	
3GPP TSG-CT WG4 Meeting #96e	C4-200835
E-Meeting, 17th – 28th February 2020

Source:	Huawei
Title:	Pseudo-CR on Update of QUIC features
Spec:	3GPP TR 29.893 v1.2.0
Agenda item:	6.1.3
Document for:	Decision

1. Introduction
<Introduction part (optional)>
2. Reason for Change
This paper proposes to update the clause 5.3 of the specification as the current introduction of the features supported by QUIC is not based on the latest IETF draft versions.
In addition, some description of the features are strengthened to make the specification more clear.
3. Conclusions
<Conclusion part (optional)>
4. Proposal
It is proposed to agree the following changes to 3GPP TR 29.893.

* * * First Change * * * *
[bookmark: _Toc12529732]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[3]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[4]	3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[5]	IETF draft-ietf-quic-transport-1825: "QUIC: A UDP-Based Multiplexed and Secure Transport".
[6]	IETF draft-ietf-quic-tls-1825: "Using Transport Layer Security (TLS) to Secure QUIC".
[7]	IETF draft-ietf-quic-http-1825: "Hypertext Transfer Protocol (HTTP) over QUIC".
[8]	IETF draft-ietf-quic-recovery-1825: "QUIC Loss Detection and Congestion Control".
[9]	IETF draft-ietf-quic-invariants-03: "Version-Independent Properties of QUIC"
[10]	IETF draft-ietf-quic-qpack-0612: "QPACK: Header Compression for HTTP over QUIC"
[11]	IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".
[12]	IETF RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".
[13]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[14]	IETF RFC 7541: "HPACK: Header Compression for HTTP/2".
[15]	IETF draft-ietf-quic-spin-exp-01: "The QUIC Latency Spin Bit".Void
[16]	IETF RFC 5682: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP".
[17]	IETF draft-dukkipati-tcpm-tcp-loss-probe-01: "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses".
[18]	IETF RFC 6582: "The NewReno Modification to TCP's Fast Recovery Algorithm".
[19]	3GPP TS 29.510: "Network Function Repository Services".
[20]	IETF RFC 7838: "HTTP Alternative Services".
[21]	IETF draft-pardue-httpbis-http-network-tunnelling-01: "HTTP-initiated Network Tunnelling (HiNT)".
[22]	IETF RFC 7231: "Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[23]	IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[24]	3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".
[25]	GSMA NG.113: "5GS Roaming Guidelines".
[26]	IETF RFC 8312: "CUBIC for Fast Long-Distance Networks".
[27]	3GPP TR 23.742: "Study on Enhancements to the Service-Based Architecture".
[28]	IETF RFC 8164: "Opportunistic Security for HTTP/2".
[29]	IETF RFC 7657: "Differentiated Services (Diffserv) and Real-Time Communication".
[30]	Taking a Long Look at QUIC: "https://conferences.sigcomm.org/imc/2017/papers/imc17-final39.pdf".
[31]	IETF RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suits for TLS".
[32]	Developing and deploying a TCP replacement for the Web: "https://www.netdevconf.org/0x12/session.html?developing-and-deploying-a-tcp-replacement-for-the-web".
[33]	Optimizing UDP for content delivery: "http://vger.kernel.org/lpc_net2018_talks/willemdebruijn-lpc2018-udpgso-paper-DRAFT-1.pdf".
[34]	UDP segmentation offload: "https://www.netdevconf.org/0x12/session.html?udp-segmentation-offload".
* * * Next Change * * * *
[bookmark: _Toc12529740]5.3	Features of QUIC
[bookmark: _Toc12529741]5.3.1	General
QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose secure transport for multiple applications. The main parts of QUIC are defined in a set of documents IETF draft-ietf-quic-transport-18 [5], IETF draft-ietf-quic-recovery-18 [8], IETF draft-ietf-quic-tls-18 [6], IETF draft-ietf-quic-invariants-03 [9]. The highly integrated HTTP/2 over QUIC specification (now called HTTP/3) IETF draft-ietf-quic-http-18 [7] and HTTP header compression IETF draft-ietf-quic-qpack-06 [10] are developed in parallel with the core protocol. The protocol is developed by the Internet Engineering Task Force (IETF).
QUIC is mainly designed for the communication across insecure and untrusted internet, it integrates some features to tackle the performance, security and privacy related challenges, the applicability of applying QUIC in 5G Core shall be evaluated.
[bookmark: _Toc12529742]5.3.2	Framing and Multiplexing
QUIC endpoints communicate by exchanging QUIC packets in UDP datagrams. QUIC packets may have long or short headers, for packets sent prior or after the completion of version negotiation and establishment of 1-RTT keys respectively. A sender multiplexes one or more frames with same or different types into a QUIC packet. QUIC labels the boundary of each frame with an offset field, which helps to carry different messages. This is one of the differences with TCP, as TCP only provides one stream and all data therefore are delivered in order, which means multiplexing is not supported in TCP. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending. A QUIC long header packet header contains a source and a destination Connection ID the length of each are explicitly signalled. Short header may contain a destination Connection ID, the length of the DCID field is implicit. The destination connection ID may be changed at any point and is expected to change on changes to the used 5-tuple (IP source and destination address, protocol (UDP), and source and destination port). Multiple QUIC packets can be coalesced into one UDP datagram. Multiple QUIC connections may be multiplexed on the same 5-tuple.
QUIC supports multiple parallel data streams multiplexed on a single QUIC connection. Streams, which can be unidirectional or bidirectional in QUIC provide a lightweight, ordered byte-stream abstraction to an application. Packets transmitted in each stream use Authenticated Encryption with Additional Data (AEAD) to provide confidentiality and integrity protection. Streams can be long-lived, even during the lifetime of a connection to increase the reusability and limit the cost of opening stream (See IETF draft-ietf-quic-transport [5]). An endpoint of a bidirectional stream can terminate one direction and even encourage prompt termination in the opposite direction.
QUIC has a data frame definition that supports multiple parallel data streams multiplexed on a single QUIC connection. For each stream QUIC now only supports reliable and in-order delivery, but the implementations may choose to offer the ability to deliver data out of order. However, the QUIC layer is capable of delivering to the higher layer each stream independently as the streams in QUIC are independent of each other, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream which would be the case for HTTP/2 over TCP. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.
A sender multiplexes one or more frames into a QUIC packet. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending. Frames inside a QUIC packet can be of different types.
The HTTP/3 mapping for QUIC IETF draft-ietf-quic-http-18 [7] utilizes this stream concept when realizing the different HTTP/2 (See IETF RFC 7540 [13]) streams. HTTP/3 also had to improve the HTTP header compression scheme HPACK (See IETF RFC 7541 [14] into QPACK (See IETF draft-ietf-quic-qpack-06 [10]). With these changes HTTP can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP streams which would be the case for HTTP/2 over TCP.

