

	
3GPP TSG-CT WG4 Meeting #90	C4-191109
[bookmark: _GoBack]3GPP TSG-CT WG3 Meeting #102	C3-191070
Xi'an, P.R.China; 08th – 12th April 2019
	CR-Form-v11.4

	CHANGE REQUEST

	

	
	29.501
	CR
	0054
	rev
	-
	Current version:
	15.3.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	Deprecating API versions

	
	

	Source to WG:
	Nokia, Nokia Shanghai-Bell

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	2019-03-16

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	[bookmark: OLE_LINK1]Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	During the lengthy discussions during the last CT3 and CT4 meetings whether CRs can be considered backward-compatible, the concept of deprecating API versions was suggested: It was found that some APIs still had so severe mistakes, that their basic functionality could not be provided, and it was anticipated that those versions would never be deployed.

However, there is no formal way yet to document that an API is deprecated although this information appears important.

Note that stepping up the major version expresses that the new API version cannot interoperate with previous API versions. However, it is still assumed that the previous API version is functional, and there is even a requirement that the previous major version shall be supported by the NF service producer (see subclause 4.3.1.5).

	
	

	Summary of change:
	The possibility to deprecate API versions is introduced.

	
	

	Consequences if not approved:
	API versions with severe functional or encoding deficits can be deployed.

	
	

	Clauses affected:
	4.3.1.2, 4.3.1.5, new 4.3.1.x

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	A corresponding update to the TS template is attached to this CR.

