

	
[bookmark: _GoBack]3GPP TSG-CT WG4 Meeting #89	C4-190595
Montreal, Canada; 25th Feb - 1st March								 was C4-190510, C4-190203

Source:	Huawei, Nokia, Nokia Shanghai Bell, Ericsson, Verizon, NTT DOCOMO INC
Title:	Update IETF QUIC Draft References
Spec:	3GPP TR 29.893
Agenda item:	6.1.3
Document for:	Agreement

1. Introduction
The current TR 29.893 references IETF QUIC draft version 13. IETF QUIC work group has advanced with all the drafts to version 18 and there are quite a number of changes. This PCR updates the IETF draft references and clarifies the latest changes where applicable.
Also the TLS 1.3 draft has now become RFC 8446. This also needs to be updated.
2. Reason for Change
Update the IETF draft references and clarify the changes, where applicable.
Also update references to HTTP/QUIC to HTTP/3
3. Conclusions
<Conclusion part (optional)>
4. Proposal
It is proposed to agree the following changes to 3GPP TR 29.893v0.4.0.

* * * First Change * * * *
[bookmark: _Toc531930746]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or nonspecific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[3]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[4]	3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[5]	IETF draft-ietf-quic-transport-183: "QUIC: A UDP-Based Multiplexed and Secure Transport".
[6]	IETF draft-ietf-quic-tls-183: "Using Transport Layer Security (TLS) to Secure QUIC".
[7]	IETF draft-ietf-quic-http-183: "Hypertext Transfer Protocol (HTTP) over QUIC".
[8]	IETF draft-ietf-quic-recovery-183: "QUIC Loss Detection and Congestion Control".
[9]	IETF draft-ietf-quic-invariants-031: "Version-Independent Properties of QUIC"
[10]	IETF draft-ietf-quic-qpack-061: "QPACK: Header Compression for HTTP over QUIC"
[11]	IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".
[12]	IETF draft-ietf-tls-tls13-28RFC 8446: "The Transport Layer Security (TLS) Protocol Version 1.3".
[13]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[14]	IETF RFC 7541: "HPACK: Header Compression for HTTP/2".
[15]	IETF draft-ietf-quic-spin-exp-010: "The QUIC Latency Spin Bit".
[16]	IETF RFC 5682: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP".
[17]	IETF draft-dukkipati-tcpm-tcp-loss-probe-01: "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses".
[18]	IETF RFC 6582: "The NewReno Modification to TCP's Fast Recovery Algorithm".
[19]	3GPP TS 29.510: "Network Function Repository Services".
[20]	IETF RFC 7838: "HTTP Alternative Services".
[21]	IETF draft-pardue-httpbis-http-network-tunnelling-010: "HTTP-initiated Network Tunnelling (HiNT)".
[22]	IETF RFC 7231: " Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[23]	IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[24]	3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".
[25]	GSMA NG.113: "5GS Roaming Guidelines".
[x]	IETF RFC 8312: "CUBIC for Fast Long-Distance Networks".

* * * Next Change * * * *
[bookmark: _Toc531930751]4	Architectural Baseline
3GPP Release 15 Service Based Architecture as specified in 3GPP TS 23.501 [2] and the Technical Realization of the Service Based Architecture as specified in 3GPP TS 29.500 [4] shall be taken as the baseline for studying QUIC's use as a transport protocol for the 5GS Service Based Interfaces.
Editor's Note: The above architectural baseline requirement may need to be updated based on any change in service based architecture due to FS_eSBA study in SA2.
In particular the following architectural assumptions shall be taken into account:
-	Replacing the transport protocol from TCP to QUIC shall not lead to any change in the semantics of the NF services and shall not lead to any change in API.
Editor's Note: IETF draft-ietf-quic-http-13 [7] describes "hq" as the ALPN token used in TLS 1.3. It is not clear at the moment if the same will be also used as URI scheme for an application to convey to the HTTP client to use QUIC as the transport.
-	SEPP shall be used as the security protection and edge proxy even when the NF service consumer in VPLMN and the NF service consumer in HPLMN both use QUIC as the transport.
-	Even if both the NF service consumer and NF service producer support QUIC, the IPX providers and intermediaries on path between the two NF's first hop and the last hop shall not be mandated to support QUIC. In other words, the NF service consumer and the NF service producer shall be able to communicate when using QUIC as transport even in the presence of TCP based IPX or intermediaries on path between the first hop and the last hop.

* * * Next Change * * * *
[bookmark: _Toc531930756]5.3.1	General
QUIC is a multiplexed and secure transport protocol that runs on top of UDP. QUIC aims to provide a flexible set of features that allow it to be a general-purpose secure transport for multiple applications. The main parts of QUIC are defined in a set of documents IETF draft-ietf-quic-transport-183 [5], IETF draft-ietf-quic-recovery-183 [8], IETF draft-ietf-quic-tls-183 [6], IETF draft-ietf-quic-invariants-031 [9]. The highly integrated HTTP/2 over QUIC specification (now called HTTP/3) IETF draft-ietf-quic-http-183 [7] and HTTP header compression IETF draft-ietf-quic-qpack-061 [10] are developed in parallel with the core protocol. The protocol is developed by the Internet Engineering Task Force (IETF).
* * * Next Change * * * *
[bookmark: _Toc531930757]5.3.2	Framing and Multiplexing
QUIC endpoints communicate by exchanging QUIC packets in UDP datagrams. QUIC packets may have long or short headers, for packets sent prior or after the completion of version negotiation and establishment of 1-RTT keys respectively. A QUIC long header packet header contains a source and a destination Connection ID the length of each are explicitly signalled. Short header may contain a destination Connection ID, the length of the DCID field is implicit. The destination connection ID may be changed at any point and is expected to change on changes to the used 5-tuple (IP source and destination address, protocol (UDP), and source and destination port). Multiple QUIC packets can be coalesced into one UDP datagram. Multiple QUIC connections may be multiplexed on the same 5-tuple.
QUIC has a data frame definition that supports multiple parallel data streams multiplexed on a single QUIC connection. For each stream QUIC now only supports reliable and in-order delivery. However, the QUIC layer is capable of delivering to the higher layer each stream independently, thus it avoids blocking the delivery of any of the other streams when a packet loss contains only part of a stream. Note that to achieve this efficiency the implementation needs to pay attention to pack payload from one stream into a single QUIC packet.
A sender multiplexes one or more frames into a QUIC packet. A sender can wait for a short period of time to bundle multiple frames into the same QUIC packet, e.g. to minimize the computational costs of packets sending. Frames inside a QUIC packet can be of different types.
The HTTP/3 mapping for QUIC IETF draft-ietf-quic-http-13 18 [7] utilizes this stream concept when realizing the different HTTP/2 (See IETF RFC 7540 [13]) streams. HTTP/3 over QUIC also had to improve the HTTP header compression scheme HPACK (See IETF RFC 7541 [14] into QPACK (See IETF draft-ietf-quic-qpack-061 [10]). With these changes HTTP can deliver independent requests and responses in the order they are successfully delivered to endpoints, without head of line blocking between HTTP streams which would be the case for HTTP/2 over TCP.