[bookmark: _Toc12529743]5.3.3	Improved Recovery and Acknowledgement
The QUIC definition of its packet format and acknowledgement frame results in several improvements over TCP. The packet number is transmission-time ordered and strictly increasing. QUIC never retransmits a particular packet, only the lost data frames that need to be retransmitted. QUIC facilitates better way to calculate RTT by encoding the delay between packet reception and transmission of the acknowledgement. The QUIC acknowledgment also supports a very larger number of received and gap ranges.
Compared to TCP, QUIC will not be limited to a three blocks of selective acknowledgement (SACK) when using the timestamp option. Each ACK Frame in QUIC can contain variable number of ACK ranges, up to 62 bits (See IETF draft-ietf-quic-transport [5]), which helps to ease network throughputs in case of sending packets frequently. The strict packet numbers and explicit acknowledgement removes ambiguity between which packet is lost and which is acknowledged. Avoiding any unnecessary retransmissions of data that have reached the receiver. QUIC also avoids the retransmission uncertainty if the received packet was a delayed or retransmitted. QUIC's RTT samples are more accurate than what TCP can provide due to no ambiguity about which packets are used in measurement as well as the receiver side delay can be taken into account.
The congestion control algorithm of the current QUIC version is based on NewReno (See IETF RFC 6582 [18]), but implementations can use other congestion control algorithms, such as Cubic (see IETF RFC 8312 [26]), and endpoints are allowed to use different algorithms from one another. QUIC can customise different congestion control algorithms for different connections of the same application, and even alter it during the lifetime of a connection, see clause 5.3.15. QUIC provides generic congestion control signals to support different algorithms. QUIC also uses some additional modern loss recovery mechanisms by default, such as F-RTO (See IETF RFC 5682 [16]), and Tail Loss Probing (See IETF draft-dukkipati-tcpm-tcp-loss-probe-01 [17]). These improvements give QUIC a better recovery mechanism.
[bookmark: _Toc12529744]5.3.4	Encrypted and Integrity Protected Transport details
QUIC uses TLS 1.3 (See IETF draft-ietf-quic-tls-18 [6], IETF RFC 8446 [12]), for key establishment, while QUIC integrates the TLS 1.3 as has its own encryption and integrity layer that protects the QUIC packets, but the security capability of HTTP/3 over QUIC/UDP is consistent with HTTP/2 over TLS1.3/TCP. Each QUIC packet has a packet header, using a short or a long format with a small number of fields that are unencrypted, but integrity protected. It is primarily the connection ID that is unencrypted and three reserved bits for experimentation in the short header. Even the packet number is encrypted using an independent mechanism from the payload.
The encryption and integrity help protection provide confidentiality, privacy and source authenticity for the user of QUIC. However, the protection is also intended to prevent any middlebox in the network from interfering with the protocol, nor make assumptions about what the possible values any specific bit in the UDP payload can take. Ossification of the network has prevented a lot of improvements from being applied to TCP as middleboxes would either block or remove such changes.
Compared to TCP, this level of encryption does make certain type of network performance monitoring using middlebox basically impossible. Due to this, the QUIC short header introduces a latency spin bit (See IETF draft-ietf-quic-transport [5]IETF draft-ietf-quic-spin-exp-01 [15]) that is intended to enable middlebox to measure round-trip time between the middlebox and either endpoint of the connection if enabled by both end-points. The latency spin bit partially overcomes the drawback of impossible network performance monitoring caused by encryption in QUIC layer, but cannot support the message trace and parse for the testing, monitoring and troubleshooting related scenarios.
[bookmark: _Toc12529745]5.3.5	Connection Setup Improvements
QUIC is capable of completing establishment of a connection between a client and a server in one and half RTT. The protocol combines TLS (See IETF RFC 8446 [12]) handshake with transport protocol level mechanisms to achieve this. A client's request to a server can be included after one RTT and be sent combined with the last step of the crypto handshake from the client to the server.

