Page 1

Joint-Working-Group (Parlay, ETSI Project OSA, 3GPP CT5)
C5-050228

Meeting #31, Osaka, JAPAN, 09-13 May 2005

	CR-Form-v7.1

	CHANGE REQUEST

	

	(

	29.198-15
	CR
	CRNum
	(

rev
	-
	(

Current version:
	6.1.1
	(

	

	For HELP on using this form, see bottom of this page or look at the pop-up text over the (
 symbols.

	

	Proposed change affects:
(

	UICC apps(

	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:
(

	Clarification of Multi Media Messaging using Sequence Diagrams

	
	

	Source:
(

	Ultan Mulligan, ETSI Secretariat

	
	

	Work item code:
(

	OSA3
	
	Date: (

	18/04/05

	
	
	
	
	

	Category:
(

	F
	
	Release: (

	6

	
	Use one of the following categories:
F (correction)
A (corresponds to a correction in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)

Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Ph2
(GSM Phase 2)
R96
(Release 1996)
R97
(Release 1997)
R98
(Release 1998)
R99
(Release 1999)
Rel-4
(Release 4)
Rel-5
(Release 5)
Rel-6
(Release 6)

 Rel-7
(Release 7)

	
	

	Reason for change:
(

	TS 29.198-15 has been developed without including any sequence diagrams. Sequence diagrams are an essential part of the specification, necessary in order to understand how the specification is intended to work. While they do not change the functionality in the specification, they clarify the intended message exchange, and reduce the possibility of mis-interpretation of the specification, and therefore reduce the possibility of interoperability problems.

	
	

	Summary of change:
(

	Sequence diagrams for the following scenarios are introduced in clause 5:

· Sending messages and receiving delivery notification

· Sending, and receiving messages in same context

· Setting notification of received messages

· Using Mailbox functions

· Using Mailbox to send and receive

	
	

	Consequences if
(

not approved:
	Failure to include sequence diagrams in this specification may result in mis-interpretation of the specification, confusion among developers, and potential interoperability problems. This may eventually lead to lack of adoption of the specification by developers.

	
	

	Clauses affected:
(

	5

	
	

	
	Y
	N
	
	

	Other specs
(

	
	X
	 Other core specifications
(

	

	affected:
	
	X
	 Test specifications
	

	
	
	X
	 O&M Specifications
	

	
	

	Other comments:
(

	

How to create CRs using this form:

Comprehensive information and tips about how to create CRs can be found at http://www.3gpp.org/specs/CR.htm. Below is a brief summary:

1)
Fill out the above form. The symbols above marked (
 contain pop-up help information about the field that they are closest to.

2)
Obtain the latest version for the release of the specification to which the change is proposed. Use the MS Word "revision marks" feature (also known as "track changes") when making the changes. All 3GPP specifications can be downloaded from the 3GPP server under ftp://ftp.3gpp.org/specs/ For the latest version, look for the directory name with the latest date e.g. 2001-03 contains the specifications resulting from the March 2001 TSG meetings.

3)
With "track changes" disabled, paste the entire CR form (use CTRL-A to select it) into the specification just in front of the clause containing the first piece of changed text. Delete those parts of the specification which are not relevant to the change request.

KEEP the History box of the TS to be changed (see end of the present document), please

Change in Clause 5

5 Sequence Diagrams

5.1 Using Mailbox to send and receive

This sequence diagram shows how an application can use a mailbox to send and receive messages, if this functionality is supported by the SCF.

[image: image1.wmf]AppLogic

 : IpAppMultiMediaMessagingManager

 : IpAppMailbox

 : IpMultiMediaMessagingManager

 : IpMailbox

1: new ()

2: new ()

3: openMailbox()

4: createNotification()

5: putMessageReq()

6: putMessageRes()

7: 'forward'

8: reportNotification()

9: 'forward'

10: getFullMessageReq()

11: getFullMessageRes()

12: 'forward'

13: close()

3:
The application requests to open the mailbox identified by the mailboxID parameter.

4:
The application requests to be notified of any messages received in the specified mailbox, using the P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED criteria.

