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Change in Clause 5

5 Sequence Diagrams

5.1 Using Mailbox to send and receive 

This sequence diagram shows how an application can use a mailbox to send and receive messages, if this functionality is supported by the SCF. 
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 : IpAppMultiMediaMessagingManager

 : IpAppMailbox

 : IpMultiMediaMessagingManager

 : IpMailbox

1: new ()

2: new ()

3: openMailbox(   )

4: createNotification(  )

5: putMessageReq(   )

6: putMessageRes(   )

7: 'forward'

8: reportNotification(  )

9: 'forward'

10: getFullMessageReq(   )

11: getFullMessageRes(   )

12: 'forward'

13: close( )


3:
The application requests to open the mailbox identified by the mailboxID parameter. 

4:
The application requests to be notified of any messages received  in the specified mailbox, using the P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED criteria. 

5:
The application places a message in a folder in the mailbox.  The message contents are specified in the message parameter, and the folder in which to place it is specified in the folderID.  The application chooses to place the message in the folder identified in the service property P_PUT_MESSAGE_FOLDER_TO_SEND.  Any message placed in this folder is automatically sent.  Typically it could be an Outbox folder. 

6:
This method indicates that the message has been successfully placed in the specified folder, and a messageID is returned.  This does not necessarily indicate that the message has been sent, nor does it indicate that it has been delivered or received. 

8:
The application is notified that a message has been received in the mailbox.  In this type of event (P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED), the messageID, location of the message and message description are delivered in the reportNotification() method, but the message contents are not.  These need to be retrieved from the mailbox. 

10:
Using the messageID and folderID received in the reportNotification() method, the application requests to retrieve the full contents of the received message from the mailbox.  The application could have chosen to retrieve individual parts of the message using getMessageBodyPartsReq(), or to retrieve just the headers using getMessageHeadersReq(). 

11:
The full contents of the message are returned to the application. 

13:
The applicaiton closes the mailbox session. 

5.2 Using Mailbox functions 

This sequence diagram shows how an application can retrieve message details from the mailbox. 
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 : IpAppMultiMediaMessagingManager

 : IpAppMailbox

 : IpMultiMediaMessagingManager

 : IpMailbox

1: new ()

2: new ()

3: openMailbox(   )

4: getMailboxInfoPropertiesReq( )

5: getMailboxInfoPropertiesRes(   )

6: 'forward'

7: getFoldersReq(  )

8: getFoldersRes(    )

9: 'forward'

10: getFoldersReq(  )

11: getFoldersRes(    )

12: 'forward'

13: listMessagesReq(    )

14: listMessagesRes(     )

15: 'forward'

16: getMessageInfoPropertiesReq(  )

17: getMessageInfoPropertiesRes(    )

18: 'forward'

19: listMessageBodyPartsReq(    )

20: listMessageBodyPartsRes(   )

21: 'forward'

22: getMessageHeadersReq(   )

23: getMessageHeadersRes(   )

24: 'forward'

25: getMessageBodyPartsReq(    )

26: getMessageBodyPartsRes(   )

27: 'forward'

28: close( )


3:
The application requests to open the mailbox identified by the mailboxID parameter. 

4:
The application requests the properties of the Mailbox. 

5:
The property set of the mailbox is returned.  The properties include the owner, date created, date changed and size of the mailbox. 

7:
The application requests a list of the top-level folders in the mailbox.  The folderID parameter is left empty. 

8:
The list of top-level folders is returned to the application. 

10:
The application requests a list of the sub-folders in a folder returned earlier.  The folderID parameter identifies the folder for which the list of sub-folders is requested. 

11:
The list of sub-folders is returned to the application. 

13:
The application requests a list of messages in a folder returned earlier.  The folderID parameter identifies the folder for which the list of messages is requested. 

14:
The list of messages in the folder is returned. 

16:
The application requests the property set of a message returned earlier.  The message is identified by its messageID, returned in the listMessagesRes(). 

17:
The message properties are returned.  These properties may include the date created, date received, date changed, size or status. 

19:
The application requests a list of the body parts of the message identified in the messageID parameter.  The location of the message is identified in the folderID parameter. 

20:
The list of the message parts is returned. 

22:
The application requests the set of headers of the message, identified by the messageID parameter.  The location of the message is identified in the folderID parameter. 

23:
The list of headers is returned to the application. 

25:
The application retrieves one or more parts of the message, as identified in the partIDs parameter. 

26:
The contents of the requested messge parts are returned. 

28:
The applicaiton closes the mailbox session. 

