[image: image3.wmf]

TD <>
DTR/TISPAN-01021-04-02 V.0.0.3 (2005-04)
Technical Report

Mapping of Parlay X Web Services to Parlay/OSA APIs;

Part 4: Short Messaging Mapping;

Sub-part 2: Mapping to Multi-Media Messaging
[image: image1.png]V- Y

7/

el

Reference

DTR/TISPAN-01021-04-02-OSA

Keywords

API, OSA, SERVICE

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, send your comment to:
editor@etsi.org
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

© The Parlay Group 2005.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

7Intellectual Property Rights

Foreword
7
1
Scope
9
2
References
9
3
Definitions and abbreviations
9
3.1
Definitions
9
3.2
Abbreviations
10
4
Mapping Description
10
5
Sequence Diagrams
10
5.1
Send Short Message to One or More Addresses (Messaging Paradigm)
10
5.2
Notification of Short Message Reception and Retrieval (Messaging Paradigm)
14
5.3
Send Short Message to One or More Addresses (Mailbox Paradigm)
16
5.4
Notification of Short Message Reception and Retrieval (Mailbox Paradigm)
19
6
Detailed Mapping Information
22
6.1
Operations (Messaging Paradigm)
22
6.1.1
sendSms
22
6.1.1.1
Mapping to IpMMMManager.openMMM
22
6.1.1.2
Mapping to IpMMM.sendMessageReq
22
6.1.2
sendSmsLogo
23
6.1.3
sendSmsRingtone
25
6.1.4
getSmsDeliveryStatus
26
6.1.4.1
Mapping from IpAppMMM.sendMessageRes
26
6.1.4.2
Mapping from IpAppMMM.sendMessageErr
27
6.1.4.3
Mapping from IpAppMMM.messageStatusReport
27
6.1.4.4
Mapping to IpMMM.queryStatusReq
27
6.1.4.5
Mapping from IpAppMMM.queryStatusRes
27
6.1.4.6
Mapping from IpAppMMM.queryStatusErr
28
6.1.5
notifySmsDeliveryReceipt
28
6.1.5.1
Mapping from IpAppMMM.sendMessageErr
29
6.1.5.2
Mapping from IpAppMMM.messageStatusReport
29
6.1.5.3
Mapping from IpAppMMM.queryStatusRes
29
6.1.6
startSmsNotification
30
6.1.6.1
Mapping to IpMMMManager.createNotification
30
6.1.7
notifySmsReception
31
6.1.7.1
Mapping from IpAppMMMManager.reportNotification
31
6.1.7.2
Mapping from TpNewMessageArrivedInfo
31
6.1.7.3
Mapping from IpAppMMM.messageReceived
32
6.1.8
getReceivedSms
32
6.1.9
stopSMSNotification
32
6.1.9.1
Mapping to IpMMMManager.destroyNotification
32
6.2
Operations (Mailbox Paradigm)
33
6.2.1
sendSms
33
6.2.1.1
Mapping to IpMMMManager.openMailbox
33
6.2.1.2
Mapping to IpMailbox.putMessageReq
33
6.2.2
sendSmsLogo
34
6.2.3
sendSmsRingtone
34
6.2.4
getSmsDeliveryStatus
34
6.2.4.1
Mapping from IpAppMailbox.putMessageRes
35
6.2.4.2
Mapping from IpAppMailbox.putMessageErr
35
6.2.4.3
Mapping to IpMailbox.getMessageInfoPropertiesReq
35
6.2.4.4
Mapping from IpAppMailbox.getMessageInfoPropertiesRes
36
6.2.4.5
Mapping from IpAppMailbox.getMessageInfoPropertiesErr
36
6.2.5
notifySmsDeliveryReceipt
36
6.2.5.1
Mapping from IpAppMailbox.putMessageErr
37
6.2.5.2
Mapping from IpAppMailbox.getMessageInfoPropertiesRes
37
6.2.6
startSmsNotification
37
6.2.6.1
Mapping to IpMMMManager.createNotification
37
6.2.7
notifySmsReception
38
6.2.7.1
Mapping from IpAppMMMManager.reportNotification
38
6.2.7.2
Mapping to IpMMMManager.openMailbox
39
6.2.7.3
Mapping to IpMailbox.getMessageContentReq
39
6.2.7.4
Mapping from IpAppMailbox.getMessageContentRes
40
6.2.8
getReceivedSms
40
6.2.9
stopSMSNotification
40
6.2.9.1
Mapping to IpMMMManager.destroyNotification
40
6.3
Exceptions
41
7
Additional Notes
41
Annex A (informative): Change history
42

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Technical Report (TR) has been produced by ETSI Technical Committee TISPAN.

The present document is part 4, sub-part 2, of a multi-part deliverable providing an informative mapping of Parlay X Web Services to the Parlay Open Service Access (OSA) APIs and, where applicable, to IMS, as identified below.

· Part 1 “Common Mapping”

· Part 2 “Third Party Call Mapping”
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 3 “Call Notification Mapping"
· Sub-part 1 “Mapping to Generic Call Control”
· Sub-part 2 “Mapping to Multi-Party Call Control”
· Part 4 “Short Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 5 “Multimedia Messaging Mapping”
· Sub-part 1 “Mapping to User Interaction”
· Sub-part 2 “Mapping to Multi-Media Messaging”
· Part 6 “Payment Mapping”
· Part 7 “Account Management Mapping”
· Part 8 “Terminal Status Mapping”
· Part 9 “Terminal Location Mapping”
· Sub-part 1 “Mapping to Mobility User Location”
· Sub-part 2 “Mapping to Mobility User Location CAMEL”
· Part 10 “Call Handling Mapping”
· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Sub-part 3 “Mapping to Policy Management”
· Part 11 “Audio Call Mapping”

· Sub-part 1 “Mapping to Generic Call Control and User Interaction”
· Sub-part 2 “Mapping to Multi-Party Call Control and User Interaction”
· Part 12 “Multimedia Conference Mapping”
· Part 13 “Address List Management Mapping”
· Null part: no mapping to Parlay/OSA APIs
· Part 14 “Presence Mapping”

· Sub-part 1 “Mapping to PAM”
· Sub-part 2 “Mapping to SIP/IMS Networks”
The present document has been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

1
Scope

Should start:

The Parlay X Web Services provide powerful yet simple, highly abstracted, imaginative, telecommunications functions that application developers and the IT community can both quickly comprehend and use to generate new, innovative applications.
One of the following paragraphs should start with:

The Open Service Access (OSA) specifications define an architecture that enables application developers to make use of network functionality through an open standardised interface, i.e. the Parlay/OSA APIs.

The present document is part 4 , sub-part 2, of an informative mapping of Parlay X Web Services to Parlay/OSA APIs.

The present document specifies the mapping of the Parlay X Short Messaging Web Service to the Parlay/OSA Multi-Media Messaging Service Capability Feature (SCF).

2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI TR 121 905: "Universal Mobile Telecommunications System (UMTS); Vocabulary for 3GPP Specifications (3GPP TR 21.905)".

[2]
W3C Recommendation (2 May 2001): "XML Schema Part 2: Datatypes".

NOTE:
Available at http://www.w3.org/TR/2001/REC-xmlschema-2-20010502/.

[3]
DTR-TISPAN-01021-01: "Mapping of Parlay X Web Services to Parlay/OSA APIs; Part 1: Common Mapping".

[4]
3GPP TS 23.040: "Technical realization of Short Message Service (SMS)".

[5]
RFC2822: “Internet Message Format”

NOTE:
Available at htpp://www.ietf.org/rfc/rfc2822.txt
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in DTR-TISPAN-01021-01 [3] and the following apply:
Shortcode: a short telephone number, usually 4 to 6 digits long. This is represented by the 'tel:' URI defined in [3].

Whitespace: See definition for CFWS as defined in RFC2822 [5].

3.2
Abbreviations

For the purposes of the present document, the abbreviations given in DTR-TISPAN-01021-01 [3] and the following apply:

SMS
Short Message Service

SMS-C
Short Message Service - Center

4
Mapping Description

The Short Messaging capability can be implemented with the Parlay/OSA Multi-Media Messaging SCF.