Page 1

[bookmark: _Toc4121563][bookmark: _Toc4121668]1st Change
4.3.1.2	Rules for incrementing field values
The first version of a new API under development shall obtain the version number "1.0.0.alpha-1". At the first publication of the 3GPP Technical Specification defining the API after the OpenAPI freeze of the first 3GPP Release that contains the API, the version number of the API shall be set to "1.0.0".
When a new version of the 3GPP TS containing OpenAPI file(s) is published, the fields of the corresponding API version number(s) shall be incremented according to the following rules:
1st Field (MAJOR):
-	This numerical field shall be incremented when:
a)-	there are one or more backward incompatible changes to the API after the OpenAPI freeze for a given 3GPP Release and the previous API version is not being deprecated (see subclause 4.3.1.x); and
b)	there are the first backward incompatible change(s) to the existing API while a 3GPP Release is under development (i.e. prior to the OpenAPI freeze for a given 3GPP Release).
EXAMPLE 1:	Assuming that 3GPP Rel-16 under development contains API version "1.1.0.alpha-2", and a backward incompatible change is applied to that API before the OpenAPI freeze, the new Rel-16 API version is "2.0.0-alpha-1".
NOTE 1:	Subsequent changes in a given 3GPP Release under development do not lead to increment of the 1st Field (MAJOR) and 2nd Field (MINOR).
NOTE 2:	Rules for determining backward incompatible changes are provided in Annex B.
NOTE 3:	It is recommended to avoid backward incompatible change to the API after the OpenAPI freeze whenever possible, especially after OpenAPI freeze of a succeeding Release. It is preferable to introduce such changes only in the 3GPP Release under development.
-	If a backward incompatible change needs to be applied to several 3GPP Releases and the previous API version is not being deprecated (see subclause 4.3.1.x) the following applies:
a)	If the 3GPP Releases contain different MAJOR versions of the same API, a new MAJOR API version shall be assigned to each 3GPP Release in the order of those 3GPP Releases in such a manner that the lowest of those 3GPP Releases shall obtain the first unassigned MAJOR version value.
EXAMPLE 2:	Assuming that 3GPP Rel-15 contains API version "1.0.0", and Rel-16 contains API version "2.0.0", and that the same backward incompatible change is applied to that API in both Releases, the new Rel-15 API version is "3.0.0" and the new Rel-16 API version is "4.0.0".
b)	If the 3GPP Releases contain the same MAJOR version but different MINOR versions of the same API, a single new MAJOR API version value shall be assigned for all those 3GPP Releases, unless other backward incompatible changes only applied to some of those Releases require the creation of separate MAJOR versions.
NOTE 4:	For each such Release a new MINOR version is assigned.
EXAMPLE 3:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and Rel-17 contains API version "1.2.0", and that the same backward incompatible change is applied to that API in all 3GPP Releases, the new 3GPP Rel-15 and Rel-16 API version is "2.0.0" and the new 3GPP Rel-17 API version is "2.2.0".
c)	If the 3GPP Releases contain the same API versions, a single new API version shall be assigned for all those 3GPP Releases, unless other changes only applied to some of those Releases require the creation of separate versions.
EXAMPLE 4:	Assuming that 3GPP Rel-15 and 3GPP Rel-16 contain API version "1.0.0", and that only the same backward incompatible change is applied to that API in both 3GPP Releases, the new 3GPP Rel-15 and Rel-16 API version is "2.0.0".
EXAMPLE 5:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and that the same backward incompatible change is applied to that API in both Releases and an additional backward compatible change is applied in 3GPP Rel-16, the new 3GPP Rel-15 API version is "2.0.0", and the 3GPP Rel-16 API version is "2.1.0".
EXAMPLE 6:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0", and that the same backward incompatible change is applied to that API in both Releases and an additional backward incompatible change is applied in 3GPP Rel-16, the new 3GPP Rel-15 API version is "2.0.0", and the 3GPP Rel-16 API version is "3.0.0".
2nd Field (MINOR):
-	This numerical field shall be incremented when:
a)	there are the first one or more backward compatible changes not corresponding to changes to earlier 3GPP Releases (i.e. changes introduced by 3GPP CR with other categories than "mirror") to the same API in a given 3GPP Release without any prior backward incompatible changes in that Release. If the same 1st Field (MAJOR) and the 2nd Field (MINOR) are assigned to n previous 3GPP Releases, a MINOR version number shall be reserved for each intermediate 3GPP Release for possible subsequent changes in that Release and the MINOR version number shall be incremented by n; and
EXAMPLE 7:	Assuming that 3GPP Rel-15 and Rel-16 contain API version "1.0.0" (because there were no changes to the API in Rel-16), and in Rel-17 the first backward compatible new feature is added before the OpenAPI freeze, the API version "1.2.0.alpha-1" is assigned to Rel-17.
b)	there are one or more subsequent backward compatible additions of features not corresponding to changes to previous 3GPP Releases to the API in a frozen 3GPP Release before a higher MINOR number has been allocated for the same MAJOR version (for a subsequent Release).
-	This field shall be reset to "0" if the 1st Field (MAJOR) is changed, unless a backward incompatible changes needs to be applied to several 3GPP Releases that already contain the same MAJOR but different MINOR API versions. In that case a single new major API version is assigned, and for each such 3GPP Release with an own MINOR version, a new MINOR version shall be assigned, starting with MINOR version "0" for the lowest such Release, and reserving a MINOR version number for each intermediate Release without an own MINOR version. (see Example 3)
NOTE 5:	In most cases the MINOR version is incremented when new backward compatible features are added in a 3GPP Release. In rare cases, where only backward compatible changes not corresponding to changes to previous 3GPP Releases are applied to a 3GPP Release, the MINOR version is also incremented. It is recommended to avoid such changes in 3GPP Releases without added functionality whenever possible.
NOTE 6:	Subsequent backward compatible changes in a given 3GPP Release before OpenAPI freeze do not lead to an increment of the 2nd Field (MINOR).
NOTE 7:	Changes corresponding to changes in previous 3GPP Releases do not lead to an increment of the 2nd Field (MINOR).
NOTE 8:	If two 3GPP Releases are under parallel development (because the work on Rel-X+1 has commenced before the OpenAPI freeze of Rel-X), the corresponding APIs will obtain distinct values of the 1st Field (MAJOR) or 2nd Field (MINOR).
EXAMPLE 8:	Assuming that an API was introduced with version "1.0.0" in Rel-15, and that the Rel-16 version is "1.1.0.alpha-5" because the OpenAPI is not yet frozen in Rel-16, and that a new backward compatible Rel-17 feature is added, the Rel-17 API version is "1.2.0.-alpha-1".
3rd Field (PATCH):
-	This numerical field shall be incremented:
a)	if the changes are only one or more backward-compatible corrections (but no changes requiring an update of the 1st Field (MAJOR) or of the 2nd Field (MINOR))are made to the API after the OpenAPI freeze of a 3GPP Release; and
b)	if one or more backward compatible additions of features, but no changes requiring an update of the 1st Field (MAJOR) or of the 2nd Field (MINOR), are made to the API after the OpenAPI freeze of a 3GPP Release and after the assignment of a MINOR version to a higher 3GPP Release;. and
c)	if the previous API version is being deprecated (see subclause 4.3.1.x) and the 2nd Field (MINOR) is not incremented.
-	This field shall be reset to "0" if the 1st Field (MAJOR) or 2nd Field (MINOR) is changed.
NOTE 9:	Before the OpenAPI freeze for a given 3GPP Release, the 3rd field will not be incremented.
NOTE 10:	If the 1st Field (MAJOR) and 2nd Field (MINOR) were not incremented between 3GPP Releases (because there were no added features and no backward incompatible changes), and the same backward compatible changes are then applied to those 3GPP Releases, the API files in those 3GPP Releases are identical and will obtain the same API version number.
NOTE 11:	In rare cases for which a new backward compatible functionality needs to be added in an older 3GPP Release after the OpenAPI freeze and work on that API already started in a later Release, the new functionality is exceptionally introduced as a PATCH correction and a new supported feature could be defined accordingly.
4th Field (DRAFT):
-	This field shall be supplied only before the OpenAPI freeze of a 3GPP Release.
a)	When the 1st or 2nd Field is incremented before the OpenAPI freeze of a 3GPP Release, this field shall obtain the value "alpha-1".
b)	The numerical value "n" within the field value "alpha-n" shall be incremented if one or more subsequent changes are made to the API under development.
If no change is applied to an API in a new published TS version, the API version number shall not be incremented unless the draft field needs to be removed at OpenAPI freeze. This also applies if the TS is published in a new 3GPP Release.
NOTE 12:	OpenAPI files can contain references to other OpenAPI files. Changes to referenced parts of such other OpenAPI files need to be considered when determining if and how to update an API version.
NOTE 13:	The API version number is incremented using 3GPP change requests.
NOTE 14: If an older API version is being deprecated (see subclause 4.3.1.x) when subsequent API versions have already been published, the deprecation of that API version is not taken into consideration when assigning a new API version number.

