Joint-Working-Group (Parlay, ETSI Project OSA, 3GPP CT5)
C5-050229

Meeting #31, Osaka, JAPAN, 09-13 May 2005

Source:
Marconi Communication
Title:
Revised WSDL Annex – Conversion Rules

Agenda Item:
OSA3 (3GPP Rel-6 / Parlay 5)

Document for:
Discussion
Purpose of this Document

This document describes the approach for converting the Parlay 5.0 IDL files to WSDL. It is an attempt to capture lessons learned while performing the conversions and also best practices for creating the WSDL interfaces. The tools used for this conversion are based on IONA’s Artix 3.0.

The goal is to write clear service definitions that are easy to use and maintain. While most of the conversion is achieved through the Artix idltowsdl tool, some user intervention is still necessary. A future goal should be to write another tool to minimize these manual modifications to the WSDL in the future.

The advantage of this conversion approach is that it allows the interfaces to change (or new ones to be added) and minimizes the amount of effort in creating new WSDL. Especially when a new or modified interface has a dependency on an existing interface. Specific details on this are contained within this document.

Overview

One technique used throughout is the import element allowing the separation of the different elements of a service definition into independent documents, which can then be imported as needed. This technique helps write clearer service definitions, by separating the definitions according to their level of abstraction.

A WSDL document can be viewed as having two distinct sections:

Logical:

This section contains everything that is needed to describe the interface without describing how and where to contact the object representing this interface. It contains essentially all the information included in an IDL file.

Physical:
This section describes how and where to contact the object representing the interface. It contains essentially all the information included in a CORBA IOR.

The logical part of the WSDL document can in turn be broken down into three sections:

Types:

This defines all types (complex and simple) that are used in the interface. These are all described using XML schema.

Messages:

Using the types described previously messages are defined which will be sent in operations defined later.

Port Types:

A port type is analogous to an IDL interface. It is a grouping of operations which define input and output messages.

The physical part of the WSDL document can in turn be broken down into two sections:

Bindings:

This section describes how the messages will be written on to the wire. It is the protocol that will be used. In this instance SOAP.

Services:

A service is a grouping of ports. Ports define the location where the object representing the interface can be contacted using a specific transport. In this instance an HTTP endpoint.

For the purpose of the IDL to Parlay conversion each IDL has been mapped to three separate documents.

1. The schema definitions in the types section has been separated into a schema file for each IDL with the name <idl filename>.xsd. This file can use schema imports to import any types needed from any other schema file.

2. The logical part of the WSDL contract has been separated into a file <idl filename>_logical.wsdl. This imports its schema using a schema import in the types section. Should it need any messages from any other WSDL it can import them using a WSDL import.
Note that schema imports and WSDL imports are different, a common mistake in WSDL design is to use one or both of these incorrectly. This mistake is avoided here.

3. The final document is the physical part of the contract; this imports the logical contract using a WSDL import. Each interface in IDL is separated into a unique WSDL document, these have the name <idl filename>-<interface name>.wsdl. The reason for this is that some SOAP toolkits have problems with WSDL that have multiple ports defined.

This separation means that information stored in an IDL document is not duplicated across any WSDL. Any modification to the IDL will only require changes to the WSDL generated specifically for that IDL and the changes will be propagated through the import statements, with one exception. The exception is when the signature of a base interface is modified when this interface is derived from in a separate IDL document; this causes problems in WSDL due to the lack of inheritance in WSDL 1.0. This is being address in future WSDL specifications and further discussion is outside the scope of this document. The problem is that inherited operations must be duplicated in the port types, hence modifications to base operations should be respected in derived interfaces\port types.

Sample Conversion Steps

IDL with no interface definitions:

IDL file that define types only, and do not contain operations (e.g. fw_data.idl) are converted to schema (i.e. .xsd). This conversion is fairly straightforward. E.g.:
idltowsdl -L fw_data.xsd -P fw_data_corba.wsdl

-x http://www.csapi.org/fw_data/schema fw_data.idl
Note the fact that fw_data.idl #includes osa.idl, which complicates matters a bit. The file osa.idl contains interfaces and operations, so the WSDL corresponding to osa.idl also gets generated and placed into fw_data.xsd. Because of the extraneous data type definitions and abstract message definitions that get included, it is necessary to manually (or through a script) remove them from fw_data.xsd such that fw_data.xsd contains only type info defined in fw_data.idl. The types in osa.idl referenced by fw_data.idl will be resolved by using the schema "import" mechanism on file osa.xsd.

The Parlay IDL is broken up into modules that are unique for each IDL file. This makes the removal of un-necessary types trivial if you follow the module names.

A simpler approach would have been to use "idltowsdl" to map fw_if_access.idl to

fw_if_access.wsdl without separating the schema into a reusable .xsd file. This approach results in a single (rather bloated) file fw_if_access.wsdl with no separation of logical and physical. This approach will not be described in this document.

IDL with interface definitions:

This section outlines the steps involved in converting a sample file mmm.idl into mmm.wsdl and mmm.xsd. It is recommended that a XML tool such as XML spy should be used to confirm that no errors are during modification to the WSDL.