It is applicable to ETSI OSA 3.x, Parlay/OSA 5.x and 3GPP Release 6.x.
5
Sequence Diagrams

5.1 Send Short Message to One or More Addresses (Messaging Paradigm)
This describes where an application sends a short message to one or more addresses. The use case is the same whether the message is text, ringtone or a logo, however a different operation on the Parlay X SendSms interface is used for each. For the diagram below replace sendSms with sendSmsLogo or sendSmsRingtone as appropriate.

1. The application requests the sending of a short message to multiple addresses using the sendSms operation. If the contents of the sendSmsRequest message are invalid for any reason, the appropriate service or policy exception is thrown. Otherwise processing continues as described below.

2. The web service creates a Multi-Media Messaging interface object for this application request (single-shot, page mode); no source or destination address information is provided in the method invocation. If the method invocation fails for any reason, the appropriate service or policy exception is thrown. Otherwise processing continues as described below.
3. A sendSmsResponse message is returned to the application containing a unique identifier for this SMS delivery request.

4. The web service invokes the sendMessageReq method on the Multi-Media Messaging interface object to send the message to each individual destination address.

5. The application can invoke the getSmsDeliveryStatus operation at any time after it receives the sendSmsResponse message and use the unique identifier it received in this message to obtain the current delivery status for each individual destination address. At this stage, the status returned for each address is either MessageWaiting or, in the event of an error, DeliveryImpossible.

6. The web service processes an invocation of the sendMessageRes method indicating that the message has been successfully sent to the destination address(es). However it does not indicate that the message was delivered or read.

7. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for each individual destination address is one of the following:

· DeliveryImpossible, in the event an error occurred

· DeliveredToNetwork, otherwise
8. The web service processes one or more invocations of the messageStatusReport method, one for each destination address associated with the message, which containsthe terminal delivery related status.

9. If the receiptRequest part of the associated, original sendSmsRequest message was present, and this capability is supported by the web service, then the web service invokes the notifySmsDeliveryReceipt operation to notify the application of the final status of the SMS delivery to an individual destination address.

10. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for an individual destination address depends on whether a messageStatusReport method has been invoked for that address. If the method has not been invoked, the delivery status is as described in step 7. Otherwise this method has been invoked and the delivery status is one of the following:
· DeliveredToTerminal, if deliveryReportType parameter value = P_MESSAGE_REPORT_DELIVERED
· DeliveryImpossible, if deliveryReportType parameter value = P_MESSAGE_REPORT_ NOT_DELIVERABLE
· DeliveryUncertain, if deliveryReportType parameter value = P_MESSAGE_REPORT_ DELIVERY_UNDEFINED
11. If the web service has not yet received all the requested terminal delivery related status reports, it may optionally invoke the queryStatusReq method to poll the network for this information.
12. The web service processes an invocation of the queryStatusRes method containing terminal delivery related status for all destination addresses associated with the message.
13. If the receiptRequest part of the associated, original sendSmsRequest message was present, and this capability is supported by the web service, then the web service invokes the notifySmsDeliveryReceipt operation to notify the application of the final status of the SMS delivery to an individual destination address. (However if the delivery status is unchanged from the status previously reported to the application, then the web service does not need to invoke this operation.)

14. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for all associated destination addresses reflects the results provided by the queryStatusRes method (step 12), i.e.:
· DeliveredToTerminal, if deliveryReportType parameter value = P_MESSAGE_REPORT_DELIVERED
· DeliveryImpossible, if deliveryReportType parameter value = P_MESSAGE_REPORT_ NOT_DELIVERABLE
· DeliveryUncertain, if deliveryReportType parameter value = P_MESSAGE_REPORT_ DELIVERY_UNDEFINED
[image: image3.wmf]

5.2 Notification of Short Message Reception and Retrieval (Messaging Paradigm)
1. The application registers for the reception of short messages by invoking startSmsNotification. The request includes event criteria consisting of a value for the short message destination address (the smsServiceActivationNumber part) and an optional text string for matching against the first word of the message body (the criteria part); also a URI for a Web Service implementing the SmsNotification interface on the client application side, and a correlation value for identifying this event registration request.

· Note that the application may also register offline for the reception of short messages: i.e. without using the Parlay X interface and the startSmsNotification operation. The registration request should at a minimum specify the message destination address. The request may also specify a URI for a Web Service implementing the SmsNotification interface on the client application side and/or the optional text string criteria. The registration request is assigned a unique registration identifier.

2. A check is made within the web service to see if a notification for the given short message destination address is active. If no notification is active, then the Short Messaging web service requests that a notification be created by the MMM SCS; note that the optional text string criteria (for matching against the first word in the SMS body) is not sent to the MMM SCS. Otherwise a notification is already active and the request is not made.

3. The MMM SCS sends a reportNotification containing a set of one (or more) short message(s) and related message information, where the destination address of each message is the same: i.e. equivalent to the value specified in the event criteria (steps 1 & 2).
4. For each short message, the web service verifies the first word of the message body matches the value of an optional text string criteria associated with this destination address. If a message is verified, then the web service stores the message and notifies the application by invoking the notifySmsReception operation on the corresponding, previously provisioned, application web service. Otherwise, if a message cannot be verified, the web service discards it.

5. The application may invoke the getReceivedSms operation to request a list of received short messages matching a registration identifier associated with off-line provisioned notification criteria. The web service returns the list of any such messages and deletes them.

6. - 8. Repeat of steps 3 through 5. In step 8, only messages received by the web service during step 6, which match the registration identifier associated with off-line provisioned notification criteria, can be ‘bulk’ retrieved by this getReceivedSms operation
9. The application terminates an existing registration for the reception of short messages by invoking the stopSMSNotification operation. The request includes the same correlation value previously specified in an earlier startSMSNotification operation (step 1).

· Note that the application may also deregister offline for the reception of short messages: i.e. without using the Parlay X interface and the stopSmsNotification operation. The deregistration request would specify the registration identifer associated with the original, offline registration operation (step 1).

10. A check is made within the web service to see if the registration identifer (correlation value) represents the last active notification for the corresponding destination address. If it is the last, then the web service requests that the notification be destroyed by the MMM SCS. Otherwise at least one other notification (i.e. associated with a different text string criteria value) remains active for this destination address and the request is not made.

5.3 Send Short Message to One or More Addresses (Mailbox Paradigm)
This describes where an application sends a short message to one or more addresses. The use case is the same whether the message is text, ringtone or a logo, however a different operation on the Parlay X SendSms interface is used for each. For the diagram below replace sendSms with sendSmsLogo or sendSmsRingtone as appropriate.

1. The application requests the sending of a short message to multiple addresses using the sendSms operation. If the contents of the sendSmsRequest message are invalid for any reason, the appropriate service or policy exception is thrown. Otherwise processing continues as described below.

2. If a mailbox for the requesting application is not already open, then the web service opens a Mailbox interface object. If the method invocation fails for any reason, the appropriate service or policy exception is thrown. Otherwise processing continues as described below.

3. A sendSmsResponse message is returned to the application containing a unique identifier for this SMS delivery request.

4. The web service invokes the putMessageReq method one or more times on the Mailbox interface object to place the message in an “outbox” to be sent to each individual destination address. [Note that, by invoking the method separately for each individual destination address, the web service receives a messageId for each destination that can be subsequently used to poll for delivery status on a per destination basis, e.g. in step 8.

5. The application can invoke the getSmsDeliveryStatus operation at any time after it receives the sendSmsResponse message and use the unique identifier it received in this message to obtain the current delivery status for each individual destination address. At this stage, the status returned for each address is either MessageWaiting or, in the event of an error, DeliveryImpossible.

6. The web service processes invocations of the putMessageRes method indicating that the message has been successfully sent to the destination address(es). However it does not indicate that the message was delivered or read.

7. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for each individual destination address is one of the following:

· DeliveryImpossible, in the event an error occurred

· DeliveredToNetwork, otherwise

8. The web service invokes the getMessageInfoPropertiesReq method one or more times on the Mailbox interface object, one for each destination address associated with the message, to poll for message delivery status.