Holding state in the server for the initial connection establishment packets prior to having verified the client's return path can expose the server to a denial of service risk. Servers that like to mitigate that risk can use the Retry packet to verify the path and not hold any state for the first round-trip.

How big improvement this is depends on what one compares against. As 3GPP TS 33.310 makes support for TLS 1.3 (See IETF RFC 8446 [12]) mandated from Rel-15 it is reasonable to compare with both TLS 1.2 (See IETF RFC 5246 [11]) and TLS 1.3. TLS 1.2 session resumption requires that the client has talked to the server recently enough, so it still has session state stored. The below table indicates number of RTTs until the first HTTP request can be sent by the client.

Table 5.3.5-1: Number of RTTs until first HTTP request
	Protocol
	New Connection
	Connection State Exists

	TCP/TLS 1.2
	3
	2

	TCP/TLS 1.3
	2
	21

	QUIC
	1
	10

QUIC can achieve faster connection establishment times until an HTTP request has been sent than existing TLS and TCP combinations. This improvement is significant when establishing a new connection, but not when clients have a long lived one to the server.
[bookmark: _Toc12529746]5.3.6	0-RTT Data
TLS 1.3 (IETF RFC 8446 [12]) includes support for early data or 0-RTT data, as it is also called. This is potentially usable by both HTTP/2 over TLS1.3/TCP as well as HTTP/3. This functionality can only be used when client and server share a Pre-Shared Key (PSK), which can be arranged out of band or exist from an earlier connection. 0-RTT data has other security properties than for data sent after the handshake completes. Data sent as 0-RTT data will be possible to replay by an attacker that has seen the client to server exchange. Therefore, the use of 0-RTT data requires that the data is safe to replay. When using HTTP requests as 0-RTT data, the request performed must be one that is idempotent. Server may refuse to accept 0-RTT data for this reason.
A server accepts 0-RTT data on a connection needs more processing and computation cost. Servers need to consider the probability of replay and all associated costs when accepting 0-RTT (See IETF draft-ietf-quic-tls [6], IETF RFC 8446 [12]).
[bookmark: _Toc12529747]5.3.7	Connection ID
QUIC uses two sets of connection IDs, one for the server and one for the client to identify a particular connection for an endpoint. During the handshake, QUIC packet with the long header is used to exchange the connection ID that each endpoint assigned. The endpoint is allowed to change the own connection ID to another available one at any time during the connection without any interruption in the transmission. This solution makes the connection not hard bound to a particular 5-tuple (Source and Destination IP, protocol, and source and destination port), instead the connection can be moved between different network interfaces on client and with some limitations on the server side. The protocol has a feature for migrating connections from using one 5-tuple to another, see clause 5.3.8. When knowingly changing the used 5-tuple a new connection ID is necessarily supposed to be used. The peers exchange additional connection IDs when needed to ensure that the peer have one or more previously unused CIDs that can be used in case of connection migration. The middlebox is difficult to correlate the received packet to the connection as the procedure used to changing connection is in encryption.
The connection IDThe length of connection ID is variable, and it provides certain flexibility in how the implementers realize network equipment architecture, e.g. front-end load-balancers, for QUIC.
[bookmark: _Toc12529748]5.3.8	Connection Migration
QUIC allows its connection to migrate while the HTTP/3 session progresses. This means for a client with multiple network interfaces an ongoing QUIC session can be moved to newly validated path via a newly discovered network interface, for example, in the case of a data session handover from WLAN to a 3GPP radio access technology. This is possible as QUIC sessions are identified by a set of connection IDs hence a particular QUIC session is not tightly coupled with a specific client IP address and port number. If a network interface appears with new IP addresses or an existing one disappears but the client has alternative network interfaces, the QUIC session does not need to be established again. The QUIC session can continue on a new interface after the client has validated the path to the server from the new interface address using PATH_CHALLENGE frames, with potentially a new connection ID from the previously communicated set of connection IDs.
NOTE:	IETF draft-ietf-quic-transport-18 [5] does not mandate a new connection ID after connection migration. However such reuse is not recommended as this allows on path observers to link multiple source IP addresses to the same connection and identify the topological relationship of clients. See clause 9.5 of IETF draft-ietf-quic-transport-18 [5].
