3GPP TSG-CT WG4 Meeting #98e	C4-203300
E-Meeting, 02nd – 12th June 2020

Source:	Ericsson, Nokia, Nokia Shanghai Bell, Cisco
Title:	DISCUSSION PAPER: Misalignment between Discovery Service and Subs/Notif Service in NRF
Agenda item:	7.2.1.8
Document for:	DECISION

1. INTRODUCTION

NRF defines currently 2 main services (in relation to the handling of NF instances in 5GC): NFManagement and NFDiscovery.

NFManagement includes service operations for registration management of NF Profiles in NRF, and for Subscription/Notification to changes in NF Profiles of NF instances registered in NRF.

The subscription to notification of changes of a given NF Profile follows, as normal with every other 5GC API, a RESTful design, in which the consumer is supposed to be notified about changes done over a given resource representation of a given NF Instance.

This resource representation is assumed to correspond to a resource URI of the NFManagement API, and this resource URI is included along with the notification from NRF of the set of changes done on a given profile of an NF Instance. This resource URI follows the pattern:

https://nrf.example.com/nnrf-nfm/v1/nf-instances/{nfInstanceId}

It should be noted that, both the retrieval (GET) of the representation of such resource URI, and the notifications sent upon profile changes, are done assuming that the full resource representation is sent to the client; this means that the resource representation includes all attributes, except those explicitly indicated to NOT be sent by the NRF during notifications (e.g., the "allowedXXX" attributes).

NFDiscovery allows NF consumers to search the list of NF instances registered in NRF and specify several query parameters to determine which NF Instances should be returned in the discovery response.

There are certain query parameters that, arguably, could be used not only to determine which NF Instances should be returned in the response, but also to exclude parts of the profile of those NF Instance that might be of no interest to the consumer.

An example of this is the "service-names" query parameter, where the consumer indicates that the search result shall contain only those NF Instances that expose any of those service names.

The question, then, is whether the NF Profile of those matching NF Instances should be its full NF Profile, or on the other hand, if they should be "filtered-out", and exclude those parts (i.e. NF Services) that were not included in the list of "service-names" indicated by the consumer in the search query.

In the current specification of the NFDiscovery service, it is specified that the NRF shall send "filtered-out" profiles.

2. DISCUSSION AND ALTERNATIVES

As indicated in the previous section, NFManagement and NFDiscovery follow a different approach regarding the content of the NF Profiles sent in Subscribe/Notify operations and in discovery search operations.

This creates a problem in several aspects:

· The consumer of the discovery service may have the expectation that the list of NF Services received in the profile of the discovered NF Instances, can be invoked without further checking, since it satisfies all the filter criteria used in the search request. While this may be true, it is not valid anymore as soon as it subscribes to changes of a certain profile, and it receives notifications including NF Services that might not be of interest for the consumer, or may not satisfy additional filtering criteria (e.g. requested-features, target slices, etc...)

· When the consumer receives notifications, they may not be possible to be processed correctly if the consumer does not hold a current resource representation of the resource, especially if the notification from NRF included just the set of "delta" changes, and not the full new NF Profile (an example of this issue is when the update corresponds to a specific item of an array, given that the content of the array may differ in the full NF Profile and in the "filtered-out" version of the profile received in the discovery response).

According to the current 3GPP TS 29.510, the NRF may:

· return a sub-set of the services of an NF profile in an NF Discovery response, e.g. excluding services
· with an NF service status not allowing them to be discovered (e.g. not operative services);
· not allowed to be accessed by the requester NF (cf the "allowedXXX" attributes, e.g. to prevent an eMBB consumer to try to consume a URLLC dedicated service set at the producer side); or
· that do not match query parameters;
· return a sub-set of the S-NSSAIs supported by the producer (i.e. the intersection of the requested S-NSSAIs and the S-NSSAIs supported by the producer).

This results in a possible mismatch of the NF profile representation between the NRF and NFs, which prevents to notify delta changes in particular for all attributes defined as an array. The aggravating factor is that NF services are defined as an array of services in the NF profile (where a map would have been more appropriate).

Other issues

There can be a mismatch of NF profile representations between the NRF and NF due to other reasons than NRF not returning the full NF profiles in NF Discovery response, e.g. if a subscribing NF misses one Notify Status Change for whatever reason (e.g. NF in overload, network problem), or (race conditions) if an NF Service producer happens to update its NF profile between the time the NF Service consumer performs the NF Discovery request and the Subscribe NF Status request.