1)

Run the following:

idltowsdl -L mmm_logical.wsdl -P mmm_corba.wsdl

-w http://www.csapi.org/mmm/wsdl

-x http://www.csapi.org/mmm/schema mmm.idl
The -x specifies the namespace given to the schema portion of the WSDL (data type definitions). The -w specifies the namespace given for the rest of the document.

Note: If the file passed into idltowsdl (i.e. mmm.idl) contains #include's then these files also need to be in the working directory and the contents of these files also get converted into WSDL. All WSDL gets put into the same file, in this case mmm_logical.wsdl.

2)

Because the WSDL bindings generated by idltowsdl default to CORBA you now have a file (mmm_corba.wsdl) containing corba bindings in physical section. Because SOAP/HTTP is needed this file mmm_corba.wsdl can be discarded. The file mmm_logical.wsdl contains the logical portion and will serve as the source for WSDL.

The file mmm_logical.wsdl contains a <types> section, which contains schema with target namespace "http://www.csapi.org/mmm/schema". In the <types> section there are types from the IDL. The schema is separated into a schema file that can be reused. The entire schema section is cut from this file and paste into a new file mmm.xsd.

3)

Once all types have been copied into mmm.xsd (and removed from mmm.wsdl), note there are types specific to the mmm.idl, and also included types from any file that has been #included within mmm.idl. While it is ok to leave these definitions from included modules, to do so clutters the XSD file with types that would be better defined elsewhere (in there own schema). The approach is to separate any types from included IDL files into their own schema files. E.g. the types resulting from the #include "osa.idl" can be stripped out and an "import" statement added such that the schema file containing these types (osa.xsd) gets imported. As well as avoiding clutter this also means that the osa.idl can be modified without impacting the mmm.xsd.

An appropriate header section for mmm.xsd looks as follows:

<schema targetNamespace="http://www.csapi.org/mmm/schema" xmlns:tns="http://www.csapi.org/mmm/schema" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/" xmlns:references="http://schemas.iona.com/references" xmlns:osa="http://www.csapi.org/osa/schema" >

<import namespace="http://www.csapi.org/osa/schema" schemaLocation="osa.xsd"/>

<import namespace="http://schemas.iona.com/references" schemaLocation="references.xsd"/>

The types that come from mmm_logical.wsdl will be prefixed incorrectly. You will need to do simple search and replace for "xsd1" namespace. This needs to be either "osa" or "tns" depending on whether the type is defined in osa.xsd or locally within this file (targetNamespace). Note that previously when types resided in mmm_logical.wsdl (the default output of "idltowsdl") the types shared a common prefix because all these types were defined in a single namespace local to mmm_logical.wsdl. We are no longer defining *all* types locally rather only those defined within the mmm.idl module. Those defined outside will now be imported from file osa.xsd.

4)

With step 3) the file mmm.xsd should have been created, and all external data type

definitions removed. Data types from outside this module can then be imported by importing the appropriate XSD file. In this case osa.xsd will need to have been created if not already, and should contain all type definitions from the module osa.idl. This XSD will then be imported by mmm.xsd.

5)

The mmm.wsdl file will now be free of all schema definitions, and should import mmm.xsd. It will also need to use messages defined in osa_logical.wsdl, so it should import this file as well. An appropriate header section for mmm_logical.wsdl will look as follows:

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:tns="http://www.csapi.org/mmm/wsdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsd1="http://www.csapi.org/mmm/schema" xmlns:references="http://schemas.iona.com/references" xmlns:osa="http://www.csapi.org/osa/wsdl" targetNamespace="http://www.csapi.org/mmm/wsdl" name="mmm_logical">

<import namespace="http://www.csapi.org/osa/wsdl" location="osa_logical.wsdl"/>

<types>

<schema targetNamespace="http://www.csapi.org/mmm/schema" xmlns="http://www.w3.org/2001/XMLSchema" xmlns:wsdl="http://schemas.xmlsoap.org/wsdl/">

<xsd:import schemaLocation="mmm.xsd" namespace="http://www.csapi.org/mmm/schema"/>

</schema>

</types>
Note there are two different imports used above. The WSDL import does not need to be scoped but the schema import is.

Note that the messages section of the mmm_logical.wsdl document contains both the messages needed for the mmm.idl and osa.idl. Since the osa messages are now imported you can safely remove these from the WSDL, again using the fact that the module name is unique per IDL.

It is also possible to remove portTypes corresponding to interfaces from osa.idl (i.e. IpInterface, IpService). What is left is in mmm_logical.wsdl are message definitions representing parameters and faults, and portTypes representing interfaces/operations from mmm.idl.