It is possible that the server also has multiple IP addresses and has some preferences on which interface it would like to serve a particular client for load balancing or other management. QUIC allows server to receive a connection request to one IP address and migrate the connection to a preferred address in connection response immediately, this achieve faster connection migration than HTTP redirect. Currently, QUIC does not support change of server IP address in the middle of an ongoing session however, the server preferred address can be conveyed to the client during the TLS handshake as "preferred_address" transport parameter (see clause 9.6 of IETF draft-ietf-quic-transport-18 [5]). If the new path to the preferred server address is valid then client sends all the future packets to the new server address. Here the client also uses a new connection ID for the new connection to the server's preferred address.
[bookmark: _Toc12529749]5.3.9	Stream Prioritization
Being a multiplexed transport protocol, QUIC supports stream prioritization for boosting the application performance. However, QUIC itself neither provides mechanism to negotiate prioritization information nor implements any strict prioritization scheme. It relies on the application to provide priority information that QUIC will follow when it comes to packet transmission or retransmission. HTTP/3 uses the same prioritization mechanism as HTTP/2.
[bookmark: _Toc12529750]5.3.10	Flow Control
Flow control is a mechanism to set boundaries to the senders to avoid overwhelming receiver with data that the receiver cannot process. Like TCP, QUIC deploys connection level flow control, moreover, it applies a secondary stream level flow control to prevent a particular stream from consuming the receiver buffer for a connection. Different from HTTP/2, QUIC moves the ability to perform flow control from the HTTP/2 layer to the QUIC layer.
[bookmark: _Toc12529751]5.3.11	Protocol Versioning
QUIC has a 32-bit version field. It can be expected that QUIC will eventually exists in a number of proprietary and standardized versions. IETF is currently working on defining version 0x00000001. There exists a mechanism for the client to ask the server to enumerate all versions it support. The client when requesting to create a connection it will indicate the version desired to use. If supported then that is what will be used, otherwise it triggers the version negotiation. Some of the non-encrypted fields are defined as not being changeable independent of version as defined by the document for invariants (See IETF draft-ietf-quic-invariants-03 [9]).
The QUIC versioning enables a very large degree of flexibility for future changes of QUIC. All aspects except for the invariants can be changed. This enables the tuning of QUIC to a specific use case or implementation of future improvements in transport protocol technology. This flexibility also indicates the need to be explicit about which QUIC version(s) that are to be supported by a specific SBI. Any analysis of benefits and downsides of QUIC must be explicit about which version is discussed.
[bookmark: _Toc12529752]5.3.12	QUIC Extensibility
QUIC payloads are consists of one or more frames. Each frame starts with frame types followed by type specific flags. All the streams with data are carried over the STREAM frame type. QUIC's current specification defines a number of essential frame types. However, new frame types can be created and can be even application specific.
QUIC allows extensions to the protocol within the constraints of the protocol invariants (see properties of the QUIC transport protocol that are expected to remain unchanged as new versions of the protocol are developed, in IETF draft-ietf-quic-invariants-03 [9]). Extensions can change the semantics of existing protocol components, but they need to be negotiated before being used. Permitted extensions include new frame types, new settings, error codes and uni-directional streams. This gives QUIC a unique way of to be extensible and customizable.
The usage of new frame types does not necessarily imply using a new protocol version. A peer can use transport parameters to indicate support to the peer that it can use a new frame type. However, this has the downside that the support of a certain frame type cannot be determined before establishing the transport connection; on the other hand, using a specific protocol version can be leveraged by a peer to determine this support prior to establishing the connection.
[bookmark: _Toc12529753]5.3.13	Connection Configuration
QUIC allows a connection to be configured in a particular way with a set of transport parameters and frames. The transport parameters are exchanged in the cryptographic handshake. An important difference to HTTP/2 is that in both HTTP/3 and QUIC, settings are exchanged only at the beginning of the connection and cannot be changed after that. QUIC frames are used to configure how endpoints communicate. For example - the PADDING frame allow to vary the packet size, MAX_STREAM_ID frame indicates the maximum bidirectional or unidirectional stream ID permitted to open for the connection. Moreover, new transport parameters and frames can be added to extend the configuration.