Means are therefore needed (e.g. use of ETag in NF Profile) to be able to detect a mismatch of representations between the subscribing NF and the NRF when a subscribed NF receives a Notify Status Change, in order to avoid the subscribing NF to wrongly apply delta changes notified by the NRF. Corrective CRs should be considered for Rel-16.

The following side issue can also be noted regarding the use of the authorization parameters ("allowedxxx" parameters):
· TS 29.510 misses to specify how the NRF should handle discovery or subscription requests, when the operator uses the authorization parameters to restrict the access to certain services and the request does not contain the requester's information needed to authorize the access to the service. The NRF should be able to reject such requests, based on operator policies.

2.1 Alternatives discussed during CT4#97e

During the last meeting, CT4 discussed 3 different alternatives:

· Alternative 1: The NRF always returns full NF Profiles in the discovery profile.

Pros:
· This is more compliant with a RESTful design, since it keeps independence between services, and ensures that both client an server worth on the basis of the same resource representation (note that in the current API design the "filtered-out" profiles received in discovery responses do not really correspond to any existing representation of any existing resource URI).
· It is much simpler for the NRF, and computationally much less expensive.
· It enables all NRF’s consumers to store a single NF profile per producer NF instance, and to easily apply all NF profile changes notified by the NRF. This enables a simple behaviour for all NRF consumers (i.e. all NFs).

Cons:
· It requires that the consumer checks the received NF Profiles from NRF and inspect the content to see which parts of them really satisfy the service requirements of the consumer. This includes consumers checking and selecting NF services that match the discovery parameters, that they are allowed to access ("allowedxxx" paras at NF service level) and with an NF service status that enable them to be discovered.
· It reduces the functional scope and flexibility of what an NRF can do (e.g. operator specific policies regarding profile contents to return).
· It exposes all the information of the producer profile to the requester NF, including information that should not be exposed e.g. based on the NF service "allowedxxx" parameters.
· Consequently, it opens the possibility for requesters to abuse (intentionally or not) what they are allowed to do, e.g. accessing dedicated service sets they are not allowed to access, meaning that we should then think about ensuring that this does not occur (possibly requiring Access Token API enhancements).
· It increases the length of NF profiles in discovery response with information or services that may not be relevant to the consumer.

It was also noted that, in order to proceed with Alt. 1, the additional impacts would be required:
· NRF must return in the NF Discovery response the authorization parameters (“allowedXxx” attributes) defined at NF service level in NF Profile;
· NFs must evaluate the authorization parameters defined at NF service level in NF Profile when selecting a producer NF service instance, otherwise consumers could start consuming services they are not allowed to use;
· New requester’s S-NSSAIs and NF Domain must be added in Access Token Request to enable to enforce the authorization parameters.

· Alternative 2: Enhance the Subscription creation request in the NFManagement service to keep it aligned with the filtering criteria used in the service discovery.

Pros:
· Functionally, it is more beneficial for the consumer to receive just the parts of the profile that are of their interest, and blindly invoke the services as received from the NRF, knowing that they will fulfil the expected service requirements.

Cons:
· It is extremely demanding, computationally for the NRF; the NRF, upon every single change on an NF profile, needs to evaluate all different filtering criteria of every subscribing NF (potentially hundreds); so, this is equivalent to evaluating hundreds of simultaneous discovery requests upon every single NF profile change in NRF.
· It is a more brittle solution, overall, since it requires that the consumer uses the exact same set of filtering criteria during service discovery and during the creation of the subscription to profile changes on NRF.
· Race scenarios could exist (e.g. NF configuration is modified) resulting in a different set of parameters sent to the NRF in a subscription request vs. what was sent in an earlier discovery request, in which case the solution would no longer work.
· There may be several discovery parameters that could alter the contents of the NF Profile returned in a NF Discovery response (if the full NF profile needs not be returned), e.g. requested TAI, DNN, S-NSSAI, preferred-locality, or more parameters defined in future releases. One cannot reasonably extend the SubscribeNFStatus procedure with all these parameters.
· It would require NRF consumers to possibly perform multiple NF status change subscriptions targeting the same NF producer, with different parameters, corresponding to discovery requests with different sets of query parameters (NRF implementations may possibly filter out parts of NF profiles based on other parameters than just requested services or requested S-NSSAI).
· It would increase network signalling accordingly.

