

	
[bookmark: _Toc12529331]3GPP TSG-CT WG4 Meeting #93	C4-193296
Wroclaw, Poland; 26th – 30th August 2019

Source:	Hewlett Packard Enterprise
Title:	Pseudo-CR on Solution 1
Spec:	3GPP TR 29.808 V0.1.0
Agenda item:	6.1.9
Document for:	Agreement

1. Introduction
<Introduction part (optional)>
2. Reason for Change
Solution 1 describes a Nudsf API with a KVP based approach.
3. Conclusions
<Conclusion part (optional)>
4. Proposal
It is proposed to agree the following changes to 3GPP TR 29.808 0.1.0.

* * * First Change * * * *
2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[3]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[x1]	3GPP TS 29.501: " Principles and Guidelines for Services Definition".
[bookmark: _Toc12529335]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in 3GPP TR 21.905 [1] and the following apply. An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in 3GPP TR 21.905 [1].
KVP	Key-Value Pair
NF	Network Function
UDSF	Unstructured Data Storage Function
UDR	Unified Data Repository

* * * Next Change * * * *
[bookmark: _Toc12529343][bookmark: historyclause]5.2	<Solution #1>
5.2.1	Introduction
5.2.1.1	General
The service based Nudsf in this solution follows the principles for a 5GC SBI API as defined in 3GPP TS 29.501 [x1].
The solution utilizes key-value pair (KVP) principles and provides a flexible structure for partitioning the space within the UDSF so that a multitude of applications and types of data can be managed independently with minimum risk of e.g. namespace collisions.
The Nudsf storage model relies on structural abstractions with elements referred to as Realms, Storages, Record and Block.


Figure 5.2.1.1-1: Nudsf storage model example
5.2.2	Resources
5.2.2.1	Resource Structure


Figure 5.2.2-1: Resource URI structure of the Nudsf-dr API


5.2.2.2	Realms
5.2.2.2.1	Description
A realm is an area or a domain of the UDSF; a storage location where the actual underlying data objects can be organized.
The realm provides a layer of abstraction allowing for physical and logical data segregation if needed. An application could utilize one or more realms for its data. Two applications could share the same realm in order to share common data.
The realm is identified with a unique realmId and is of the archetype Collection.
5.2.2.2.2	Operations
The Realms resource does not support any operations, i.e. realms are created in the UDSF through the means of O&M operations.
5.2.2.3	Storages
5.2.2.3.1	Description
A storage defines a data model within the Realm for a specific application or purpose.
The storage is used to store records of the same or similar type and is identified with a storageId and is of the archetype Collection.
5.2.2.3.2	Operations
The Storages resource does not support any operations, i.e. storages are created in the UDSF through the means of O&M operations.
5.2.2.4	Records
5.2.2.4.1	Description
A record is comprised of a single key-value pair (KVP) where the key, which is a unique identifier for some item of data, and the value, which is the data that is identified by the key. 
The Record is an abstract data type that includes a key identifier and a set of associated values (blocks). 
The Record is identified with a recordId and is of the archetype Document.
5.2.2.4.2	Operations
The Records will support the following standard operations:
-	GET: retrieves the list of blocks associated with the recordId.
-	PUT: create the recordId and associated block(s) (if any).
-	DELETE: delete the record and any associated blocks.
5.2.2.5	Block
5.2.2.5.1	Description
The Block represents the value part of the Record and is made up of opaque arbitrary content.
The content part can be of a simple data type, structured data type, array, map, enumeration, data type describing alternative data types, data type describing combinations of data types or "Any Type".
The Block is identified with a blockId and is of the archetype Document.
5.2.2.5.2	Operations
-	GET: retrieves the block keyed with the blockId.
-	PUT: creates a block with blockId if blockId doesn't exist; otherwise updates the block associated with the blockId.
-	DELETE: delete the block associated with blockId.

* * * End of Changes * * * *
[bookmark: _GoBack]
Microsoft_Visio_2003-2010_Drawing1.vsd
//{apiRoot}/nudsf-dr/{apiVersion}


/{realmId}


/{recordId}


/{storageId}


/{blockId}



image1.emf
UDSF

Realm_X1

Storage_X1Y1

Record_Z

1

Block1

Block2

Block3

Record_Z2

Block1

Block2

Block3

Record_Z3

Block1

Block2

Block3

Storage_X1Y2

Record_Z1

Block1

Block2

Block3

Record_Z2

Block1

Block2

Block3

Record_Z3

Block1

Block2

Block3

Realm_X2

Storage_X2Y1

Record_Z1

Block1

Block2

Block3

Record_Z2

Block1

Block2

Block3

Record_Z3

Block1

Block2

Block3

Storage_X2Y2

Record_Z1

Block1

Block2

Block3

Record_Z2

Block1

Block2

Block3

Record_Z3

Block1

Block2

Block3

Storage_X2Y3

Record_Z1

Block1

Block2

Block3

Record_Z2

Block1

Block2

Block3

Record_Z3

Block1

Block2

Block3


Microsoft_Visio_Drawing1.vsdx
UDSF
Realm_X1
Storage_X1Y1
Record_Z1
Block1
Block2
Block3
Record_Z2
Block1
Block2
Block3
Record_Z3
Block1
Block2
Block3
Storage_X1Y2
Record_Z1
Block1
Block2
Block3
Record_Z2
Block1
Block2
Block3
Record_Z3
Block1
Block2
Block3
Realm_X2
Storage_X2Y1
Record_Z1
Block1
Block2
Block3
Record_Z2
Block1
Block2
Block3
Record_Z3
Block1
Block2
Block3
Storage_X2Y2
Record_Z1
Block1
Block2
Block3
Record_Z2
Block1
Block2
Block3
Record_Z3
Block1
Block2
Block3
Storage_X2Y3
Record_Z1
Block1
Block2
Block3
Record_Z2
Block1
Block2
Block3
Record_Z3
Block1
Block2
Block3



image2.emf
//{apiRoot}/nudsf-dr/{apiVersion}

/{realmId}

/{recordId}

/{storageId}

/{blockId}