* * * Next Change * * * * (merge from C4-190090)
[bookmark: _Toc531930758]5.3.3	Improved Recovery and Acknowledgement
The QUIC definition of its packet format and acknowledgement frame results in several improvements over TCP. The packet number is transmission-time ordered and strictly increasing. QUIC never retransmits a particular packet, only the lost data frames that need to be retransmitted. QUIC facilitates better way to calculate RTT by encoding the delay between packet reception and transmission of the acknowledgement. The QUIC acknowledgment also supports a very larger number of received and gap ranges.
Compared to TCP, QUIC will not be limited to a three blocks of selective acknowledgement (SACK) when using the timestamp option. The strict packet numbers and explicit acknowledgement removes ambiguity between which packet is lost and which is acknowledged. Avoiding any unnecessary retransmissions of data that have reached the receiver. QUIC also avoids the retransmission uncertainty if the received packet was a delayed or retransmitted. QUIC's RTT samples are more accurate than what TCP can provide due to no ambiguity about which packets are used in measurement as well as the receiver side delay can be taken into account.
The current QUIC version defines a baseline congestion controller The congestion control algorithm of the current QUIC version is based on NewReno (See IETF RFC 6582 [18]), however it uses the more accurate reporting. but implementations can use other congestion control algorithms, such as Cubic (see IETF RFC 8312 [x]), and endpoints are allowed to use different algorithms from one another. QUIC provides generic congestion control signals to support different algorithms. QUIC also uses some additional modern loss recovery mechanisms by default, such as F-RTO (See IETF RFC 5682 [16]), and Tail Loss Probing (See IETF draft-dukkipati-tcpm-tcp-loss-probe-01 [17]). These improvements give QUIC a better recovery mechanism.
* * * Next Change * * * * (merged additional sentences from C4-190090)
[bookmark: _Toc531930759]5.3.4	Encrypted and Integrity Protected Transport details
QUIC uses TLS 1.3 (See IETF draft-ietf-quic-tls-183 [6], IETF draft-ietf-tls-tls13-28RFC 8446 [12]), for key establishment, while QUIC has its own encryption and integrity layer that protects the QUIC packets. Each QUIC packet has a packet header, using a short or a long format with a small number of fields that are unencrypted, but integrity protected. It is primarily the connection ID that is unencrypted and three reserved bits for experimentation in the short header. Even the packet number is encrypted using an independent mechanism from the payload.
The encryption and integrity help provide confidentiality, privacy and source authenticity for the user of QUIC. However, the protection is also intended to prevent any middlebox in the network from interfering with the protocol, nor make assumptions about what the possible values any specific bit in the UDP payload can take. Ossification of the network has prevented a lot of improvements from being applied to TCP as middleboxes would either block or remove such changes.
Compared to TCP, this level of encryption does make certain type of network performance monitoring using middlebox basically impossible. Due to this, there are ongoing discussion of intentional monitoring support bits, like the QUIC short header introduces a latency spin bit (See IETF draft-ietf-quic-spin-exp-010 [15]) that is, intended to enable middlebox to measure round-trip time between the middlebox and either endpoint of the connection if enabled by both end-points.
* * * Next Change * * * *
[bookmark: _Toc531930760]5.3.5	Connection Setup Improvements
QUIC is capable of completing establishment of a connection between a client and a server in one and half RTT. The protocol combines TLS (See IETF RFC 8446draft-ietf-tls-tls13-28 [12]) handshake with transport protocol level mechanisms to achieve this. A client's request to a server can be included after one RTT and be sent combined with the last step of the crypto handshake from the client to the server.

Holding state in the server for the initial connection establishment packets prior to having verified the client's return path can expose the server to a denial of service risk. Servers that like to mitigate that risk can use the Retry packet to verify the path and not hold any state for the first round-trip.

How big improvement this is depends on what one compares against. As 3GPP TS 33.310 makes support for TLS 1.3 (See IETF RFC 8446draft-ietf-tls-tls13-28 [12]) mandated from Rel-15 it is reasonable to compare with both TLS 1.2 (See IETF RFC 5246 [11]) and TLS 1.3. TLS 1.2 session resumption requires that the client has talked to the server recently enough, so it still has session state stored. The below table indicates number of RTTs until the first HTTP request can be sent by the client.

Table 5.3.5-1: Number of RTTs until first HTTP request
	Protocol
	New Connection
	Connection State Exists

	TCP/TLS 1.2
	3
	2

	TCP/TLS 1.3
	2
	2

	QUIC
	1
	1

QUIC can achieve faster connection establishment times until an HTTP request has been sent than existing TLS and TCP combinations. This improvement is significant when establishing a new connection, but not when clients have a long lived one to the server.
* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930761]5.3.6	0-RTT Data
TLS 1.3 (IETF RFC 8446 [912]) includes support for early data or 0-RTT data, as it is also called. This is potentially usable by both HTTP/2 over TLS1.3/TCP as well as QUICHTTP/3. This functionality can only be used when client and server share a Pre-Shared Key (PSK), which can be arranged out of band or exist from an earlier connection. 0-RTT data has other security properties than for data sent after the handshake completes. Data sent as 0-RTT data will be possible to replay by an attacker that has seen the client to server exchange. Therefore, the use of 0-RTT data requires that the data is safe to replay. When using HTTP requests as 0-RTT data, the request performed must be one that is idempotent. Server may refuse to accept 0-RTT data for this reason.