· Alternative 3: Define a "map" of NF Services in NF Profile and enable the NRF to still return a subset of NF services in NF Discovery response

The solution would be as follows:

· Define a new NF Services attribute in the NFProfile as a map of NF services, while also keeping the existing nfServices attribute defined as an array for backward compatibility.

	nfServices
	array(NFService)
	O
	1..N
	List of NF Service Instances. It shall include the services produced by the NF that can be discovered by other NFs, if any.

	ExtnfServices
	map(NFService)
	O
	1..N
	List of NF Service Instances. It shall include the services produced by the NF that can be discovered by other NFs, if any.
The key of the map shall be the serviceInstanceId of the service instance.

Reminder: a map is defined as a set of key-value pairs. So instead of using an array index (integer) to refer to a service, a map key set to the serviceInstanceID is used, that is unambiguous.
· Require NFs upgraded with the corrective CR to:
· register their services using the new map attribute only.
· ignore delta changes related to an NF service that has not been retrieved yet before, if any in a Notify NF Status, and apply any other change related to NF services stored (the NF may issue a new discovery request if it wishes to retrieve the NF service profile of the former NF service).

NOTE: regardless of the solution, an NF may receive at any time a Notify NF Status change with delta changes for an NF for which it has not discovered yet the profile.

· Enable the NRF to return a subset of the services of an NF profile in NF Discovery response (as per existing specification).
· When returning an NF service, the NRF returns the complete NF service profile.
· All NF Profile level attributes other than nfServices are also always returned completely (i.e. the solution would revert the requirement to return an "interclause of S-NSSAIs" in the snssais, plmn-specific-snssai-list attributes).

· To handle the interim phase until all NFs are upgraded with the correction:

· NRF and NFs upgraded with the corrective CR shall support NF profiles with both formats (NF serviced defined as array and map).

· NF profile registration:
· Upgraded NRF returns a new flag in NF Register response, indicative that it supports the new map attribute.
· When registering their NF profiles, NFs check if NF Register Response contains the new flag. If not, the NF re-registers its NF services using an array
(this is for backward compatibility with legacy NRF).

· NF Discovery / Subscribe NF status:
· Upgraded NF indicates a new (feature) flag in NF Discovery request and in Subscribe NF Status request, indicative that the NF supports the new map attribute.
· NRF sends NF profiles in NF Discovery response and Notify NF Status with map of services for NF Discovery Request / Subscribe NF Status with the new (feature) flag, or with array of services otherwise
(this is for backward compatibility with legacy NF). Note that the conversion between both formats is straight forward.

· Upgraded NRF provides the full NF Profile in Notify NF status towards NFs not upgraded with the correction (this is to solve the issue with legacy NF)

NOTE: the new flag can be defined as a new feature of the NRF APIs, using the existing feature negotiation mechanism.

Pros:
· Functionally, it is more beneficial for the consumer to receive just the parts of the profile that are of their interest, and blindly invoke the services as received from the NRF, knowing that they will fulfil the expected service requirements.

· NRF can still return a subset of services in NF discovery response, as per today. Services not allowed to be accessed, not discoverable, not matching query parameters need not be returned. Operator policies can still be supported in NRF wrt what to return to NRF consumers.

· It is much simpler for the NRF and computationally much less expensive than Alternative 2.
· It enables all NRF’s consumers to store a single NF profile per producer NF instance, with full or a subset of services, and to easily apply all NF profile changes notified by the NRF. This enables a simple behaviour for all NRF consumers (i.e. all NFs).
· The solution has minimal impacts on the NRF and on NRF’s consumers, merely a straightforward format change from array to map.

· The solution allows a smooth transition till roll out of the corrective CR in the NRF and all NFs. The NRF or any NF in the 5GS can be upgraded with the correction independently from others (the solution works fine with a mix of upgraded and not upgraded NFs).

Cons:
· the solution may still result in different NF Profile representation between NRF and NF (due to NRF possibly returning a subset of services), but NF service representation is in-sync between NRF and NFs for all NF services that have been discovered/retrieved.

2.2 New alternatives to be discussed during CT4#98e

[bookmark: _GoBack]At the end of CT4#97e, it was highlighted that all the alternatives above implied an impact, not only on the NRF, but also on ALL the Network Functions in the 5GC, which was considered as not acceptable by operators. So, another approach was considered, under the assumption that the impact, system-wide, should be minimal, and ideally it should only impact NRF.

· Alternative 4: Restrict the granularity of notifications sent by NRF

In this solution, the NRF (in Rel-15) is restricted in the way it sends notifications of changes of NF Profiles, so instead of sending updates of individual array elements, it must only send complete array replacements, when the affected attribute of the NF Profile is an array.