5.3 Setting notification of received messages 

This sequence diagram shows how the application  can subscribe to notifications, and how it can receive messages using reportNotifications() method. 
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 : IpAppMultiMediaMessagingManager

 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

1: new ()

4: createNotification(  )

5: reportNotification(  )

6: 'forward event'

7: destroyNotification( )

2: new ()

3: openMultiMediaMessaging(   )


3:
The application requests the opening of a MultiMedia Messaging object. 

4:
The application requests to be notified of any messages received for a particular destination address, using the P_EVENT_MSG_NEW_MESSAGE_ARRIVED criteria.  The application may request that a MultiMedia Messaging session is created upon receipt of a message. 

5:
A message is received for the destination address identified in the createNotification() method.  In this type of event (P_EVENT_MSG_NEW_MESSAGE_ARRIVED), the entire message contents are delivered in the reportNotification() method. 

7:
The application is no longer interested in receiving notifications of received messages.  It de-subscribes from notification of received messages. 

5.4 Sending, and receiving messages in same context 

This sequence diagram shows how the application can send and receive messages within the same communication context using sendMessageReq() on the IpMultiMediaMessaging interface and messageReceived() on the IpAppMultiMediaMessaging interface. 
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 : IpAppMultiMediaMessagingManager

 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

1: new ()

2: new ()

3: openMultiMediaMessaging(   )

4: sendMessageReq(       )

5: sendMessageRes(  )

6: sendMessageReq(       )

7: sendMessageRes(  )

8: messageReceived(   )

9: 'forward event'

10: close( )


3:
Request the opening of a MultiMedia Messaging object.  The application intends to use this object to send messages to the same destination, so it has specified the defaultdestinationAddressList.  The defaultSourceAddress is also specified. 

4:
The application sends a message.  The application has not included a destination address in the destinationAddressList parameter, as a default value has already been supplied in the openMultiMediaMessaging() method.  Likewise the default source address was provided when the IpMultiMediaMessaging object was created, so there is no need to provide the sourceAddress parameter.  The application has not requested delivery receipt or read receipt in the messageTreatment parameter. 

5:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent.  It does not indicate a delivery status. 

6:
The application sends another message to the same destination, again using default values for the destination and source addresses. 

7:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent.  It does not indicate a delivery status. 

8:
A new message is received in this communication context.  The full message contents are carried in this method.  It is not specified how the SCF identifies that this message is to be delivered in this communication context.  The SCF could use source or destination addresses, content type, time or subject, among other parameters, to identify the context. 

10:
The application closes the session, i.e. closes the communication context. 

5.5 Sending messages and receiving delivery notification 

This sequence diagram shows how the application can send messages on the IpMultiMediaMessaging interface with sendMessageReq(), and how the application can be informed about the delivery status of the message with messageStatusReport().  It also shows how the application can query the delivery status of a message, with queryStatusReq(). 
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 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

 : IpAppMultiMediaMessagingManager

3: openMultiMediaMessaging(   )

2: new ()

4: sendMessageReq(       )

5: sendMessageRes(  )

6: messageStatusReport(     )

7: messageStatusReport(     )

8: queryStatusReq(  )

9: queryStatusRes(   )

10: sendMessageReq(       )

14: messageStatusReport(     )

12: sendMessageReq(       )

15: messageStatusReport(     )

1: new ()

11: sendMessageRes(  )

13: sendMessageRes(  )

 

3:
Request the opening of a MultiMedia Messaging object.  The application intends to use this object to send messages to multiple destinations, so it has not specified any defaultDestinationAddressList. 

4:
The application sends a message.  The destination address is included in the destinationAddressList parameter.  If the source address was not provided when the IpMultiMediaMessaging object was created, it can be provided in the sourceAddress parameter.  The application has requested delivery receipt and read receipt in the messageTreatment parameter.  The assignmentID received as a return parameter enables the application to match any message status information with this message. 

5:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent.  It does not indicate a delivery status. 

6:
This method contains a delivery receipt for the message just sent. 

7:
This method contains a read receipt for the message just sent. 

8:
The application queries the status of the message it has sent (to verify the read receipt? or it has discarded the read receipt?). 

9:
The status of the message is returned. 

10:
The application sends another message, this time to a different destination.  It has requested a read receipt to be returned. 

11:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent.  It does not indicate a delivery status. 

12:
The application sends another message, to a different destination.  It has requested a read receipt to be returned. 

14:
This method contains an indication that the previous message has been read. 

15:
This method contains an indication that the second message has been read.  The assignmentID is used to match this report to the corresponding sendMessageReq(). 

End of Change in Clause 5
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