9. The web service processes invocations of the getMessageInfoPropertiesRes method containing message delivery status.

10. If the receiptRequest part of the associated, original sendSmsRequest message was present, and this capability is supported by the web service, then the web service invokes the notifySmsDeliveryReceipt operation to notify the application of the final status of the SMS delivery to an individual destination address.

11. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for an individual destination address depends on whether a getMessageInfoPropertiesRes method has been invoked for that address. If the method has not been invoked, the delivery status is as described in step 7. Otherwise this method has been invoked and the delivery status is one of the following:

· DeliveredToTerminal, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_DELIVERED, P_MMM_SENT_MSG_STATUS_READ or P_MMM_SENT_MSG_STATUS_DELETED_UNREAD
· DeliveryImpossible, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or P_MMM_SENT_MSG_STATUS_EXPIRED
· DeliveryUncertain, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_SENT
12. If the web service has not yet received a final message delivery status for all the destination addresses, it may optionally (re-)invoke the getMessageInfoPropertiesReq method one or more times on the Mailbox interface object to poll for message delivery status.

13. The web service processes invocations of the getMessageInfoPropertiesRes method containing message delivery status.

14. If the receiptRequest part of the associated, original sendSmsRequest message was present, and this capability is supported by the web service, then the web service invokes the notifySmsDeliveryReceipt operation to notify the application of the final status of the SMS delivery to an individual destination address. (However if the delivery status is unchanged from the status previously reported to the application in step 10, then the web service does not need to invoke this operation.)

15. The application can invoke the getSmsDeliveryStatus operation. At this stage, the status returned for all associated destination addresses reflects the results provided by the getMessageInfoPropertiesRes methods (steps 9 & 13), i.e.:

· DeliveredToTerminal, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_DELIVERED, P_MMM_SENT_MSG_STATUS_READ or P_MMM_SENT_MSG_STATUS_DELETED_UNREAD
· DeliveryImpossible, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or P_MMM_SENT_MSG_STATUS_EXPIRED
· DeliveryUncertain, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_SENT

5.4 Notification of Short Message Reception and Retrieval (Mailbox Paradigm)

1. The application registers for the reception of short messages by invoking startSmsNotification. The request includes event criteria consisting of a value for the short message destination address (the smsServiceActivationNumber part) and an optional text string for matching against the first word of the message body (the criteria part); also a URI for a Web Service implementing the SmsNotification interface on the client application side, and a correlation value for identifying this event registration request. The web service maps the short message destination address to a unique mailbox identifier supported by the messaging system.
· Note that the application may also register offline for the reception of short messages: i.e. without using the Parlay X interface and the startSmsNotification operation. The registration request should at a minimum specify the message destination address, which maps to a unique mailbox identifier supported by the messaging system. The request may also specify a URI for a Web Service implementing the SmsNotification interface on the client application side and/or the optional text string criteria. The registration request is assigned a unique registration identifier.

2. A check is made within the web service to see if a notification for the given short message destination address is active. If no notification is active, then the Short Messaging web service requests that a notification be created by the MMM SCS; note that the optional text string criteria (for matching against the first word in the SMS body) is not sent to the MMM SCS. Otherwise a notification is already active and the request is not made.

3. The MMM SCS sends a reportNotification containing a set of one (or more) received message notification(s) and related message information, where the mailbox identifier of each message is the same: i.e. equivalent to the value specified in the event criteria (steps 1 & 2).

4. The web service opens a Mailbox interface object associated with the mailbox identifier reported in the event notification (step 3).
5. The web service invokes the getMessageContentReq method one or more times on the Mailbox interface object to request the retrieval of the entire body of each message reported in the event notification (step 3).
6. The web service processes invocations of the getMessageContentRes method containing the entire body of each message reported in the event notification (step 3).
7. For each retrieved message, the web service verifies the first word of the message body matches the value of an optional text string criteria associated with this destination address. If a message is verified, then the web service stores the message and notifies the application by invoking the notifySmsReception operation on the corresponding, previously provisioned, application web service. Otherwise, if a message cannot be verified, the web service discards it.
8. If the web service discards a retrieved message, it may also invoke either the deleteMessageReq or moveMessageReq method on the Mailbox interface object to clean-up the mailbox and folder. If the web service stores a retrieved message, it may also invoke the setMessageInfoPropertiesReq method on the Mailbox interface object to change the value of the MessageStatus element from P_MMM_RECEIVED_MSG_STATUS_UNREAD to P_MMM_RECEIVED_MSG_STATUS_READ.
9. The application may invoke the getReceivedSms operation to request a list of received short messages matching a registration identifier associated with off-line provisioned notification criteria. The web service returns the list of any such messages and deletes them.
10. Repeat of step 3 for the same message destination address and mailbox identifier
11. - 14. Repeat of steps 5 through 8. Note that step 4 is not repeated as the mailbox interface object is already open.

15. The application may invoke the getReceivedSms operation to request a list of received short messages matching a registration identifier associated with off-line provisioned notification criteria. The web service returns the list of any such messages and deletes them. [Note that only messages received by the web service since the previous invocation (step 9), can be ‘bulk’ retrieved by this getReceivedSms operation.]
16. The application terminates an existing registration for the reception of short messages by invoking the stopSMSNotification operation. The request includes the same correlation value previously specified in the earlier startSMSNotification operation (step 1).

· Note that the application may also deregister offline for the reception of short messages: i.e. without using the Parlay X interface and the stopSmsNotification operation. The deregistration request would specify the registration identifer associated with the original, offline registration operation (step 1).

17. A check is made within the web service to see if the registration identifer (correlation value) represents the last active notification for the corresponding destination address. If it is the last, then the web service requests that the notification be destroyed by the MMM SCS. Otherwise at least one other notification (i.e. associated with a different text string criteria value) remains active for this destination address and the request is not made.

6
Detailed Mapping Information

6.1
Operations (Messaging Paradigm)
6.1.1 sendSms

The sequence diagram in 5.1 illustrates the flow for the sendSms operation.

The sendSms operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpMMMManager.openMMM

· IpMMM.sendMessageReq

6.1.1.1 Mapping to IpMMMManager.openMMM
The IpMMMManager.openMMM method is invoked with the following parameters:

Name
Type
Comment

defaultDestinationAddressList
TpTerminating
AddressList
Not mapped. [Optional parameter]

defaultSource
Address
TpAddress
Not mapped. [Optional parameter]

appMMM
IpAppMMMRef
Reference to callback (internal)

The result from IpMMMManager.openMMM is of type TpMMMIdentifier and identifies the MMM interface object upon which future methods are invoked: e.g. IpMMM.sendMessageReq. It is also correlated with the value of the requestIdentifier part returned to the application in the sendSmsResponse message

Parlay exceptions thrown by IpMMMManager.openMMM are mapped to Parlay X exceptions as defined in section 6.3.

6.1.1.2 Mapping to IpMMM.sendMessageReq

The IpMMM.sendMessageReq method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in theresult from IpMMMManager.openMMM]

sourceAddress
TpAddress
The address used to represent the sender of the message. For alphanumeric SMS addresses – i.e. the optional senderName part of sendSmsRequest - the address plan P_ADDRESS_PLAN_UNDEFINED is used.

destination
AddressList
TpTerminating
AddressList
Specifies the addresses to which the SMS should be sent. It is constructed based on the URIs provided in the addresses part of sendSmsRequest, mapped as described in DTR-TISPAN-01021-01 [3]. Only the ToAddressList element of TpTerminatingAddressList is populated.

deliveryType
TpMessage
DeliveryType
Set to the P_MMM_SMS value (GSM 7-bit character set only) or to the P_MMM_SMS_BINARY value (for Unicode SMS)

message
Treatment
TpMessage
TreatmentSet
Consists of the following elements:

· a DeliveryReport element with value set to a value of ‘9’, which represents a logical ‘OR’ (and request for notification) of ONLY the following delivery states: P_MESSAGE_REPORT_DELIVERY_UNDEFINED, P_MESSAGE_REPORT_DELIVERED and P_MESSAGE_REPORT_NOT_DELIVERABLE.

· a BillingID element constructed from the code element of the optional charging part (if present).