* * * Next Change * * * * (merge from C4-190090)
[bookmark: _Toc531930762]5.3.7	Connection ID
QUIC uses two sets of connection IDs, one for the server and one for the client to identify a particular connection for an endpoint. This solution makes the connection not hard bound to a particular 5-tuple (Source and Destination IP, protocol, and source and destination port), instead the connection can be moved between different network interfaces on both client and with some limitations on the server side. The protocol has a feature for migrating connections from using one 5-tuple to another, see subclause 5.3.8. When knowingly changing the used 5-tuple a new connection ID is supposed to be used. The peers exchange additional connection IDs when needed to ensure that the peer have one or more previously unused CIDs that can be used in case of connection migration.
The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC.
* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930763]5.3.8	Connection Migration
QUIC allows its connection to migrateion to be happened while the HTTP/3 session progresses. This means for a client with multiple network interfaces an ongoing QUIC session can be moved to newly validated path via a newly discovered network interface, for example, in the case of a data session handover from WLAN to a 3GPP radio access technology. This is possible as QUIC sessions are identified by a set of connection IDs hence a particular QUIC session is not tightly coupled with a specific client IP address and port number. Hence, if If a network interface appears with new IP addresses or an existing one disappears but the client has alternative network interfaces, the QUIC session does not need to be established again. The QUIC session can continue on a new interface with a new connection ID from the previously communicated set of connection IDs.
It is possible that the server also has multiple IP addresses and has some preferences on which interface it would like to serve a particular client for load balancing or other management. Currently, QUIC does not support change of server IP address in the middle of an ongoing session however, the server preferred address can be conveyed to the client during the TLS handshake as "preferred_address" transport parameter. If the new path to the preferred server address is valid then client sends all the future packets to the new server address. Here the client also uses a new connection ID for the new connection to the server's preferred address.

* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930764]5.3.9	Stream Prioritization
Being a multiplexed transport protocol, QUIC supports stream prioritization for boosting the application performance. However, QUIC itself neither provides mechanism to negotiate prioritization information nor implements any strict prioritization scheme. It relies on the application to provide priority information that QUIC will follow when it comes to packet transmission or retransmission. HTTP/3 uses the same prioritization mechanism as HTTP/2.

* * * Next Change * * * *
[bookmark: _Toc531930766]5.3.11	Protocol Versioning
QUIC has a 32-bit version field. It can be expected that QUIC will eventually exists in a number of proprietary and standardized versions. IETF is currently working on defining version 0x00000001. There exists a mechanism for the client to ask the server to enumerate all versions it support. The client when requesting to create a connection it will indicate the version desired to use. If supported then that is what will be used, otherwise it triggers the version negotiation. Some of the non-encrypted fields are defined as not being changeable independent of version as defined by the document for invariants (See IETF draft-ietf-quic-invariants-031 [9]).
The QUIC versioning enables a very large degree of flexibility for future changes of QUIC. All aspects except for the invariants can be changed. This enables the tuning of QUIC to a specific use case or implementation of future improvements in transport protocol technology. This flexibility also indicates the need to be explicit about which QUIC version(s) that are to be supported by a specific SBI. Any analysis of benefits and downsides of QUIC must be explicit about which version is discussed.

* * * Next Change * * * *
[bookmark: _Toc531930767]5.3.12	QUIC Extensibility
QUIC payloads are consists of one or more frames. Each frame starts with frame types followed by type specific flags. All the streams with data are carried over the STREAM frame type. QUIC's current specification defines a number of essential frame types. However, new frame types can be created and can be even application specific.
QUIC allows extensions to the protocol within the constraints of the protocol invariants (see properties of the QUIC transport protocol that are expected to remain unchanged as new versions of the protocol are developed, in IETF draft-ietf-quic-invariants-031 [9]). Extensions can change the semantics of existing protocol components, but they need to be negotiated before being used. Permitted extensions include new frame types, new settings, error codes and uni-directional streams. This gives QUIC a unique way of to be extensible and customizable.
The usage of new frame types does not necessarily imply using a new protocol version. A peer can use transport parameters to indicate support to the peer that it can use a new frame type. However, this has the downside that the support of a certain frame type cannot be determined before establishing the transport connection; on the other hand, using a specific protocol version can be leveraged by a peer to determine this support prior to establishing the connection.
* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930768]5.3.13	Connection Configuration
QUIC allows a connection to be configured in a particular way with a set of transport parameter and frames. An important difference to HTTP/2 is that in both HTTP/3 and QUIC, settings are exchanged only at the beginning of the connection and cannot be changed after that. QUIC frames are used to configure how endpoints communicate. For example - the PADDING frame allow to vary the packet size, MAX_STREAM_ID frame indicates the maximum bidirectional or unidirectional stream ID permitted to open for the connection. Moreover, new transport parameters and frames can be added to extend the configuration.

* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930769]5.3.14	User-Land Implementations
User space implementations of QUIC do not require elevated permissions. This allows application to include a QUIC implementation without any operating system changes. This simplifies deployment of QUIC, where only the application intending to use QUIC needs to be updated. This flexibility can also be used to fine tune the protocol behaviour to a particular application. However, there exists some risk with this, as even if an implementation is following the requirement of a certain QUIC version, the choices to optimize the implementation may result in poorer performance between two differently optimized implementations.
The implementation in user space also results in certain challenges that can affect performance. Efficiency of the API towards the UDP receive and send functions is one such casealternative. Other complications can be access to high performance timers and operating system’s scheduling granularity.

* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930774]5.4.1	General
This sub-section reviews the features of HTTP/3 and QUIC that are applicable to 3GPP SBI and under which cases and conditions they are applicable.

* * * Next Change * * * * (merge from C4-190260)
[bookmark: _Toc531930775]5.4.2	Framing and Multiplexing
This feature allows QUIC to multiplex multiple streams in to a single connection and avoid head of line blocking. The upper layer protocols can use the QUIC transport in efficient ways to prioritize, parallelize and even cancel standing data sent or received without having to manage multiple connections. Hence, to get the most of a QUIC connection this feature is important. When it comes to SBI, there are definitely cases where one NF consumer will have number of multiple standing requests to one of the NF providers. The HTTP/3 and QUIC framing and multiplexing provides essential support to perform the task efficiently. The efficiency gain in HTTP/3 and QUIC, compared to HTTP/2 over TLS/TCP, exists only when the transport connection is subject to packet loss. This is when TCP's head of line blocking will not allow releasing received data to higher layer, even if the data is completely received for independent HTTP/2 requests or responses.