Note that some of the interfaces in mmm.idl inherit from IpService in osa.idl. These portTypes will use messages defined in osa_logical.wsdl. The prefix of these should be changed from “xsd1:” to “osa:”; for example IpMailbox inherits from IpService and will look like this:

<portType name="org.csapi.mmm.IpMailbox">

<operation name="setCallback">

<input name="setCallback" message="osa:org.csapi.IpService.setCallback"/>

<output name="setCallbackResponse" message="osa:org.csapi.IpService.setCallbackResponse"/>

<fault name="org.csapi.TpCommonExceptions" message="osa:org.csapi.TpCommonExceptions"/>

<fault name="org.csapi.P_INVALID_INTERFACE_TYPE" message="osa:org.csapi.P_INVALID_INTERFACE_TYPE"/>

</operation>

<operation name="setCallbackWithSessionID">

<input name="setCallbackWithSessionID" message="osa:org.csapi.IpService.setCallbackWithSessionID"/>

<output name="setCallbackWithSessionIDResponse" message="osa:org.csapi.IpService.setCallbackWithSessionIDResponse"/>

<fault name="org.csapi.TpCommonExceptions" message="osa:org.csapi.TpCommonExceptions"/>

<fault name="org.csapi.P_INVALID_SESSION_ID" message="osa:org.csapi.P_INVALID_SESSION_ID"/>

<fault name="org.csapi.P_INVALID_INTERFACE_TYPE" message="osa:org.csapi.P_INVALID_INTERFACE_TYPE"/>

</operation>

<operation name="close">

<input name="close" message="tns:org.csapi.mmm.IpMailbox.close"/>

<output name="closeResponse" message="tns:org.csapi.mmm.IpMailbox.closeResponse"/>

<fault name="org.csapi.TpCommonExceptions" message="osa:org.csapi.TpCommonExceptions"/>

<fault name="org.csapi.P_INVALID_SESSION_ID" message="osa:org.csapi.P_INVALID_SESSION_ID"/>

</operation>

<!-— further operations snipped for brevity -->
6)

Use the following tools to validate the wsdl and xsd.

schemavalidator -deep -w mmm_logical.wsdl -verbose

schemavalidator -deep -w mmm.xsd -verbose

Once the files validate you are ready to add bindings and services. A tool such as XMLSpy can also be used to help verify the WSDL during modifications.

7)

For each portType add a soap binding, run the following:

wsdltosoap -o mmm-IpAppMultiMediaMessagingManager.wsdl

 -i org.csapi.mmm.IpAppMultiMediaMessagingManager

 mmm_logical.wsdl
This will add SOAP binding to the mmm_logical.wsdl and put resulting file into mmm-IpAppMultiMediaMessagingManager.wsdl. This will include all the messages and portTypes which are already defined in the mmm_logical.wsdl. Again remove all of these and import these definitions. The header of the mmm-IpAppMultiMediaMessagingManager.wsdl will look like this.

<definitions xmlns="http://schemas.xmlsoap.org/wsdl/" xmlns:osa="http://www.csapi.org/osa/wsdl" xmlns:references="http://schemas.iona.com/references" xmlns:soap="http://schemas.xmlsoap.org/wsdl/soap/" xmlns:tns="http://www.csapi.org/mmm/wsdl" xmlns:xsd="http://www.w3.org/2001/XMLSchema" xmlns:xsd1="http://www.csapi.org/mmm/schema" targetNamespace="http://www.csapi.org/mmm/wsdl" name="mmm-IpAppMultiMediaMessagingManager">

<import namespace="http://www.csapi.org/mmm/wsdl" location="mmm_logical.wsdl"/>

<binding name="org.csapi.mmm.IpAppMultiMediaMessagingManagerSOAPBinding" type="tns:org.csapi.mmm.IpAppMultiMediaMessagingManager">

Repeat this approach for every interface from the IDL. It would have been possible to combine these all to a single WSDL document, but multiple services and ports in a WSDL document are not supported by all toolkits.

8)

After SOAPBindings have been added you will need to add a Services and corresponding ports (representing each interface/binding). This can be achieved using the wsdltoservice tool

wsdltoservice -e mmm -t IpAppMultiMediaMessagingManager -b org.csapi.mmm.IpAppMultiMediaMessagingManagerSOAPBinding -transport soap -a http://localhost:0/IpAppMultiMediaMessagingManager -o temp.wsdl mmm-IpAppMultiMediaMessagingManager.wsdl

The temp.wsdl will contain the service and port definition for this binding

 <service name="mmm">

 <port binding="tns:org.csapi.mmm.IpAppMultiMediaMessagingManagerSOAPBinding"

 name="IpAppMultiMediaMessagingManager">

 <soap:address location="http://localhost:0/IpAppMultiMediaMessagingManager"/>

 </port>

 </service>
This service can then be copied from the temp.wsdl and added to the mmm-IpAppMultiMediaMessagingManager.wsdl. The WSDL is now complete for this interface and should be verified using

schemavalidator -deep -w mmm_ IpAppMultiMediaMessagingManager.wsdl -verbose

This concludes the steps involved in converting mmm.idl to its corresponding WSDL.

Conclusion

The above steps can be applied to most of the Parlay 5.0 IDL and provide a pattern to convert these files to WSDL. The choice to divide the documents into data type definitions (schema) and service bindings (WSDL) required some extra steps and manual intervention to extract from one file to another. Adding the manual steps to divide the documents along with manually pruning extraneous definitions will prove to be worthwhile because the resulting file structure will maximize the ability to reuse these documents and make the files easier to use and maintain.