[bookmark: _Toc4121566]2nd Change
4.3.1.5	Discovery of the supported versions
The NF service consumer may discover the API version(s) supported by an NF service producer using the following mechanisms:
-	NRF query:	The NF service consumer may retrieve from the NRF the NF profile of a given NF Instance. This NF profile contains the full version number(s) of the API(s) supported by an NF Service Instance, as described in the subclause 6.2.6.2.4 of 3GPP TS 29.510 [18] and the planned retirement date.
-	NF profile change notifications: The NF service consumer may subscribe for NF status change notifications with the NRF as specified in subclause 5.2.2.5 of 3GPP TS 29.510 [18]. The NRF shall notify as specified in subclause 5.2.2.6 of 3GPP TS 29.510 [18], any change to the NF profile which may include updated NF service profile containing the current list of NF services and their versions supported by the NF.
When a new major version is created, the NF service producer shall continue supporting at least the previous major version until a retirement date unless all API versions (except for draft API versions published prior to the OpenAPI freeze) with that previous major version are deprecated (see subclause 4.3.1.x); this enabling enables NF service consumers to migrate to the new version. After expiration of the retirement date, the old major version should be deprecateddoes no longer need to be supported. The retirement date of an old major version supported by a NF service instance may be updated in the NF profile in the NRF.

3rd Change
4.3.1.x	Deprecating API versions.
[bookmark: _Hlk4663793]If it is discovered that one or several previous API versions are not providing the basic mandatory functionality of an API due to severe functional or encoding deficits (for instance, there is no or very limited interoperability between the NF service consumer and NF service producer when such an API version is used, or the API is hardly implementable because of severe deficits in the OpenAPI file that cannot easily be fixed by implementors in an interoperable manner), those API versions shall be listed as deprecated in subsequent versions of the TS defining the corresponding API; any deprecated API versions from the same or previous 3GPP releases shall be listed. API versions published before the OpenAPI freeze of the corresponding 3GPP Release, i.e. with a 4th Field (DRAFT) as part of the version number, shall not be deprecated.
NOTE 1:	It is recommended to avoid deprecating API versions whenever possible. It is expected that a need to deprecate API versions is most likely detected when discussing corrections soon after the OpenAPI freeze of a new API.
NOTE 2.	Corrections to optional or minor parts of the API functionality do not lead to deprecating API versions. However, if severe functional or encoding deficits of the functionality related to an optional functionality with a corresponding supported feature (see TS 29.500 [2] subclause 6.6.2) are discovered, a new supported feature can be introduced to enable a negotiation of the support of the correction, and the old corresponding supported feature can be marked as "deprecated" in the table defining the supported features of an API.
Deprecated API versions should not be deployed.
End of Changes