* * * Next Change * * * *
[bookmark: _Toc531930778]5.4.5	Connection ID and Connection Migration
The connection ID provides certain flexibility in how the implementers realize front-end load-balancers for QUIC as the QUIC connection is not bound to 5 tuples (protocols and ports). In the case of SBI, both for cloud native implementation or bare metal implementation, this connection ID will provide the ability to establish network interface agonistic connection and move the connect between the interfaces as required without terminating the QUIC connection.
Server-side migration is currently only specified to be done shortly after connection handshake using the Server Preferred Address mechanism discussed in Section 6.129.6 of IETF draft-ietf-quic-transport-183 [5]. This mechanism requests that the client sends the packet destined to the server to this preferred address instead of the original one. Future versions or extensions may specify mid connection server side migration.
Client-side migration may occur at any point after the handshake has completed. This can be done intentionally by the client when another network interface has become available, where it first probes the new path from this other interface to the server, and after path verification starts using non-probing packet, thus completing the migration. It can also occur implicit, due to a NAT rebinding where the server-side observable source address and port has changed due to this rebinding. Here the use of non-probing packets results in immediate path migration to the new path, and at the same time the server initiates a path validation.
* * * Next Change * * * * (merge from C4-190090)
5.5.2	0-RTT DATA
0-RTT Data has very limited applicability to 3GPP SBI for several reasons. The foremost is the security properties of 0-RTT data. As the 0-RTT data is protected using a Pre-Shared Key (PSK) and not a connection specific established state, the 0-RTT data is possible to replay by an adversary. It is also does not have full forward secrecy, i.e. if the PSK key is later compromised, then this message can be decrypted at that point.
The possibility for replay has multiple impacts. If the HTTP request in the 0-RTT data is was not idempotent then the state of the NF can could be changed (so IETF draft-ietf-quic-tls-18 [6] specifies that "0-RTT MUST NOT carry a self-contained trigger for any non-idempotent action"). Secondly, when replaying the order of requests can be changed by an adversary. Thus, changing the effect of them, e.g. moving a delete after a create. If multiple replays are allowed additional attacks are possible, including timing and measurement to attempt to determine other state. Overload concerns are also present both on the server side, as well as using 0-RTT as a method for amplifying the amount of data a spoofed source address attack results in.
Due to that many 3GPP SBI requests are not idempotent the potential use of 0-RTT data is very limited. By not allowing its use at all several vulnerabilities are avoided, resulting in a safer and less complex systems as no mitigations are needed.
In any case, given that the considerations on applicability of this feature are essentially related to security, it should be up to SA3 to determine whether it is recommended or not to use this feature in 3GPP networks; also, the recommendation may be dependent on intra vs inter -PLMN scenarios.

* * * Next Change * * * *
[bookmark: _Toc531930783]5.6	Comparison of Applicable Features with R15 Transport
Table 5.6-1 provides a comparison of the features supported by HTTP/QUIC 3 that are applicable to the 5GC SBI with HTTP/2 over TLS/TCP, based on the requirements from Transport Protocol for 3GPP 5GC SBI defined in subclause 5.2 and additional evaluation criteria.
Table 5.6-1: Comparison of HTTP/QUIC 3 and HTTP/2
	Requirement/ Evaluation Criterion
	HTTP/2 over TLS/TCP

	HTTP/QUIC3

	R1. Reliable message delivery

	TCP supports reliable and order-of-transmission delivery of data.
	QUIC supports reliable and order-of-transmission delivery of data per stream.

	R2. Flow control and congestion control mechanism

	Flow control is supported at connection and stream levels.

TCP provides end-to-end congestion control, but with significant throughput reduction in case of packet loss.

	Flow control is supported at connection and stream levels.
QUIC provides a congestion control mechanism based on TCP NewReno. Performance is FFS.

	R3. Support of connection semantics

	One HTTP connection maps to one TCP connection.
	How HTTP maps to a QUIC connection is FFS.

	R4. Failure to deliver one message shall not block subsequent messages

	Head-Of-Line (HOL) blocking occurs if TCP segments get lost, delaying the delivery of all subsequent HTTP requests/responses until the lost segments are retransmitted.
	QUIC avoids blocking the delivery of data for any other streams when a packet loss contains only part of a stream.

	R5. Transport protocol supports mechanisms to authenticate peer endpoint and to secure transfer of application messages

	Authentication and secure transfer of application messages are provided by TLS (unless security is provided by other means).

NF service access authorization relies on OAuth2 using TLS.

	QUIC uses TLS 1.3 for key establishment, but it has its own encryption and integrity layer that protects the QUIC packets.

NF access authorisation is FFS.

	A1. Framing and Multiplexing
	HTTP/2 supports multiplexing multiple parallel requests in separate streams in a non-blocking fashion (at HTTP level) over the same TCP connection.

See also R4 for HOL at TCP level.
	HTTP/QUIC 3 supports multiplexing of multiple parallel requests in separate streams in a non-blocking fashion over the same QUIC connection.

	A2. Connection Setup Improvements
	
	By combining connection setup and TLS handshakes, QUIC improves connection setup latency and security allowing 0-RTT connection setup. However, the precondition of the improvement is that the NF service consumer has had an earlier connection with the NF service provider so that it can reuse the earlier learnt connection settings including the security keys for 0-RTT. When using stateless services, no earlier connection to the same service instance can be assumed. In addition, if the connection is persistent the impact of 0-RTT connection setup is minimal to the overall performance.

	A3. Failover to Alternate Path
	TCP does not support multi-homing.

Failover to alternate paths can be supported by setting up additional TCP connections.

	QUIC supports client-side migration after the handshake has completed, and server-side migration shortly after the connection handshake, giving some flexibility to move the connection between interfaces without terminating the QUIC connection.

Failover to alternate paths can also be supported by using additional QUIC connections.

	A4. Low Response Time
	Significant throughput reduction by TCP in overload and TCP head-of-line blocking are potential issues.
	Throughput reduction due to congestion response for QUIC is similar to TCP’s. QUIC based transport avoids head of-line blocking.

	A5. Scalability
	FFS
	FFS

	A6. Time of Availability of used standards
	Already available.
	Planned completion by July 2019.

	A7. Ease of troubleshooting and Monitoring
	Many tools exist to trace/monitor HTTP REST APIs.

If TLS end-to-end encryption is used, this renders centralized logging at intermediates impossible.

An HTTP response follows the same path as its request as it is sent on the same TCP connection.
	Many tools exist to trace/monitor HTTP REST APIs, but less widespread support for QUIC so far.

QUIC requires end-to-end encryption that would render centralized logging at intermediates impossible or much more complex.

An HTTP response follows the same path as its request as it is sent on the same QUIC connection.

