsd:complexType>

12.4.1.5
Enumerations

Enumerations are defined using XML Schema enumerations. It is suggested that the values listed in an enumeration follow the mixed case usage (Initial capital, capital for each word, lowercase otherwise) and always start with a letter. This will ensure compatibility with programming language usage, and provide consistency in readability of enumerations.

<xsd:simpleType name="Days">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Sunday"/>

 <xsd:enumeration value="Monday"/>

 <xsd:enumeration value="Tuesday"/>

 </xsd:restriction>

</xsd:simpleType>

Enumerations are assigned the literal values from the list provided, not a generated integer representing each enumeration values.

12.4.1.6
Unions

Unions allow a single data type to have one of a set of values. This is a constructed data type, consisting of an enumeration element that indicates which value is present and the value itself. The enumeration provides a list of possible values, and the union element provides a value that corresponds with each member of the enumeration.

<xsd:simpleType name="PhoneType">

 <xsd:restriction base="xsd:string">

 <xsd:enumeration value="Home"/>

 <xsd:enumeration value="Work"/>

 <xsd:enumeration value="Mobile"/>

 </xsd:restriction>

</xsd:simpleType>

<xsd:complexType name="PhoneNumber">

 <xsd:sequence>

 <xsd:element name="UnionElement" type="example_xsd:PhoneType">

 <xsd:element name="Home" type="xsd:string"/>

 <xsd:element name="Work" type="xsd:string"/>

 <xsd:element name="Mobile" type="example_xsd:MobileNumber"/>

 </xsd:sequence>

</xsd:complexType>

12.4.1.7
Web Service references

WSDL does not define a data type for a reference to a Web Service; however a data type can be produced that will provide the information necessary for another system to invoke a Web Service. This equivalent is a Web Service reference. This is a precursor to the use of WS-Addressing to provide this capability.

The Web Service reference consists of three parts:

· The URI representing the end point, this is equivalent to the value populated in the <service> section of a WSDL definition.

· The port type in the reference allows the entity that will be the Web Service Requester to determine which port type or client stub to use.

· To support stateful references, the additional data element, correlator, is provided. The correlator is opaque to the service receiving the reference; it is meaningful only to the system on which the Web Service is invoked. If a service is stateless, this item will be empty.

<xsd:complexType name="SimpleReference">

 <xsd:sequence>

 <xsd:element name="endpoint" type="xsd:anyURI"/>

 <xsd:element name="portType" type="xsd:string"/>

 <xsd:element name="correlator" type="xsd:string"/>

 </xsd:sequence>

</xsd:complexType>

Any additional information necessary required to access the Web Service referred to by a reference, e.g. security content, must be provided by the implementation.

12.5
Messages and interfaces (PortTypes)

12.5.1
Messages

Messages are used in the operation elements of interfaces (portTypes), providing the definition of the content that is exchanged on input, output and faults.

12.5.1.1
Document style Web Services

Document style Web Services define one input message and one output message, each with one part that references an element defined with XML Schema. These may be combined with fault messages in the definition of operations within an interface.

The XML Schema elements that define the message parts are defined within the wsdl:types section of the Service Interface Document. These parts may include references to data types defined in Type Definition Documents. Faults specific to the interface defined may also have their messages defined in this manner.

12.5.2
Interfaces (PortTypes)

Interfaces make a set of operations available, and define the messages that will be used for each.

For the request/response message pattern, an interface will have an operation definition that contains a single input message, a single output message and zero or more fault messages, in that order.

12.5.3
Faults (Exceptions)

There are four common types of faults that may be part of interface definitions:

1)
SOAP faults, that occur before a message is received by the Web Service.

2)
Service faults, that are generated as a result of a system failure, resource failure or rejection of the message (e.g. invalid message content).

3)
Policy faults, that are the result of the provider of the Web Service rejecting the request, due to a reason other than those covered by a service fault, and not specific to a service (e.g. privacy).

4)
Service specific faults, that represent a fault that is not common across services.

In defining interfaces, these faults are represented using the following approach:

· SOAP faults are not defined in the WSDL, their content is defined independently. Usually these faults are generated by intermediaries or as part of the infrastructure (e.g. security subsystem).

· Every operation shall include a ServiceException, providing a common manner in which these faults can be provided back to the requester.

· Every operation shall include a PolicyException, providing a common manner in which these faults can be provided back to the requester.

· Only faults that fall outside the service and policy faults should be provided additional fault definitions - in many cases, no additional fault definitions are required.

By following these guidelines, the following desirable characteristics of Web Services will be provided:

· Applications, Web Services, and intermediaries can implement consistent handling of classes of faults without specific knowledge of the particular Web Service implementation.

· Faults can be minimized, allowing service specific faults to be clearly recognized, not cluttered amongst many other common faults.

Even when a Web Service does not initially require a ServiceException or PolicyException, many will be deployed in different places or with additional requirements over time, and will likely require one or both of these over time. Providing these initially reduces the impact of change over time and use.

Also, combining the various service and policy faults into these common fault definitions allows flexible use of the content of the two fault definitions, allowing extensibility over time without impacting the service definition.

12.6
Bindings and service definitions

12.6.1
Binding

The binding defines how the WSDL definitions will be utilized in interacting with the network. The binding defines the protocols and operational style of the binding. For example, SOAP over HTTP or SOAP over SMTP for protocols, and document or rpc for style.

While the binding is specific to a technology, unlike the other parts of the WSDL documents, the binding does have influence on the overall service definition. For instance, the choice of SOAP style affects how messages are defined, and the binding choices may determine semantics related to the implementation - for example, some bindings may have limitations in support for asynchronous or reliable messaging.

The present document does not address bindings in detail, as the binding is independent of the WSDL interface definitions. Specific information on use of the SOAP/HTTP binding is covered in the WS-I Basic Profile [5].

12.6.2
Service definition

Services define an endpoint (port), though the address of the endpoint specified in this definition is often replaced at runtime when the discovery step determines that actual location that the service is hosted at.

During development, it is reasonable to use a location that corresponds to a debugging location at which the service will be tested - often pointing to localhost and containing default URL information for a development configuration to be used for testing. For deployment, the location should be a default location for service access.

<wsdl:service name="MessageService">

 <wsdl:port binding="msg:MessageServiceBinding" name="MessageService">

 <soap:address location="http://www.example.com/services/MessageService"/>

 </wsdl:port>

</wsdl:service>

At runtime, the Web Service Application can determine the soap:address location information through local configuration or through a discovery process, replacing the location information in the default service definition.

Annex A (normative):
WSDL for common data definitions

The document/literal WSDL representation of this interface specification is compliant to the content requirements specified in the present document and is contained in text files (contained in archive es_20239101v010102m0.zip) which accompany the present document.

History

Document history

V1.1.1
January 2005
Membership Approval Procedure
MV 20050318: 2005-01-18 to 2005-03-18

V1.1.2
May 2005
1st draft of ES 202 391-1, Parlay X 2.1 Web Services. Implements the following CRs:

· [N5-050101r3] Introduce cross- reference to ETSI TISPAN TRs, that define an informative mapping of the Parlay X Web Services to the Parlay/OSA APIs
· [N5-050098r4] Add common fault for Short Messaging and Multimedia Messaging APIs

[image: image2.wmf]_1065009619.doc