· a DeliveryTime element set to a value of P_MMM_SEND_IMMEDIATE.
· a ValidityTime element set to a vendor-specific value.

message
TpOctetSet
The actual message that needs to be sent: i.e. the message part

additionalHeaders
TpMessage
HeaderFieldSet
Not mapped.

The result from IpMMM.sendMessageReq is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is used to correlate with future invocations of the IpMMM.queryStatusReq method and of IpAppMMM callback interface methods.
Parlay exceptions thrown by IpMMM.sendMessageReq are not mapped to Parlay X exceptions. Instead they are reported to the application in a set of one or more notifySmsDeliveryReceiptRequest messages and/or in a getSmsDeliveryStatusResponse message, with the following part values:

· [notifySmsDeliveryReceiptRequest message only] correlator has the value of the correlator element of the receiptRequest part of the sendSmsRequest message

· the deliveryStatus.address element has an address value contained in the ToAddressList element of the terminatingAddressList parameter of the IpMMM.sendMessageReq method, mapped as described in DTR-TISPAN-01021-01 [3]

· the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible

6.1.2 sendSmsLogo

The sequence diagram in 5.1 illustrates the flow for the sendSms operation. The flow for the sendSmsLogo operation is identical

The sendSmsLogo operation is synchronous from the Parlay X client’s point of view. It is mapped to the same Parlay/OSA methods as the sendSms operation (reference 6.1.1). The only difference is the mapping to the deliveryType, message and additionalHeaders parameters of the IpMMM.sendMessageReq method, as follows:
· The deliveryType parameter is set to the P_MMM_SMS_BINARY value (for Unicode SMS).
· The message parameter contains the actual logo that needs to be sent. It is constructed from the image part of the sendSmsLogoRequest message.
· There are two alternatives for the mapping of the smsFormat part of the sendSmsLogoRequest message:

· the Subject element of the additionalHeaders parameter, or

· the ExtensionField element of the additionalHeaders parameter, in an RFC 822 compliant format and a value of either “SmsFormat:EMS” or “SmsFormat:SmartMessaging”.
·
·

6.1.2.2

6.1.3 sendSmsRingtone

The sequence diagram in 5.1 illustrates the flow for the sendSms operation. The flow for the sendSmsRingtone operation is identical

The sendSmsRingtone operation is synchronous from the Parlay X client’s point of view. It is mapped to the same Parlay/OSA methods as the sendSms operation (reference 6.1.1). The only difference is the mapping to the message and additionalHeaders parameters of the IpMMM.sendMessageReq method, as follows:

· The message parameter contains the actual ringtone (in RTX text format) that needs to be sent. It is constructed from the ringtone part of the sendSmsRingtoneRequest message.

· There are two alternatives for the mapping of the smsFormat part of the sendSmsRingtoneRequest message:

· the Subject element of the additionalHeaders parameter, or

· the ExtensionField element of the additionalHeaders parameter, in an RFC 822 compliant format and a value of either “SmsFormat:EMS” or “SmsFormat:SmartMessaging”.

·
·
6.1.3.1

6.1.3.2

6.1.4
getSmsDeliveryStatus

The sequence diagram in 5.1 illustrates the flow for the getSmsDeliveryStatus operation.

The getSmsDeliveryStatus operation is synchronous from the Parlay X client’s point of view. It is mapped to/from the following Parlay/OSA methods:
· IpAppMMM.sendMessageRes
· IpAppMMM.sendMessageErr
· IpAppMMM.messageStatusReport

· IpMMM.queryStatusReq

· IpAppMMM.queryStatusRes

· IpAppMMM.queryStatusErr

·
·
The delivery status provided to the Parlay X client will depend on the timing of the getSmsDeliveryStatus operation invocation. If a message status report is received from the network as a result of an earlier sendSmsXxx-related operation, then the delivery status information provided in the IpAppMMM.messageStatusReport callback is mapped. If such a report hasn’t been received, then the IpMMM.queryStatusReq method is invoked.
6.1.4.1 Mapping from IpAppMMM.sendMessageRes
The IpAppMMM.sendMessageRes method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

In the absence of more recent delivery status information (i.e. as provided in an IpAppMMM.messageStatusReport or an IpAppMMM.queryStatusRes method), this method results in the assignment of the DeliveredToNetwork value to the deliveryStatus element of each DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message.
6.1.4.2 Mapping from IpAppMMM.sendMessageErr

The IpAppMMM.sendMessageErr method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

error
TpMessaging
Error
Maps to the DeliveryImpossible value of the deliveryStatus element of each DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message.

errorDetails
TpString
Not mapped

6.1.4.3 Mapping from IpAppMMM.messageStatusReport

The IpAppMMM.messageStatusReport method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

destinationAddress
TpAddress
Maps to the address element of one DeliveryInformation parameter of the deliveryStatus part of getSmsDeliveryStatusResponse

deliveryReportType
TpMessageDeliveryReportType
Maps to the deliveryStatus element of one DeliveryInformation parameter of the deliveryStatus part of getSmsDeliveryStatusResponse, as follows:
· P_MESSAGE_REPORT_ DELIVERY_UNDEFINED maps to DeliveryUncertain
· P_MESSAGE_REPORT_DELIVERED maps to DeliveredToTerminal
· P_MESSAGE_REPORT_NOT_DELIVERABLE maps to DeliveryImpossible

deliveryReportInfo
TpString
Not mapped.

6.1.4.4 Mapping to IpMMM.queryStatusReq

The IpMMM.queryStatusReq method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

Parlay exceptions thrown by IpMMM.queryStatusReq are not mapped to Parlay X exceptions.

6.1.4.5 Mapping from IpAppMMM.queryStatusRes

The IpAppMMM.queryStatusRes method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

result
TpQueryStatus
ReportSet
This is a set of tuples where each tuple contains a DestinationAddress of the message, together with the ReportedStatus for that address. Each tuple maps to the address and deliveryStatus elements of one DeliveryInformation parameter of the deliveryStatus part of the getSmsDeliveryStatusResponse message. The mapping to the deliveryStatus element is as follows:

· P_MESSAGE_REPORT_ DELIVERY_UNDEFINED maps to DeliveryUncertain
· P_MESSAGE_REPORT_DELIVERED maps to DeliveredToTerminal
· P_MESSAGE_REPORT_NOT_DELIVERABLE maps to DeliveryImpossible
In the event that the messaging system provides additional delivery states to those requested in the messageTreatment parameter (ref 6.1.1.2), the mapping to the deliveryStatus element is as follows:

· P_MESSAGE_REPORT_READ and P_MESSAGE_REPORT_DELETED_UNREAD map to DeliveredToTerminal
· P_MESSAGE_REPORT_EXPIRED maps to DeliveryImpossible

6.1.4.6 Mapping from IpAppMMM.queryStatusErr

The IpAppMMM.queryStatusErr method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

error
TpMessaging
Error
For each destination address with a current deliveryStatus value of DeliveredToNetwork, the deliveryStatus is updated to the DeliveryUncertain value. This updated value is reported to the application in a DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message.

errorDetails
TpString
Not mapped

6.1.4.7

6.1.4.8

6.1.5 notifySmsDeliveryReceipt

The sequence diagram in 5.1 illustrates the flow for the notifySmsDeliveryReceipt operation, which is mapped from the following Parlay/OSA methods:

· Parlay exceptions thrown by IpMMM.sendMessageReq, as described in 6.1.1.2
· IpAppMMM.sendMessageErr
· IpAppMMM.messageStatusReport

· IpAppMMM.queryStatusRes

6.1.5.1
Mapping from IpAppMMM.sendMessageErr
The IpAppMMM.sendMessageErr method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

error
TpMessaging
Error
Results in the assignment of the following values to the DeliveryInformation parameter of the deliveryStatus part of a notifySmsDeliveryReceiptRequest message:

· the address element contains the associated message destination address

· the deliveryStatus element has the value: DeliveryImpossible

errorDetails
TpString
Not mapped

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates.