	A8. Ease of traversal of carrier-grade ALG/NAT/firewall
	Need to configure operator-grade firewalls to pass TCP/TLS/HTTP. For bidirectional communication, configuration for two connections may be required, but security gateways can reduce the number of required connections (see 3GPP TS 33.210 [24]).
	Need to configure operator-grade firewalls to pass UDP/QUIC. For bidirectional communication, configuration for two connections may be required, but security gateways can reduce the number of required connections (see 3GPP TS 33.210 [24]).

	A9. Impacts to GSMA GRX/IPX
	Support being defined for Rel-15
(see GSMA NG 113 [25]).
	No HTTP/QUIC 3 support so far.

	A10.	Use of proxies

	HTTP/2 supports the use of proxies in the path.
	HTTP/3 Proxy functionality still at very early stage (see subclause 6.2).

	A.11 Idle HTTP connections
	PING frames are used to test whether a connection is still alive.
	PING frames are used to test whether a connection is still alive and to keep the connection alive.
QUIC endpoint declares an idle timeout during the handshake. If the connection remains idle (no packets received) for longer than the advertised idle timeout, the peer will assume that the connection has been closed.

	A.12 Availability of standard APIs (e.g. socket APIs)
	Many libraries to choose from for HTTP/2.
	QUIC support is not yet so widespread.

	A.13 Stream IDs
	HTTP/2 stream identifiers are coded with 31 bits. Stream IDs can exhaust during the lifetime of the HTTP/2 connection, which complexifies the management of connections.
	QUIC stream identifiers are coded with 62 bits. Stream IDs exhaustion becomes nearly impossible during the lifetime of a QUIC connection, which simplifies the management of connections.

Editor's Note: How Monitoring (A7) may be enhanced by the QUIC Latency Spin Bit (see draft-ietf-quic-spin-exp-01) is FFS.
* * * Next Change * * * * (merge from C4-190090)
[bookmark: _Toc531930784]6	HTTP/2 3Over QUIC
[bookmark: _Toc531930785]6.1	Introduction
This clause will contain description about the mapping and usage of HTTP/2 3 over QUIC including some of the not so well understood/documented aspects.

* * * Next Change * * * * (merge from C4-190090)
[bookmark: _Toc531930786]6.2	HTTP/32 Over QUIC Proxies
[bookmark: _Toc531930787]6.2.1	General
HTTP clients can be configured to route their outgoing HTTP requests via a HTTP proxy. If the NF service consumer (i.e HTTP client) is configured to route its message via a HTTP proxy, the NF service consumer will try to setup a transport connection towards the proxy. If the NF service consumer knows that the proxy supports QUIC based on configuration or other offline means, the transport connection towards the HTTP proxy may use QUIC. Thereafter how the HTTP/32 over QUIC proxy further communicates with the NF service producer for various scenarios are explained in the subclauses below.

Figure 6.2.1-1 NF Service Consumer to NF Service Producer Communication with HTTP/32 Over QUIC Proxy on Path

* * * Next Change * * * *
[bookmark: _Toc531930789]6.2.2.1	Case A: Invoking http API Supporting Only TCP Transport
This case is not describe in IETF draft-ietf-quic-http-183 [7].
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports only TCP.
-	The URI scheme of the API exposed by the NF service producer is http
In this case, the NF service consumer has the following options:
-	Option#1: The NF service consumer uses TCP transport towards the proxy as well. This implies the proxy also supports TCP transport (which is a reasonable assumption considering that during the migration from TCP to QUIC many HTTP entities will support both transports).
-	Option#2: The NF service consumer uses QUIC transport towards the HTTP proxy and the proxy uses TCP transport towards the NF service producer. The HTTP proxy discovers whether the NF service producer supports TCP or QUIC based on apriori connection setup. For example, in the case of SEPP all NFs in a PLMN connect to the SEPP and establish a HTTP/2 or HTTP/3 connection using depending on whatever transport is supported by both the SEPP and the NF service producer. IETF draft-ietf-quic-http-13 18 [7], clause 2.3 specifies that HTTP/3QUIC clients shall indicate the target domain name during the TLS handshake of QUIC connection setup. The certificate provided at connection setup shall be valid for the target domain name.
Editor's Notes: It is unclear what domain name shall be used for the target domain name when the connection is with a proxy (proxy domain name or the origin server one).
The draft also says in clause 2.4 that a connection to a server endpoint may be reused for requests with multiple different URI authority components. The client may send any requests for which the client considers the server (the one at the existing connection endpoint) authoritative.
Editor's Notes: In our case the client knows that existing QUIC connection ends at a proxy and not at a server. So it is unclear if we can reuse an existing QUIC connection to a proxy endpoint. Also it is unclear if a client can consider a proxy as an authoritative server as proxies and servers are essentially different HTTP entities.
The draft loosely specifies in clause 2.4 how the client knows that the server at the endpoint of the reused QUIC connection (the proxy in our case) is authoritative for requests directed to other domains. It mentions that typically the client discovers that a particular server is the authoritative HTTP/3QUIC endpoint based on the client having received Alt-Svc HTTP response header or the HTTP/2 ALTSVC frame (see IETF RFC 7838 [20]).
Editor's Note:	Whether other mechanisms other than use of IETF RFC 7838 [20] can be considered to discover a particular HTTP/3QUIC endpoint is the authoritative endpoint for a URI authoritative component is FFS.
Finally, the clients shall check that the nominated server can present a valid certificate for the Origin Server before considering it authoritative. Therefore, the HTTP proxy has to present a certificate to the HTTP/3QUIC client on behalf of the HTTP Origin Server (NF service producer) that is valid for multiple domain names and signed by the client network's own certificate authority. In roaming, the client network owner (the VPLMN) and the origin server network owner (the HPLMN) are different authorities and such a certificate is impossible to issue by a regular certification authority (e.g Verisign). The only possibility is that the HTTP client should be configured to trust the HTTP proxy as the certificate authority. Only then this option#2 will work.
-	Option#3: The NF service consumer uses QUIC transport towards the HTTP proxy. The proxy provides a certificate only valid for itself at QUIC connection setup. When the NF service consumer needs to send a request to an NF Service producer it first establishes a tunnel through the proxy by sending an HTTP CONNECT message in a new stream with an ":authority" pseudo-header field identifying the NF Service producer. The proxy then creates a TCP connection towards the NF service producer. Once the TCP connection is completed, a tunnel is created between the NF service consumer and producer. This tunnel is used by the NF service consumer to create a direct HTTP/2 connection (without an end to end TLS) with the NF service producer. HTTP/2 messages can now flow between the two entities. This is illustrated by the figure below.