5:
The application places a message in a folder in the mailbox. The message contents are specified in the message parameter, and the folder in which to place it is specified in the folderID. The application chooses to place the message in the folder identified in the service property P_PUT_MESSAGE_FOLDER_TO_SEND. Any message placed in this folder is automatically sent. Typically it could be an Outbox folder.

6:
This method indicates that the message has been successfully placed in the specified folder, and a messageID is returned. This does not necessarily indicate that the message has been sent, nor does it indicate that it has been delivered or received.

8:
The application is notified that a message has been received in the mailbox. In this type of event (P_EVENT_MSG_NEW_MAILBOX_MESSAGE_ARRIVED), the messageID, location of the message and message description are delivered in the reportNotification() method, but the message contents are not. These need to be retrieved from the mailbox.

10:
Using the messageID and folderID received in the reportNotification() method, the application requests to retrieve the full contents of the received message from the mailbox. The application could have chosen to retrieve individual parts of the message using getMessageBodyPartsReq(), or to retrieve just the headers using getMessageHeadersReq().

11:
The full contents of the message are returned to the application.

13:
The applicaiton closes the mailbox session.

5.2 Using Mailbox functions

This sequence diagram shows how an application can retrieve message details from the mailbox.

[image: image2.wmf]AppLogic

 : IpAppMultiMediaMessagingManager

 : IpAppMailbox

 : IpMultiMediaMessagingManager

 : IpMailbox

1: new ()

2: new ()

3: openMailbox()

4: getMailboxInfoPropertiesReq()

5: getMailboxInfoPropertiesRes()

6: 'forward'

7: getFoldersReq()

8: getFoldersRes()

9: 'forward'

10: getFoldersReq()

11: getFoldersRes()

12: 'forward'

13: listMessagesReq()

14: listMessagesRes()

15: 'forward'

16: getMessageInfoPropertiesReq()

17: getMessageInfoPropertiesRes()

18: 'forward'

19: listMessageBodyPartsReq()

20: listMessageBodyPartsRes()

21: 'forward'

22: getMessageHeadersReq()

23: getMessageHeadersRes()

24: 'forward'

25: getMessageBodyPartsReq()

26: getMessageBodyPartsRes()

27: 'forward'

28: close()

3:
The application requests to open the mailbox identified by the mailboxID parameter.

4:
The application requests the properties of the Mailbox.

5:
The property set of the mailbox is returned. The properties include the owner, date created, date changed and size of the mailbox.

7:
The application requests a list of the top-level folders in the mailbox. The folderID parameter is left empty.

8:
The list of top-level folders is returned to the application.

10:
The application requests a list of the sub-folders in a folder returned earlier. The folderID parameter identifies the folder for which the list of sub-folders is requested.

11:
The list of sub-folders is returned to the application.

13:
The application requests a list of messages in a folder returned earlier. The folderID parameter identifies the folder for which the list of messages is requested.

14:
The list of messages in the folder is returned.

16:
The application requests the property set of a message returned earlier. The message is identified by its messageID, returned in the listMessagesRes().

17:
The message properties are returned. These properties may include the date created, date received, date changed, size or status.

19:
The application requests a list of the body parts of the message identified in the messageID parameter. The location of the message is identified in the folderID parameter.

20:
The list of the message parts is returned.

22:
The application requests the set of headers of the message, identified by the messageID parameter. The location of the message is identified in the folderID parameter.

23:
The list of headers is returned to the application.

25:
The application retrieves one or more parts of the message, as identified in the partIDs parameter.

26:
The contents of the requested messge parts are returned.

28:
The applicaiton closes the mailbox session.

5.3 Setting notification of received messages

This sequence diagram shows how the application can subscribe to notifications, and how it can receive messages using reportNotifications() method.

[image: image3.wmf]AppLogic

 : IpAppMultiMediaMessagingManager

 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

1: new ()

4: createNotification()

5: reportNotification()

6: 'forward event'

7: destroyNotification()

2: new ()

3: openMultiMediaMessaging()

3:
The application requests the opening of a MultiMedia Messaging object.

4:
The application requests to be notified of any messages received for a particular destination address, using the P_EVENT_MSG_NEW_MESSAGE_ARRIVED criteria. The application may request that a MultiMedia Messaging session is created upon receipt of a message.