6.1.5.2
Mapping from IpAppMMM.messageStatusReport
The IpAppMMM.messageStatusReport method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

destinationAddress
TpAddress
Maps to the address element of the DeliveryInformation parameter of the deliveryStatus part of getSmsDeliveryStatusResponse

deliveryReportType
TpMessageDeliveryReportType
Maps to the deliveryStatus element of the DeliveryInformation parameter of the deliveryStatus part of notifySmsDeliveryReceiptRequest, as follows:

· P_MESSAGE_REPORT_DELIVERED maps to DeliveredToTerminal
· P_MESSAGE_REPORT_NOT_DELIVERABLE maps to DeliveryImpossible
Note that the P_MESSAGE_REPORT_ DELIVERY_UNDEFINED value does not represent a final delivery status, and does not result in the generation of a notifySmsDeliveryReceiptRequest message

deliveryReportInfo
TpString
Not mapped.

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates.

6.1.5.3
Mapping from IpAppMMM.queryStatusRes
The IpAppMMM.queryStatusRes method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMMM]

assignmentID
TpAssignmentID
Not mapped. [The value provided in the result from IpMMM.sendMessageReq]

result
TpQueryStatus
ReportSet
This is a list of each DestinationAddress of the message, together with the ReportedStatus for that address. These elements map to the address and deliveryStatus elements of the DeliveryInformation parameter of the deliveryStatus part of notifySmsDeliveryReceiptRequest. The mapping to the deliveryStatus element is as follows:

· P_MESSAGE_REPORT_DELIVERED maps to DeliveredToTerminal
· P_MESSAGE_REPORT_NOT_DELIVERABLE maps to DeliveryImpossible
In the event that the messaging system provides additional delivery states to those requested in the messageTreatment parameter (ref 6.1.1.2), the mapping to the deliveryStatus element is as follows:

· P_MESSAGE_REPORT_READ and P_MESSAGE_REPORT_DELETED_UNREAD map to DeliveredToTerminal
· P_MESSAGE_REPORT_EXPIRED maps to DeliveryImpossible

Note that the P_MESSAGE_REPORT_ DELIVERY_UNDEFINED value does not represent a final delivery status, and does not result in the generation of a notifySmsDeliveryReceiptRequest message

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates.
6.1.6
startSmsNotification

The sequence diagram in 5.2 illustrates the flow for the startSmsNotification operation, which is mapped to the Parlay/OSA method: IpMMMManager.createNotification, provided there is no existing notification already established for the destination address contained in the smsServiceActivationNumber part.
6.1.6.1
Mapping to IpMMMManager.createNotification
The IpMMMManager.createNotification is invoked with the following parameters:

Name
Type
Comment

appMMM
Manager
IpAppMMM
ManagerRef
Not mapped. Reference to callback (internal)

eventCriteria
TpMessaging
EventCriteriaSet
Contains a single element specifying the event notification criteria, for the messaging event: P_EVENT_MSG_NEW_MESSAGE_ARRIVED. The criteria consist of 3 fields:

· The SourceAddress is not mapped. It is set to be valid for all senders

· The DestinationAddress is constructed based on the URI provided in the smsServiceActivationNumber part of the startSmsNotificationRequest message, mapped as described in DTR-TISPAN-01021-01 [3]

· The CreateMultiMediaMessagingSession element is not mapped. It is set to a value of “FALSE”: i.e. the SCF will not create a MMM session object when a new message arrives.

The result from IpMMMManager.createNotification is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in the startSmsNotificationRequest message and the correlator part returned to the application in the notifySmsReceptionRequest message

Note that the reference part and the optional criteria part of a startSmsNotificationRequest message are not mapped to IpMMMManager.createNotification. Instead the web service uses all the text string criteria values associated with a specific destination address to parse any event reported for that address by the IpAppMMMManager.reportNotification method. The web service determines whether the event is valid - i.e. there is a match with a text string criteria value. If valid, the web service stores the message and selects the previously provisioned application callback web service to receive the notifySmsReceptionRequest message. If invalid, the web service discards the event notification.
Parlay exceptions thrown by IpMMMManager.createNotification are mapped to Parlay X exceptions as defined in section 6.3.

6.1.7
notifySmsReception

The notifySmsReception operation is mapped from the following Parlay/OSA methods:
· IpAppMMMManager.reportNotification, as illustrated in the sequence diagram in 5.2
· IpAppMMM.messageReceived , which contains a message received for a remote party within the context of the conversation or session currently active. The message may be, but is not necessarily in reply to a message sent by the application using the IpMMM.sendMessageReq method (reference 6.1.1.2). Note that the reference information for the application web service, upon which the notifySmsReception operation is invoked, must be provisioned offline, since online provisioning using the SmsNotificationManager interface is only applicable for messages which are received outside the context of the conversation or session.
6.1.7.1
Mapping from IpAppMMMManager.reportNotification
The IpAppMMMManager.reportNotification method is invoked with the following parameters:

Name
Type
Comment

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpMMMManager.createNotification]

eventInfo
TpMessaging
EventInfoSet
Contains a set of SMS messages with the same destination address and an event type = EventNewMessageArrived. The mapping of each message (type TpNewMessageArrivedInfo) to the message part of a notifySmsReceptionRequest message is described in 6.1.7.2

The result from IpAppMMMManager.reportNotification is of type IpAppMultiMediaMessagingRef. It is set to null.

6.1.7.2 Mapping from TpNewMessageArrivedInfo
The mapping from TpNewMessageArrivedInfo to the message part of a notifySmsReceptionRequest message is as follows:

Name
Type
Comment

SourceAddress
TpAddress
Maps to the senderAddress element of the message part. The data type mapping from TpAddress to xsd:anyURI is described in DTR-TISPAN-01021-01 [3].

DestinationAddressSet
TpAddressSet
Consists of a single destination address element, which maps to the smsServiceActivationNumber element of the message part. The data type mapping from TpAddress to xsd:anyURI is described in DTR-TISPAN-01021-01 [3].

Message
TpOctetSet
Maps to the message element of the message part

Headers
TpMessage
HeaderFieldSet
Not mapped. [Contains header information which could be duplicated in the Message element, depending on its format]

MultiMedia
MessagingIdentifier
TpMultiMedia
MessagingIdentifier
Not applicable. This parameter is null, reflecting the criteria value included in the IpMMMManager.createNotification invocation.

Note that this mapping occurs if there is at least one active notification established for the value of the eventInfo.DestinationAddress(Set) element, an associated application callback web service, and one of the following conditions is satisfied:

· There is only one active notification that was defined without the optional text string criteria value

· There is one active notification that was defined with the optional text string criteria value and that value matches the first word in the the value of the eventInfo.Message element.

· Note that the “first word” in the message is defined as the initial characters after discarding any leading Whitespace and ending with a Whitespace or end of message. The matching shall be case-insensitive.
6.1.7.3 Mapping from IpAppMMM.messageReceived

The IpAppMMM.messageReceived method is invoked with the following parameters:

Name
Type
Comment

sessionID
TpSessionID
Not mapped. [The value provide in the result from IpMMMManager.openMMM – reference 6.1.1.1]

message
TpOctetSet
Maps to the message element of the message part.

headers
TpMessage
HeaderFieldSet
The Sender set element maps to the senderAddress element of the message part of the notifySmsReceptionRequest message. The data type mapping from TpAddress to xsd:anyURI is described in DTR-TISPAN-01021-01 [3].

The senderName part of the original sendSmsXxxRequest message associated with this multimedia session, which was established as described in section 6.1.1.1, is mapped to the the smsServiceActivationNumber element of the message part of the notifySmsReceptionRequest message.

As previously noted, the endpoint definition of the application web service to which the notifySmsReceptionRequest message is sent, including the value of the correlator part, is provisioned offline.
6.1.8
getReceivedSms

The sequence diagram in 5.2 illustrates the flow for the getReceivedSms operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the getReceivedSms operation is a bulk retrieval capability for previously received short messages matching criteria defined in an off-line provisioning step. This retrieval operation includes matching messages previously and individually delivered to the application via the notifySmsReception operation.