Figure 6.2.2.1-1: http via HTTP/QUIC 3 Proxy to NF Service Producer Supporting TCP
NOTE 1:	Option 3 is not described by IETF draft-ietf-quic-http-183 [7] which only describes the use of the CONNECT method to setup a TLS session between an HTTP client and an Origin server.Most of the existing implementation also restricts the usage of CONNECT to https URIs. This option excludes the use of current implementations available on the market. However for 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way to use HTTP CONNECT via a proxy for http URI too.
NOTE 2: IETF draft-ietf-quic-http-183 [7] doesn't explicitly say if the verifications listed in clause 2.4 of the draft that authorize the reuse of an existing QUIC connection are applicable to the CONNECT method.
* * * Next Change * * * *
[bookmark: _Toc531930790]6.2.2.2	Case B: Invoking http API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is http
In this case the NF service consumer uses QUIC transport towards the HTTP proxy and the HTTP proxy also uses QUIC transport towards the NF service producer.
The figure below illustrates the case where the HTTP client and server are connected with two QUIC connections through an HTTP proxy.
The connection with the HTTP proxy would be reused for requests sent to multiple domains. When the proxy needs to forward a message to a new HTTP server, it establishes a new QUIC connection with it. The server provides a valid certificate for itself.

Figure 6.2.2.2-1: http via HTTP/QUIC 3 Proxy to NF Service Producer Supporting QUIC

Case B is not described in IETF draft-ietf-quic-http-183 [7] and the same questions regarding the QUIC connection with the proxy rose as specified for Case A remains open with Case B.
As per IETF draft-ietf-quic-http-183 [7], clause 2.43, a HTTP client MUST verify if the nominated HTTP server it is communicating with (i.e HTTP proxy in this case) can present a valid certificate for the origin before considering it authoritative. Hence in order to setup an end to end QUIC connection between the HTTP client and the HTTP server via a HTTP/QUIC 3 proxy, an equivalent of HTTP CONNECT to setup a tunnel is required. Currently such an option does not exist. HTTP CONNECT is used only when the URI scheme is https and upon getting a HTTP CONNECT request a HTTP/3 proxy establishes a TCP connection with the HTTP server (and not a QUIC connection) as specified in clause 5.2 of . IETF draft-ietf-quic-http-18 [7].
NOTE:	The use of HTTP CONNECT by HTTP clients when accessing https URI via a proxy is not mandated in IETF RFC 7231 [22]. However many browsers by default use HTTP CONNECT when accessing https URIs via a proxy. For 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way not to use HTTP CONNECT via a proxy and trust the certificates issued by the proxy effectively allowing the proxy to act as man in the middle.
IETF draft-pardue-httpbis-http-network-tunnelling-010 [21] tries to provide a solution that permits a UDP-based HTTP/QUIC 3 client behind an HTTP proxy to establish an HTTP/QUIC 3 session with the origin. But at this moment this is an individual draft and is in very early stage.
* * * Next Change * * * *
[bookmark: _Toc531930791]6.2.2.3	Case C: Invoking https API Supporting Only TCP Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports only TCP.
-	The URI scheme of the API exposed by the NF service producer is https
In this case the following sequence of events happen
-	HTTP client establishes a QUIC connection with the HTTP proxy, if not setup earlier.
-	HTTP client sends a HTTP CONNECT request to the proxy with ":authority" pseudo-header set to the NF service producer FQDN or IP address.
-	HTTP proxy sets up a TCP connection with NF service producer (HTTP server).
-	HTTP proxy sends a HTTP CONNECT response to the HTTP client.
-	HTTP client does end to end TLS connection setup with the NF service producer. An encrypted tunnel between the client and the server is now setup and HTTP/2 connection can be setup on top.
NOTE 1:	The HTTP client has to do encryption twice - one for the TLS tunnel and one for the QUIC connection with proxy.
NOTE 2:	The current design of CONNECT-based tunnelling reserves an ordered byte stream (HTTP/2 and HTTP/QUIC3) for the client-to-proxy hop. This is subject to head of-line (HoL) blocking. See IETF draft-pardue-httpbis-http-network-tunnelling-010 [21] subclause 3.6.
This scenario is illustrated in the figure below

Figure 6.2.2.3-1: https via HTTP/QUIC 3 Proxy to NF Service Producer Supporting TCP
According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.
When an HTTP proxy is deployed, end-to-end security is ensured by setting-up a tunnel between the client and the Origin server using the HTTP CONNECT method which is then secured with TLS.
A HTTP client implementation may decide not to enforce E2E security with TLS though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC 3 proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC 3 proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] subclause 2.7.3.
Alternatively the NF service consumer may decide to use TCP transport towards the HTTP/proxy similar to option#1 provided in subclause 6.2.2.1. In this case, the NF service consumer avoids double ciphering.

* * * Next Change * * * *
[bookmark: _Toc531930792]6.2.2.4	Case D: Invoking https API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is https
In this case the following sequence of events happen
-	HTTP client establishes a QUIC connection with the HTTP proxy
-	HTTP client sends a HTTP CONNECT to the proxy with URI set to the NF service producer API URI.
-	As specified in IETF draft-ietf-quic-http-183 [7] clause 3.15.2, the proxy establishes a TCP connection to the HTTP server. However it is desired toable that a mechanism is available for the HTTP/QUIC 3 proxy is to instructed to the use a of QUIC connection to a HTTP server instead of TCP.
-	Currently there is no mechanism that exists in IETF draft-ietf-quic-http-183 [7] where a HTTP/QUIC 3 proxy is instructed to use a QUIC connection to a HTTP server instead of TCP.
IETF draft-pardue-httpbis-http-network-tunnelling-010 [21] tries to provide a solution that permits a UDP-based HTTP/QUIC 3client behind an HTTP proxy to establish an HTTP/QUIC 3 session with the origin. But at this moment this is an individual draft and is in very early stage.
According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.
A HTTP client implementation may decide not to enforce E2E security though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC 3 proxy on behalf of the HTTP/QUIC 3 server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC 3 proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] clause 2.7.3.
* * * Next Change * * * *
[bookmark: _Toc531930794][bookmark: _Toc531930795]6.2.3.1	Invoking http API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is http
In this case the HTTP proxy has to act as a HTTP/TCP proxy on one side and as a HTTP/QUIC 3 client on the other side. The proxy simply relays the message received on TCP connection to the QUIC connection. But in order for the proxy to setup a QUIC connection with the NF service producer, the proxy has to discover that the NF service producer supports QUIC. This can be achieved by using solution described in subclause 8.2.2. This means the NF service producer also should support TCP.