So, an example of how the NRF would notify a change to a subscribing NF, about a change on any of the services deployed by a given producer NF, would be like this:

POST {nfStatusNotificationUri}
Content-Type: application/json

{
 "event": "NF_PROFILE_CHANGED",
 "nfInstanceUri": ".../nf-instances/4947a69a-f61b-4bc1-b9da-47c9c5d14b64",
 "profileChanges": [
 {
 "op": "REPLACE",
 "path": "/nfServices",
 "newValue": [the complete new array]
 }
]
}

So, with this approach, there is no functional change in any of the consumer NFs, since this is an existing mechanism (sending complete replacement of arrays) in Rel-15 that the NRF could always use, so all NFs are expected to handle such scenario, as of today.

It should be noted that the notifications of profile changes sent by NRF will behave, functionally, in the same way as always, in the sense that the set of data subject to be notified is still determined by the authorization parameters of the producer NF, and the input data sent by the subscribing NF during the creation of the subscription. The difference in this solution is that, once the NRF determines the new profile data that needs to be conveyed to a given subscribing NF, the NRF will not send the updates in the form of changes of individual array elements, but instead they will be communicated as replacement of the full array that was affected in the profile change.

The main issue with this approach is that the notifications sent by NRF are not as fine-grained as they could be. In particular, a change on an attribute of a single service implies sending the data for all services of the NF Instance.

This drawback, however, is believed to be assumable, since the data for each NFService object is not really big (note that there are no arrays in such structure, except the allowedXXX attributes, which by definition shall not be sent to the subscribing NFs). In addition, the payload of the notification request can be compressed with gzip (typical compression rates for JSON payloads can be around 30% of the original payload size).

The evaluation of this alternative is summarized as follows:

Pros:
· The system-wide impact is minimal, since only NRF is impacted, and all other NFs can still work as before
· The discovery functionality, which is assumed to be the most used feature (at least in comparison with subs/notif functionality) is preserved as currently defined in Rel-15
· The impacts on the NRF are quite small and there is no increased overhead computationally

Cons:
· There is an efficiency penalty in terms of network traffic, due to the NRF sending notifications containing more data than strictly needed.

The mentioned traffic impacts are not considered to be very relevant for the static attributes of the NFService data in the profile, but they are more evident for dynamic data such as the "load" attribute defined at service level. If this is a concern for a given deployment, the operator can always assess the trade-off between the increased message size in update notifications, and the convenience of sending updates for service-level load levels (in terms of the frequency of such updates, and even assess the possibility to not send them at all, and rely on the load status at NF Instance level, which is always available).

3. CONCLUSION

It is proposed to adopt Alt.4 for Rel-15 and Alt.3 as basis for Rel-16.

Annex. Examples of NF Service content and size estimation

Minimal (size after "minify" [2] = 161 octets):

{
 "serviceInstanceId": "1",
 "serviceName": "amf-comm",
 "versions": [{ "apiVersionInUri": "v1", "apiFullVersion": "1.0.4" }],
 "scheme": "https",
 "nfServiceStatus": "REGISTERED"
}

Typical (size after "minify" [2] = 437 octets):

{
 "serviceInstanceId": "1",
 "serviceName": "amf-comm",
 "versions": [{ "apiVersionInUri": "v1", "apiFullVersion": "1.0.4" }],
 "scheme": "https",
 "nfServiceStatus": "REGISTERED",
 "ipEndPoints": [{ "port": 8080 }],
 "defaultNotificationSubscriptions": [
 {
 "notificationType": "N1_MESSAGES",
 "callbackUri": "https://amf.example.com/n1-notif",
 "n1MessageClass": "5GMM"
 }
],
 "priority": 100,
 "capacity": 500,
 "load": 5,
 "recoveryTime": "2020-07-21T17:32:28Z",
 "supportedFeatures": "1"
}

Size of "nfServices" array in an NF Instance with:
· 10 services, 5 of which are minimal and 5 are typical:
· Before compression (after "minify" [2]): 3001 octets
· After gzip compression [3]: 405 octets (the compression rate is very good because of the repetition of the attribute names in all objects of the array)

Tools:

[1] JSON parser online:
http://json.parser.online.fr

[2] Online JSON Minifier:
https://codebeautify.org/jsonminifier

[3] Online gzip:
http://www.txtwizard.net/compression