6.1.9
stopSMSNotification

The sequence diagram in 5.2 illustrates the flow for the stopSmsNotification operation, which is mapped to the Parlay/OSA method: IpMMMManager.destroyNotification, provided that the referenced notification is the last active notification for the associated destination address. Otherwise at least one other notification (i.e. associated with a different text string criteria value) remains active for this destination address and the mapping is not performed.
6.1.9.1
Mapping to IpMMMManager.destroyNotification
The IpMMMManager.destroyNotification is invoked with the following parameters:

Name
Type
Comment

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpMMMManager.createNotification and correlated with the value of the reference part received from the application in the original startSmsNotificationRequest message and the value of the correlator part received from the application in the stopSmsNotificationRequest message]

Parlay exceptions thrown by IpMMMManager.destroyNotification are mapped to Parlay X exceptions as defined in section 6.3.
6.2 Operations (Mailbox Paradigm)
6.2.1 sendSms
The sequence diagram in 5.3 illustrates the flow for the sendSms operation.

The sendSms operation is synchronous from the Parlay X client’s point of view. It is mapped to the following Parlay/OSA methods:

· IpMMMManager.openMailbox, if not already opened for the application
· IpMMM.putMessageReq

6.2.1.1 Mapping to IpMMMManager.openMailbox
The IpMMMManager.openMailbox method is invoked with the following parameters:

Name
Type
Comment

mailboxID
TpString
Not mapped. [Specifies the identity of the application’s mailbox in the messaging system]

authenticationInfo
TpString
Not mapped. [Authentication information needed to open the application’s mailbox, such as a key or password]

appMailbox
IpAppMailboxRef
Reference to callback (internal)

The result from IpMMMManager.openMailbox is of type TpMailboxIdentifier and identifies the Mailbox interface object upon which future methods are invoked: e.g. IpMailbox.putMessageReq. It is also correlated with the value of the requestIdentifier part returned to the application in the sendSmsResponse message

Parlay exceptions thrown by IpMMMManager.openMailbox are mapped to Parlay X exceptions as defined in section 6.3.

6.2.1.2 Mapping to IpMailbox.putMessageReq
The IpMailbox.putMessageReq method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in theresult from IpMMMManager.openMailbox]

folderID
TpString
In order to send a message from the mailbox, the web service places the message in a designated folder, from which it will be sent. The folder to use is indicated by the service property P_PUT_MESSAGE_FOLDER_TO_SEND.

message
TpOctetSet
The actual message that needs to be sent. The message and the headers are transferred to the Messaging service. The message will be taken as is. No checking is done on the message. The web service constructs the content of this parameter from the parts of the sendSmsRequest message by including the following information:

· the “To:” header field contains a single destination address, derived from the addresses part
· the “From:” header field contains an individual destination address, derived from the senderName
· the message “body” field contains the message text, derived from the message part
Note that the optional charging part is not mapped.

The result from IpMailbox.putMessageReq is of type TpAssignmentID and is used internally to correlate the callback invocation of the IpAppMailbox.getMessageRes/Err method.

Parlay exceptions thrown by IpMailbox.putMessageReq are not mapped to Parlay X exceptions. Instead they are reported to the application in a notifySmsDeliveryReceiptRequest message and/or in a getSmsDeliveryStatusResponse message, with the following part values:

· [notifySmsDeliveryReceiptRequest message only] correlator has the value of the correlator element of the receiptRequest part of the sendSmsRequest message

· the deliveryStatus.address element contains the associated message destination address, originally derived from the addresses part
· the deliveryStatus.deliveryStatus element has the value: DeliveryImpossible

6.2.2
sendSmsLogo

The sequence diagram in 5.3 illustrates the flow for the sendSms operation. The flow for the sendSmsLogo operation is identical

The sendSmsLogo operation is synchronous from the Parlay X client’s point of view. It is mapped to the same Parlay/OSA methods as the sendSms operation (reference 6.2.1). The only difference is in the mapping to the message parameter of the IpMailbox.putMessageReq method, as follows:

· The image part of the sendSmsLogoRequest message, which contains the actual logo that needs to be sent, should be mapped to the “body” field of the message parameter.

· The smsFormat part of the sendSmsLogoRequest message can be mapped to a “subject” or “extension” header field of the message parameter, e.g. containing a value of either “SmsFormat:EMS” or “SmsFormat:SmartMessaging”
6.2.3
sendSmsRingtone

The sequence diagram in 5.3 illustrates the flow for the sendSms operation. The flow for the sendSmsRingtone operation is identical

The sendSmsRingtone operation is synchronous from the Parlay X client’s point of view. It is mapped to the same Parlay/OSA methods as the sendSms operation (reference 6.2.1). The only difference is the mapping to the message parameter of the IpMailbox.putMessageReq method, as follows:
· The ringtone part of the sendSmsRingtoneRequest message, which contains the actual ringtone (in RTX text format) that needs to be sent, should be mapped to the “body” field of the message parameter.

· The smsFormat part of the sendSmsRingtoneRequest message can be mapped to a “subject” or “extension” header field of the message parameter, e.g. containing a value of either “SmsFormat:EMS” or “SmsFormat:SmartMessaging”

6.2.4
getSmsDeliveryStatus

The sequence diagram in 5.3 illustrates the flow for the getSmsDeliveryStatus operation.

The getSmsDeliveryStatus operation is synchronous from the Parlay X client’s point of view. It is mapped to/from the following Parlay/OSA methods:

· IpAppMailbox.putMessageRes
· IpAppMailbox.putMessageErr
· IpMailbox.getMessageInfoPropertiesReq
· IpAppMailbox.getMessageInfoPropertiesRes
· IpAppMailbox.getMessageInfoPropertiesErr
The delivery status provided to the Parlay X client will depend on the timing of the getSmsDeliveryStatus operation invocation. If the delivery status for some destination addresses is known, as a result of earlier invocations of the IpMailbox.getMessageInfoPropertiesReq method, then the delivery status information provided in the IpAppMailbox.getMessageInfoPropertiesRes callback methods is mapped. If such a report hasn’t been received for some destination addresses, then the IpMailbox.getMessageInfoPropertiesReq method is invoked for each of those destination addresses.
6.2.4.1 Mapping from IpAppMailbox.putMessageRes
The IpAppMailbox.putMessageRes method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.putMessageReq]

messageID
TpString
Not mapped. [The new ID of the message which has been placed in the folder, from which it will be sent, as requested]

In the absence of more recent delivery status information (i.e. as provided in an IpAppMailbox.getMessageInfoPropertiesRes method), this method results in the assignment of the following values to one DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message:
· the address element contains the associated message destination address

· the deliveryStatus element has the value: DeliveredToNetwork
6.2.4.2 Mapping from IpAppMailbox.putMessageErr
The IpAppMailbox.putMessageErr method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.putMessageReq]

error
TpMessaging
Error
Results in the assignment of the following values to one DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message:

· the address element contains the associated message destination address

· the deliveryStatus element has the value: DeliveryImpossible

errorDetails
TpString
Not mapped

6.2.4.3 Mapping to IpMailbox.getMessageInfoPropertiesReq
The IpMailbox.getMessageInfoPropertiesReq method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

messageID
TpString
Not mapped. [The value provided in the result from IpAppMailbox.putMessageRes]

The result from IpMailbox.getMessageInfoPropertiesReq is of type TpAssignmentID and is used internally to correlate the callback invocation of the IpAppMailbox.getMessageInfoPropertiesRes/Err method.

Parlay exceptions thrown by IpMailbox.getMessageInfoPropertiesReq are not mapped to Parlay X exceptions.