[bookmark: _Toc12529754]5.3.14	User-Land Implementations
User space implementations of QUIC do not require elevated permissions. This allows application to include a QUIC implementation without any operating system changes. This simplifies deployment of QUIC, where only the application intending to use QUIC needs to be updated. This flexibility can also be used to fine tune the protocol behaviour to a particular application. However, there exists some risk with this, as even if an implementation is following the requirement of a certain QUIC version, the choices to optimize the implementation may result in poorer performance between two differently optimized implementations. Running separate QUIC applications in each application's user space has the impact on performance and resource efficiency in large-scale deployment scenario, which may not be a big problem for equipment with specific function in 5G Core.
The implementation in user space also results in certain challenges that can affect performance. Efficiency of the API towards the UDP receive and send functions is one such case. Other complications can be access to high performance timers and operating system's scheduling granularity.
[bookmark: _Toc12529755]5.3.15	Pluggable Sender Side Congestion Control
As QUIC implementation can reside in an application, it allows more experiment with congestion control algorithms. QUIC can customise different congestion control algorithms for connections of the same application. Compare to TCP, pluggable sender side congestion control makes it pretty flexible and effective on updating or terminating congestion control algorithms without upgrading operation system. However, the fairness of the bandwidth competition within the same network among applications using different congestion control algorithms needs to be considered.
Now depending on the operational environment, network and service requirement very specific congestion control algorithm can be deployed in the sender as long as the information in the acknowledgement from receiver is sufficient.
[bookmark: _Toc12529756]5.3.16	Checking that the QUIC connection is alive
Another difference with HTTP/2 is that each QUIC endpoint declares an idle timeout during the handshake. If the connection remains idle (no packets received) for longer than the advertised idle timeout, the peer will assume that the connection has been closed.
HTTP clients are expected to use QUIC PING frames to keep connections open if necessary, to verify that their peers are still alive or to check reachability to the peer. Without using QUIC PING frames, an inactive connection will time out. The frequency of sending PING frames is controlled by applications.
[bookmark: _Toc12529757]5.3.17	62 bits stream identifiers
QUIC stream identifiers are coded as variable length integers allowing upto a length of 62 bits, instead of 31 bits with HTTP/2. Out of the available 62 bits for stream ID encoding, 2 least significant bits are used to indicate who initiates the stream (client / server) and whether the stream is unidirectional or bidirectional. Hence for client initiated bidirectional streams to carry the requests and responses of 3GPP Service Based Interfaces, the available space is 2^60 stream IDs.
NOTE:	For variable length integer encoding the 2 MSB bits are used to derive the length of the integer. The 2 MSB bits are coded as base 2 logarithm of the total length of the variable length integer in octets. Thus for a 64 bit sized entity, the 2 MSB bits are 11 (i.e. value 3), indicating that the length of the integer is 8 octets of which only 62 bits are usable. See clause 16 and clause 2.1 of IETF draft-ietf-quic-transport-18 [5].
Stream ID exhaustion becomes nearly impossible during the lifetime of a QUIC connection. This may simplify the management of connections in 5GC.
5.3.18	Running atop of UDP
QUIC protocol uses UDP for packet encapsulation, this design should not be understood to use UDP encapsulation to replace TCP in HTTP/2, and instead, the purpose is to ensure the QUIC packet passing through legacy middleboxes including OS, router, firewall and etc., transparently. However, due to DDoS attack avoidance, or other network operating consideration, network operators configure the network to limit the peak rate of UDP packets, which will heavily impact the exact performance behavior of QUIC and delay the popularity of QUIC deployment in particular districts. It could be a kind of deadlock for QUIC traffic being using in internet until HTTP/3 is wildly accepted. For SBI being used within Telco network, this will not be a big issue.

* * * End of Changes * * * *