* * * Next Change * * * *
6.2.3.2	Invoking https API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is https
When https scheme is used, the HTTP client first sends a HTTP CONNECT request to the HTTP proxy. However as per IETF draft-ietf-quic-http-183 [7], subclause 3.15.2 and IETF RFC 7231 [22], subclause 4.3.6, when a HTTP proxy receives a HTTP CONNECT method, it establishes a TCP based tunnel towards the NF service producer (the HTTP destination origin server) so that a TLS connection end to end from the HTTP client to the HTTP destination origin server can be setup. Since the semantics of HTTP CONNECT demands this, the HTTP proxy will not use QUIC towards the HTTP server (NF service producer) even if it supports QUIC.
A HTTP client implementation may decide not to use HTTP CONNECT to access a https URI via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC 3 proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC 3 proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] subclause 2.7.3.
* * * Next Change * * * * (merged from C4-190090)
[bookmark: _Toc531930796]6.3	Considerations for HTTP/2 3Over QUIC

* * * Next Change * * * * (merged from C4-190261)
[bookmark: _Toc531930797]6.3.1	General
3GPP TS 29.500 [4] mandates HTTP/2 over TCP as protocols to be use for SBI. Running HTTP/32 over QUIC requires special consideration as many of the HTTP/2 features can be taken care of by QUIC. HTTP/2 and QUIC contains similar features like stream, framing, multiplexing. Moving from HTTP/2 over TCP to HTTP/32 over QUIC will require the application layer protocol behavior and implementation to be changed. Hence, it is important to identify the changes required both in HTTP/2 and QUIC implementations. This section details the features and properties need special attention when HTTP/2 3 is transported over QUICused.

* * * Next Change * * * *
[bookmark: _Toc531930798]6.3.2	Connection setup and management
To use HTTP over QUIC requires explicit discovery of QUIC protocol support in the client and server. The server can advertise the support for the QUIC as a transport protocol then client can use some explicit information provided by the server or prior knowledge of the previous contact to the server to select QUIC as a transport protocol. Different alternatives to do the discovery of QUIC support in the NFs are discussed in section 7.2.
QUIC connection level settings are communicated between client and server at the crypto handshake. However, the HTTP/3QUIC specific settings (see IETF draft-ietf-quic-http-183 [7]) are set via SETTINGs frame sent by the client and server via the HTTP/3 control stream after QUIC connection is established.
As QUIC allows stream multiplexing the HTTP clients can multiplex multiple HTTP/32 requests on to same QUIC connection as long as the server has the authority to serve the request. This reduces the need for multiple connections and improves performance by avoiding the time it takes to establish new connections. In case of SBI, every consuming NF will originate request to a specific provider NF. Hence, there will be one to one mapping between the server and origin. However, it is also possible to install a frontend proxy to hide a number of provider NFs that is managed by one administration. In this case the NF consumer will establish single connection towards the frontend proxy and multiplex request towards different NF providers over a single QUIC connection, treating the frontend proxy as a server endpoint.
* * * Next Change * * * *
[bookmark: _Toc531930799]6.3.3	Streams, framing and multiplexing
The QUIC stream number space is larger than that of HTTP/2. When transported over QUIC, HTTP/32 does not need to use all the framing concepts, for example – it does not need to use stream number. uses a completely new framing concept. The HTTP/2 framing is completely changed, including the basic HTTP/2 Frame Header layout. Consequently HTTP/3 uses only the QUIC streams and does not have a stream Identifier in the HTTP/3 frame header.
Another important difference is the HTTP/3QUIC only guarantee ordered delivery on the stream level while HTTP2 expects absolute ordering on the frames across multiple streams. HTTP/3QUIC will break any such ordering assumption.
When HTTP runs over QUIC the HTTP layer does not require to do any stream multiplexing. QUIC maps each of its streams to a HTTP transaction. The additional difference is that in the current specification, HTTP/QUIC 3 does not use server initiated bidirectional stream. This means unidirectional streams are created from both the client and server with indication of the purpose of the stream as stream header at the beginning of the streams. All client initiated bi-directional streams are used for requests and responses.
Editor's Note:	Some aspects of connection management are still not clearly defined in the IETF drafts, such as the usage of client-initiated vs. server-initiated streams, and bi-directional vs. unidirectional streams. A more accurate description and analysis of these aspects is FFS, once the IETF drafts are further developed.
The HTTP/3QUIC frame type definition follows QUIC encoding concept. QUIC uses a variable length integer encoding which allows a larger number of stream IDs compared to HTTP/2 encoding. This change results in different HTTP/3QUIC frame types and requires a mapping from HTTP/2 to HTTP/3QUIC frame types. HTTP/QUIC 3 (see IETF draft-ietf-quic-http-183 [7]) defines this mapping of HTTP/2 over to HTTP/3QUIC.

* * * Next Change * * * *
[bookmark: _Toc531930800]6.3.4	Prioritization
In case of HTTP/QUIC 3 the clients can set stream priority as defined in IETF RFC 7540 [13], at the creation of the stream and update the priority using PRIORITY frame. However, in case of HTTP/QUIC3, only the client is allowed send PRIORITY frames over control stream. The priority section on the HEADER frame is removed.

* * * Next Change * * * *
[bookmark: _Toc531930801]6.3.5	Server Push
HTTP/3QUIC uses a different server push mechanism than what is defined for HTTP/2 in IETF RFC 7540 [13]. HTTP/3QUIC uses two new frames to accomplish server push – a) a modified PUSH_PROMISE frame and b) a MAX_PUSH_ID. The modified PUSH_PROMISE frame does not refer to a stream as originally designed in IETF RFC 7540 [13], it uses as PUSH_ID that uniquely identifies a server push. HTTP/3QUIC defines 3 types ofthe use of PUSH_IDs in PUSH_PROMISE frame, DUPLICATE_PUSH frame, CANCEL_PUSH frame and PRIORITY_FRAME in addition to their use in Push Stream headers (a unidirectional server initiated stream) for now. The server can only push, and it can initiate pushing only once it receives a MAX_PUSH_ID frame from the corresponding client. Details of the modified server push mechanism is described in IETF draft-ietf-quic-http-183 [7].