6.2.4.4 Mapping from IpAppMailbox.getMessageInfoPropertiesRes
The IpAppMailbox.getMessageInfoPropertiesRes method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.getMessageInfoPropertiesReq]

messageID
TpString
Not mapped. [The value provided in the invocation of IpMailbox.getMessageInfoPropertiesReq]

returnedProperties
TpMessageInfo
PropertySet
Provides various message properties (names and values). Of these, the value of a single element, MessageStatus, is mapped to the deliveryStatus element of one DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message, as follows:

· DeliveredToTerminal, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_DELIVERED, P_MMM_SENT_MSG_STATUS_READ or P_MMM_SENT_MSG_STATUS_DELETED_UNREAD
· DeliveryImpossible, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or P_MMM_SENT_MSG_STATUS_EXPIRED
· DeliveryUncertain, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_SENT
[Note that the address element of the DeliveryInformation parameter contains the associated message destination address]

6.2.4.5 Mapping from IpAppMailbox.getMessageInfoPropertiesErr
The IpAppMailbox.getMessageInfoPropertiesErr method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.getMessageInfoPropertiesReq]

error
TpMessaging
Error
If this message destination address has a current deliveryStatus value of DeliveredToNetwork, then it is updated to the DeliveryUncertain value. This updated value is reported to the application in a DeliveryInformation parameter of the deliveryStatus part of a getSmsDeliveryStatusResponse message. [Note that the address element of the DeliveryInformation parameter contains the associated message destination address]

errorDetails
TpString
Not mapped

6.2.5 notifySmsDeliveryReceipt

The sequence diagram in 5.3 illustrates the flow for the notifySmsDeliveryReceipt operation, which is mapped from the following Parlay/OSA methods:

· Parlay exceptions thrown by IpMailbox.putMessageReq, as described in 6.2.1.2
· IpAppMailbox.putMessageErr
· IpAppMailbox.getMessageInfoPropertiesRes
6.2.5.1
Mapping from IpAppMailbox.putMessageErr
The IpAppMailbox.putMessageErr method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.putMessageReq]

error
TpMessaging
Error
Results in the assignment of the following values to the DeliveryInformation parameter of the deliveryStatus part of a notifySmsDeliveryReceiptRequest message:

· the address element contains the associated message destination address

· the deliveryStatus element has the value: DeliveryImpossible

errorDetails
TpString
Not mapped

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates.

6.2.5.2
Mapping from IpAppMailbox.getMessageInfoPropertiesRes
The IpAppMailbox.getMessageInfoPropertiesRes method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.getMessageInfoPropertiesReq]

messageID
TpString
Not mapped. [The value provided in the invocation of IpMailbox.getMessageInfoPropertiesReq]

returnedProperties
TpMessageInfo
PropertySet
Provides various message properties (names and values). Of these, the value of a single element, MessageStatus, is mapped to the deliveryStatus element of the DeliveryInformation parameter of the deliveryStatus part of a notifySmsDeliveryReceiptRequest message, as follows:

· DeliveredToTerminal, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_DELIVERED, P_MMM_SENT_MSG_STATUS_READ or P_MMM_SENT_MSG_STATUS_DELETED_UNREAD
· DeliveryImpossible, if MessageStatus parameter value = P_MMM_SENT_MSG_STATUS_NOT_DELIVERABLE or P_MMM_SENT_MSG_STATUS_EXPIRED
Notes:

· Other values of MessageStatus, e.g. P_MMM_SENT_MSG_STATUS_SENT, do not represent a final delivery status, and do not result in the generation of a notifySmsDeliveryReceiptRequest message
· The address element of the DeliveryInformation parameter contains the associated message destination address

In addition, the correlator part of the notifySmsDeliveryReceiptRequest message is assigned the value of the correlator element of the receiptRequest part of the sendSmsXxxRequest message to which it relates.

6.2.6
startSmsNotification

The sequence diagram in 5.4 illustrates the flow for the startSmsNotification operation, which is mapped to the Parlay/OSA method: IpMMMManager.createNotification, provided there is no existing notification already established for the destination address contained in the smsServiceActivationNumber part.

6.2.6.1 Mapping to IpMMMManager.createNotification
The IpMMMManager.createNotification is invoked with the following parameters:

Name
Type
Comment

appMMM
Manager
IpAppMMM
ManagerRef
Not mapped. Reference to callback (internal)

eventCriteria
TpMessaging
EventCriteriaSet
Contains a single element specifying the event notification criteria, for the messaging event: P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED. The criteria consist of 2 fields:

· MailboxID, which identifies a mailbox in the messaging system that is correlated with the short message destination address contained in the smsServiceActivationNumber part
· AuthenticationInfo, which provides the authentication information needed to open the mailbox, such as a key or password

The result from IpMMMManager.createNotification is of type TpAssignmentID and is used internally to correlate the callbacks. Specifically it is correlated with the value of the reference part received from the application in the startSmsNotificationRequest message and the correlator part returned to the application in the notifySmsReceptionRequest message

Note that the reference part and the optional criteria part of a startSmsNotificationRequest message are not mapped to IpMMMManager.createNotification. Instead the web service uses all the text string criteria values associated with a specific destination address to parse any received message event reported for that address by the IpAppMMMManager.reportNotification method. The web service determines whether the event is valid - i.e. there is a match with a text string criteria value. If valid, the web service stores the message and selects the previously provisioned application callback web service to receive the notifySmsReceptionRequest message. If invalid, the web service discards the event notification.
Parlay exceptions thrown by IpMMMManager.createNotification are mapped to Parlay X exceptions as defined in section 6.3.

6.2.7
notifySmsReception

The sequence diagram in 5.4 illustrates the flow for the notifySmsReception operation, which is mapped to/from the following Parlay/OSA methods:

· IpAppMMMManager.reportNotification
· IpMMMManager.openMailbox
· IpMailbox.getMessageContentReq
· IpAppMailbox.getMessageContentRes
6.2.7.1 Mapping from IpAppMMMManager.reportNotification
The IpAppMMMManager.reportNotification method is invoked with the following parameters:
Name
Type
Comment

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpMMMManager.createNotification]

eventInfo
TpMessaging
EventInfoSet
Contains a set of one (or more) received message notification(s) and related message information. For each notification, the fields of the EventNewMailboxMessageArrived element are mapped as follows:

· MailboxID: the mailbox identifier in each message notification is the same; i.e. it is equivalent to the value specified in the event criteria (6.2.6.1). This field correlates with the short message destination address returned in the smsServiceActivationNumber part of a notifySmsReceptionRequest message.
· FolderID: the folder identifier in each message notification specifies the identity of the folder in which the received message is stored

· MessageDescription contains sub-fields, of which two are applicable for the mapping:

· MessageID: the message identifier for the received message
· From: the sender of the received message, which maps to the
senderAddress part of a notifySmsReceptionRequest message. The data type mapping from TpAddress to xsd:anyURI is described in DTR-TISPAN-01021-01 [3].
· ExtendedHeaderInformation: not applicable.

The result from IpAppMMMManager.reportNotification is of type IpAppMultiMediaMessagingRef. It is set to null.
6.2.7.2
Mapping to IpMMMManager.openMailbox
The IpMMMManager.openMailbox method is invoked with the following parameters:

Name
Type
Comment

mailboxID
TpString
 Specifies the identity of the application’s mailbox in the messaging system: i.e. as specified in the eventInfo parameter of the reportNotification method (6.2.7.1).

authenticationInfo
TpString
Specifies authentication information needed to open the application’s mailbox, such as a key or password: i.e. as specified in the AuthenticationInfo field of the eventCriteria parameter of the createNotification method (6.2.6.1).

appMailbox
IpAppMailboxRef
Reference to callback (internal)

The result from IpMMMManager.openMailbox is of type TpMailboxIdentifier and identifies the Mailbox interface object upon which future methods are invoked: e.g. IpMailbox.getMessageContentReq.
Parlay exceptions thrown by IpMMMManager.openMailbox are not mapped to Parlay X exceptions.

6.2.7.3
Mapping to IpMailbox.getMessageContentReq
The IpMailbox.getMessageContentReq method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provided in the result from IpMMMManager.openMailbox]

folderID
TpString
Not mapped. [The value provided in the eventInfo parameter of the reportNotification method (6.2.7.1)]

messageID
TpString
Not mapped. [The value provided in the MessageDescription.MessageID field of the eventInfo parameter of the reportNotification method (6.2.7.1)]

The result from IpMailbox.getMessageContentReq is of type TpAssignmentID and is used internally to correlate the callback invocation of the IpAppMailbox.getMessageContentRes/Err method.

Parlay exceptions thrown by IpMailbox.getMessageContentReq are not mapped to Parlay X exceptions.

6.2.7.4
Mapping from IpAppMailbox.getMessageContentRes
The IpAppMailbox.getMessageContentRes method is invoked with the following parameters:

Name
Type
Comment

mailboxSessionID
TpSessionID
Not mapped. [The value provide in the result from IpMMMManager.openMailbox]

requestID
TpAssignmentID
Not mapped. [The value provided in the result from IpMailbox.getMessageContentReq]

contentType
TpString
Not mapped.

contentTransfer
Encoding
TpString
Not mapped.

content
TpOctetSet
Contains the body of the message. Maps to the message element of the message part of a notifySmsReceptionRequest message.