5:
A message is received for the destination address identified in the createNotification() method. In this type of event (P_EVENT_MSG_NEW_MESSAGE_ARRIVED), the entire message contents are delivered in the reportNotification() method.

7:
The application is no longer interested in receiving notifications of received messages. It de-subscribes from notification of received messages.

5.4 Sending, and receiving messages in same context

This sequence diagram shows how the application can send and receive messages within the same communication context using sendMessageReq() on the IpMultiMediaMessaging interface and messageReceived() on the IpAppMultiMediaMessaging interface.

[image: image4.wmf]AppLogic

 : IpAppMultiMediaMessagingManager

 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

1: new ()

2: new ()

3: openMultiMediaMessaging()

4: sendMessageReq()

5: sendMessageRes()

6: sendMessageReq()

7: sendMessageRes()

8: messageReceived()

9: 'forward event'

10: close()

3:
Request the opening of a MultiMedia Messaging object. The application intends to use this object to send messages to the same destination, so it has specified the defaultdestinationAddressList. The defaultSourceAddress is also specified.

4:
The application sends a message. The application has not included a destination address in the destinationAddressList parameter, as a default value has already been supplied in the openMultiMediaMessaging() method. Likewise the default source address was provided when the IpMultiMediaMessaging object was created, so there is no need to provide the sourceAddress parameter. The application has not requested delivery receipt or read receipt in the messageTreatment parameter.

5:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent. It does not indicate a delivery status.

6:
The application sends another message to the same destination, again using default values for the destination and source addresses.

7:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent. It does not indicate a delivery status.

8:
A new message is received in this communication context. The full message contents are carried in this method. It is not specified how the SCF identifies that this message is to be delivered in this communication context. The SCF could use source or destination addresses, content type, time or subject, among other parameters, to identify the context.

10:
The application closes the session, i.e. closes the communication context.

5.5 Sending messages and receiving delivery notification

This sequence diagram shows how the application can send messages on the IpMultiMediaMessaging interface with sendMessageReq(), and how the application can be informed about the delivery status of the message with messageStatusReport(). It also shows how the application can query the delivery status of a message, with queryStatusReq().

[image: image5.wmf]AppLogic

 : IpAppMultiMediaMessaging

 : IpMultiMediaMessagingManager

 : IpMultiMediaMessaging

 : IpAppMultiMediaMessagingManager

3: openMultiMediaMessaging()

2: new ()

4: sendMessageReq()

5: sendMessageRes()

6: messageStatusReport()

7: messageStatusReport()

8: queryStatusReq()

9: queryStatusRes()

10: sendMessageReq()

14: messageStatusReport()

12: sendMessageReq()

15: messageStatusReport()

1: new ()

11: sendMessageRes()

13: sendMessageRes()

3:
Request the opening of a MultiMedia Messaging object. The application intends to use this object to send messages to multiple destinations, so it has not specified any defaultDestinationAddressList.

4:
The application sends a message. The destination address is included in the destinationAddressList parameter. If the source address was not provided when the IpMultiMediaMessaging object was created, it can be provided in the sourceAddress parameter. The application has requested delivery receipt and read receipt in the messageTreatment parameter. The assignmentID received as a return parameter enables the application to match any message status information with this message.

5:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent. It does not indicate a delivery status.

6:
This method contains a delivery receipt for the message just sent.

7:
This method contains a read receipt for the message just sent.

8:
The application queries the status of the message it has sent (to verify the read receipt? or it has discarded the read receipt?).

9:
The status of the message is returned.

10:
The application sends another message, this time to a different destination. It has requested a read receipt to be returned.

11:
This method indicates successful processing of the sendMessageReq by the SCF, and that the message has been sent. It does not indicate a delivery status.

12:
The application sends another message, to a different destination. It has requested a read receipt to be returned.

14:
This method contains an indication that the previous message has been read.

15:
This method contains an indication that the second message has been read. The assignmentID is used to match this report to the corresponding sendMessageReq().