Note that this mapping occurs if there is at least one active notification established for the mailbox (i.e. as identified in the MailboxID element of the eventInfo parameter of IpAppMMMManager.reportNotification), an associated application callback web service, and one of the following conditions is satisfied:

· There is only one active notification that was defined without the optional text string criteria value

· There is one active notification that was defined with the optional text string criteria value and that value matches the first word in the the value of the content parameter (of IpAppMailbox.getMessageContentRes).

· Note that the “first word” in the message is defined as the initial characters after discarding any leading Whitespace and ending with a Whitespace or end of message. The matching shall be case-insensitive.

6.2.8
getReceivedSms

The sequence diagram in 5.4 illustrates the flow for the getReceivedSms operation. It is not explicitly mapped to any Parlay/OSA method. Instead, the getReceivedSms operation is a bulk retrieval capability for previously received short messages matching criteria defined in an off-line provisioning step. This retrieval operation includes matching messages previously and individually delivered to the application via the notifySmsReception operation.

6.2.9
stopSMSNotification

The sequence diagram in 5.4 illustrates the flow for the stopSmsNotification operation, which is mapped to the Parlay/OSA method: IpMMMManager.destroyNotification, provided that the referenced notification is the last active notification for the associated destination address. Otherwise at least one other notification (i.e. associated with a different text string criteria value) remains active for this destination address and the mapping is not performed.

6.2.9.1
Mapping to IpMMMManager.destroyNotification
The IpMMMManager.destroyNotification is invoked with the following parameters:

Name
Type
Comment

assignmentID
TpAssignmentID
Not mapped. [The value provide in the result from IpMMMManager.createNotification and correlated with the value of the reference part received from the application in the original startSmsNotificationRequest message and the value of the correlator part received from the application in the stopSmsNotificationRequest message]

Parlay exceptions thrown by IpMMMManager.destroyNotification are mapped to Parlay X exceptions as defined in section 6.3.

6.3 Exceptions

In addition to the common mapping of Parlay/OSA API method exceptions to Parlay X Web Service exceptions, which is defined in DTR-TISPAN-01021-01 [3], there are the following service-specific exception mappings:

Parlay/OSA Exception
Service
Exception
Notes

P_MMM_INVALID_MAILBOX
SVC0001
With error number

P_MMM_INVALID_AUTHENTICATION_
INFORMATION
SVC0001
With error number

7
Additional Notes

No additional notes are provided.

Annex A (informative):
Change history

Document history

v.0.0.1
October 2004
1st draft of DTR-TISPAN-01021-04-02.

v.0.0.2
November 2004
2nd draft of DTR-TISPAN-01021-04-02. Revised based on discussion and action items recorded at JWG Meeting #29 in Barcelona, Spain. In particular, added mapping detail for the new functions specified in contribution: “N5-040878 Rel-6 CR 29199-04 PXWS Short Messaging SmsNotificationManager.”

v.0.0.3
April 2005
3rd draft of DTR-TISPAN-01021-04-02. Revised following email review period. In particular, replaced sequence diagrams and added mapping detail for the new functions specified in the following source documents:

· N5-050015 29199-04-610

· N5-050080 Rel 6 CR-29-199-04 Correct stop notification

· N5-050096r4 CR-29.199-04 Rel-6 Correct_criteria
Also added sequence diagrams (5.3 & 5.4) and new section 6.2, which provide a mapping to a mailbox-based messaging system

13b: notifySmsDeliveryReceiptResponse

“new”

9a: notifySmsDeliveryReceiptRequest

9b: notifySmsDeliveryReceiptResponse

11: queryStatusReq()

10b: getSmsDeliveryStatusResponse

10a: getSmsDeliveryStatusRequest

“forward event”

12: queryStatusRes()

“forward event”

8: messageStatusReport()

“forward event”

6: sendMessageRes()

4: sendMessageReq()

3: sendSmsResponse

 “new”

2: openMultiMediaMessaging()

“new”

1: sendSmsRequest

IpMMM

IpMMM�Manager

IpAppMMM

IpAppMMM�Manager

Notification is only destroyed if it is the last one active for the specified destination address: i.e smsServiceActivationNumber

Notification is only created if one is not already active for the specified destination address: i.e smsServiceActivationNumber

9b: stopSmsNotificationResponse

10: destroyNotification()

9a: stopSmsNotificationRequest

3: reportNotification(): P_EVENT_MSG_NEW_MESSAGE_ARRIVED

Notification(s) only sent if the event satisfies optional text string criteria associated with this destination addressall criteria specified in startSMSNotification

1a: startSmsNotificationRequest

5b: getReceivedSmsResponse

5a: getReceivedSmsRequest

8a: getReceivedSmsRequest

7b: notifySmsReceptionResponse

7a: notifySmsReceptionRequest

“forward event”

4b: notifySmsReceptionResponse

4a: notifySmsReceptionRequest

“forward event”

2: createNotification(): P_EVENT_MSG_NEW_MESSAGE_ARRIVED

“new”

IpMMM�Manager

IpAppMMM�Manager

Short Messaging

Application

Short Messaging

Application

11b: getSmsDeliveryStatusResponse

11a: getSmsDeliveryStatusRequest

“forward event”

13: getMessageInfoPropertiesRes ()

“forward event”

9: getMessageInfoPropertiesRes()

“forward event”

6: putMessageRes()

4: putMessageReq()

3: sendSmsResponse

 “new”

2: openMailbox()

“new”

1: sendSmsRequest

IpMailbox

IpMMM�Manager

IpAppMailbox

IpAppMMM�Manager

14b: getSmsDeliveryStatusResponse

14a: getSmsDeliveryStatusRequest

7b: getSmsDeliveryStatusResponse

7a: getSmsDeliveryStatusRequest

5b: getSmsDeliveryStatusResponse

5a: getSmsDeliveryStatusRequest

13a: notifySmsDeliveryReceiptRequest

STEPS 11 through 14: REPEAT of STEPS 5 through 8

“forward event”

10: reportNotification(): P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED

15a: getReceivedSmsRequest

8: getMessageInfoPropertiesReq()

15b: getSmsDeliveryStatusResponse

15a: getSmsDeliveryStatusRequest

7b: getSmsDeliveryStatusResponse

7a: getSmsDeliveryStatusRequest

5b: getSmsDeliveryStatusResponse

5a: getSmsDeliveryStatusRequest

14a: notifySmsDeliveryReceiptRequest

14b: notifySmsDeliveryReceiptResponse

10a: notifySmsDeliveryReceiptRequest

10b: notifySmsDeliveryReceiptResponse

12: getMessageInfoPropertiesReq ()

Short Messaging

Application

1b: s

rtSmsNoti

icatio

Response

6: reportNotification(): P_EVENT_MSG_NEW_MESSAGE_ARRIVED

8b: getReceivedSmsResponse

“forward event”

8b: deleteMessageRes(), moveMessageRes(), setMessageInfoPropertiesRes()

8a: deleteMessageReq(), moveMessageReq(), setMessageInfoPropertiesReq()

“forward event”

6: getMessageContentRes()

5: getMessageContentReq()

“new”

4: openMailbox()

Notification is only created if one is not already active for the specified destination address

3: reportNotification(): P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED

Notification(s) only sent if the event satisfies optional text string criteria associated with this destination address

“forward event”

IpMMM�Manager

IpAppMMM�Manager

Short Messaging

Application

1b: startSmsNotificationResponse

15b: getReceivedSmsResponse

Notification is only destroyed if it is the last one active for the specified destination address

16b: stopSmsNotificationResponse

17: destroyNotification()

16a: stopSmsNotificationRequest

1a: startSmsNotificationRequest

9b: getReceivedSmsResponse

9a: getReceivedSmsRequest

7b: notifySmsReceptionResponse

7a: notifySmsReceptionRequest

2: createNotification(): P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED

“new”

IpMMM�Manager

IpAppMMM�Manager

Short Messaging

Application

IpAppMailbox�

IpMailbox�

_1065009619.doc