End of Change in Clause 5

Annex D (informative):
Change history

	Change history

	Date
	TSG #
	TSG Doc.
	CR
	Rev
	Subject/Comment
	Old
	New

	Sep 2004
	CN_25
	NP-040359
	--
	--
	Draft v100 submitted to TSG CN#25 for Approval.
	1.0.0
	6.0.0

	Dec 2004
	CN_26
	NP-040485
	001
	--
	Removal of OSA API SCFs description in W3C WSDL
	6.0.0
	6.1.0

	Dec 2004
	--
	--
	--
	--
	Added missing code attachments
	6.1.0
	6.1.1

	
	
	
	
	
	
	
	

�PAGE \# "'Page: '#'�'" �� Enter the specification number in this box. For example, 04.08 or 31.102. Do not prefix the number with anything . i.e. do not use "TS", "GSM" or "3GPP" etc.

�PAGE \# "'Page: '#'�'" �� Enter the CR number here. This number is allocated by the 3GPP support team. It consists of at least three digits, padded with leading zeros if necessary.

�PAGE \# "'Page: '#'�'" �� Enter the revision number of the CR here. If it is the first version, use a "-".

�PAGE \# "'Page: '#'�'" �� Enter the version of the specification here. This number is the version of the specification to which the CR will be applied if it is approved. Make sure that the latest version of the specification (of the relevant release) is used when creating the CR. If unsure what the latest version is, go to � HYPERLINK "http://www.3gpp.org/3G_Specs/3G_Specs.htm" ��� � HYPERLINK "http://www.3gpp.org/specs/specs.htm" ��http://www.3gpp.org/specs/specs.htm�.

�PAGE \# "'Page: '#'�'" �� For help on how to fill out a field, place the mouse pointer over the special symbol closest to the field in question.

�PAGE \# "'Page: '#'�'" �� Mark one or more of the boxes with an X.

�PAGE \# "'Page: '#'�'" �� SIM / USIM / ISIM applications.

�PAGE \# "'Page: '#'�'" �� Enter a concise description of the subject matter of the CR. It should be no longer than one line. Do not use redundant information such as "Change Request number xxx to 3GPP TS xx.xxx".

�PAGE \# "'Page: '#'�'" �� Enter the source of the CR. This is either (a) one or several companies or, (b) if a (sub)working group has already reviewed and agreed the CR, then list the group as the source.

�PAGE \# "'Page: '#'�'" �� Enter the acronym for the work item which is applicable to the change. This field is mandatory for category F, B & C CRs for release 4 and later. A list of work item acronyms can be found in the 3GPP work plan. See � HYPERLINK "http://www.3gpp.org/ftp/information/work_plan/" ��http://www.3gpp.org/ftp/information/work_plan/� .�The list is also included in a MS Excel file included in the zip file containing the CR cover sheet template.

�PAGE \# "'Page: '#'�'" �� Enter the date on which the CR was last revised. Format to be interpretable by English version of MS Windows ® applications, e.g. 19/02/2002.

�PAGE \# "'Page: '#'�'" �� Enter a single letter corresponding to the most appropriate category listed below. For more detailed help on interpreting these categories, see the Technical Report � HYPERLINK "http://www.3gpp.org/ftp/Specs/archive/21_series/21.900/" ��21.900� "TSG working methods".

�PAGE \# "'Page: '#'�'" �� Enter a single release code from the list below.

�PAGE \# "'Page: '#'�'" �� Enter text which explains why the change is necessary.

�PAGE \# "'Page: '#'�'" �� Enter text which describes the most important components of the change. i.e. How the change is made.

�PAGE \# "'Page: '#'�'" �� Enter here the consequences if this CR was to be rejected. It is necessary to complete this section only if the CR is of category "F" (i.e. correction).

�PAGE \# "'Page: '#'�'" �� Enter the number of each clause which contains changes.

�PAGE \# "'Page: '#'�'" �� Tick "yes" box if any other specifications are affected by this change. Else tick "no". You MUST fill in one or the other.

�PAGE \# "'Page: '#'�'" �� List here the specifications which are affected or the CRs which are linked.

�PAGE \# "'Page: '#'�'" �� Enter any other information which may be needed by the group being requested to approve the CR. This could include special conditions for it's approval which are not listed anywhere else above.

�PAGE \# "'Page: '#'�'" �� This is an example of pop-up text.

CR page 1