* * * Next Change * * * *
[bookmark: _Toc531930802]6.3.6	Compression (HPACK vs QPACK)
The Header Compression for HTTP/2, HPACK (see IETF RFC 7541 [14]), provides compression of HTTP header fields. Significantly reducing the headers, especially for sequential HTTP/2 request responses to the same server, where repeated and redundant information is efficiently compressed. The use of HPACK in HTTP/2 is one of the more significant performance improvements compared to HTTP 1.0 or 1.1. HPACK was defined based on one important assumption, namely the TCP in-order delivery of the different HTTP/2 frame types across all the streams. Thus, the encoder knows in which order the decoder will receive and process the various frames, and how the decoder state will be updated. HTTP/32 over QUIC does not provide the same deterministic and guaranteed in order delivery mechanism between different HTTP requests. HTTP2/3/QUIC can avoid this head of line blocking and provide improved performance by delivering to higher layers the HTTP messages in the order they are successfully delivered to the peer. However, if one would use HPACK without modifications, this could result in the decoder blocking or producing the wrong output. Therefore, header Compression for HTTP/3 over QUIC, QPACK (see IETF draft-ietf-quic-qpack-061 [10]), is being defined.
QPACK is a redesigned version of HPACK that can support out-of-order delivery. It allows flexibility in the encoder to perform trade-offs between compression ratios and likelihood of head of line blocking due to out of order delivery. The changes in QPACK allows for much reduced head of line blocking at similar compression efficiency for a given packet loss rate. It also provides the implementation freedom to select how robust the transaction should be against packet loss. This at the cost of requiring HTTP/32 servers to implement the new QPACK mechanism, even if some reuse of the HPACK implementation is possible.

* * * Next Change * * * *
[bookmark: _Toc531930812]8.2.2	Using Alt-Svc Header
The current QUIC working group draft on HTTP over QUIC (HTTP/3) (See IETF draft-ietf-quic-http-183 [7]) defines a discovery method of QUIC support using Alt-Svc HTTP response header defined in IETF RFC 7838 [20]. In this case the NF as HTTP server can notify the NF as HTTP client about the support of QUIC protocol with a HTTP response header with any HTTP response. An example of such response will look like below:
HTTP/1.1 200 OK
Content-Type: text/html
Alt-Svc: hqh3=":50443";quic="1,1abadaba"

Here, the "hqh3" is the ALPN token identifies HTTP/3QUIC and "quic" is a new parameter defined to advertise the versions supported by the NF. The syntax of Alt-Svc is defined in IETF RFC 7838 [20] and the "quic" parameter for Alt-Svc header to provide the QUIC version hints, is defined in HTTP/3 over QUIC IETF draft (See IETF draft-ietf-quic-http-183 [7]).
In this method, the HTTP client acting as NF consumer needs to start connection using HTTP/TCP for the first contact with a HTTP server acting as NF provider. If the HTTP server response includes the Alt-Svc header then the HTTP client will re-establish HTTP connection over QUIC and save the protocol preference for further connection. After new QUIC connection established towards the HTTP server, the HTTP client must send all the requests over QUIC connection. The HTTP client then can terminate the previously established TCP connection.
As described, the downside of this method is that the HTTP client for the first contact with a HTTP server has to establish HTTP/TCP connection to discover the QUIC support and terminate the already establish TCP connection. However, this should be only one-time event after discovering that one HTTP server supports QUIC the client must not repeat this discovery event.
This method allows a gradual deployment of QUIC in the PLMNs and does not require extra information exchange at the NF service discovery phase.
This solution requires that the HTTP server (NF Service Producer) can be reached over TCP in addition to QUIC, so a server supporting only QUIC would need additional mechanisms to let NF Service Consumers discover such support.

* * * Next Change * * * *
[bookmark: _Toc531930819]8.4.1	Deployment Topologies to Introduce NF Services with QUIC Support
As identified in subclause 6.2, HTTP/2 3 message traversal over QUIC for http scheme APIs when a HTTP/3 proxy is involved on path is not yet clearly addressed in IETF. Similarly for https scheme APIs, the use of HTTP CONNECT from the HTTP client to the HTTP proxy, creates a TCP connection from the HTTP proxy to the NF service acting as HTTP server resulting in an end to end TLS connection from the HTTP client to the HTTP server. In this case also the presence of HTTP proxy on path implies that an NF service acting as server cannot use QUIC for https scheme APIs, until alternate mechanisms as discussed in IETF in IETF draft-pardue-httpbis-http-network-tunnelling-010 [21] reach some maturity.
Considering this the following are the deployment topologies where NF services with QUIC support can be introduced into a network without causing any issues in working towards a HTTP client.
-	Intra PLMN NF service communication without any HTTP proxy as intermediaries.
-	QUIC between HTTP client and HTTP proxy while TCP is used between HTTP proxy and the HTTP server (see Option#3, subclause 6.2.2.1 and subclause 6.2.2.3).
Editor's Note:	The benefit of using QUIC with HTTP proxy and TCP on the other side is FFS.
For inter PLMN HTTP/32 messaging, SEPP is involved and the transport connection will have to terminate at SEPP. Hence an NF service consumer at VPLMN need to only consider the transport capabilities of SEPP and not the transport capabilities of the NF service producer in HPLMN. Irrespective of whether the NF service producer in HPLMN supports TCP or QUIC, as long as the NF service consumer in the VPLMN understands the API version of the NF service producer, it uses the transport protocol that it supports towards the SEPP in VPLMN.
* * * Next Change * * * * (merged from C4-190090)
[bookmark: _Toc531930826]9.2	HTTP Proxy Traversal
As described in subclause 6.2, IETF has not yet clearly specified how HTTP/2 3 over QUIC works when there are proxies on path. The current drafts only define the use of HTTP CONNECT method from the client to the proxy and TCP thereafter. Hence at least until a solution for the use of hop by hop QUIC when HTTP proxies are involved is well specified in IETF, QUIC cannot be used in deployments where HTTP proxies are acting as intermediaries between NF services.
Editor's Note: Other impacts are FFS.
Editor's Note: Whether a specific action be sent to IETF is FFS.

* * * End of Changes * * * *

Microsoft_Visio_Drawing2.vsdx
NRF
HTTP Proxy
HTTP Server – NF Service Producer
HTTP Client – NF Service Consumer
Discover NF Service Producer Profile
HTTP/3
HTTP over TCP or QUIC?
Discover HTTP Proxy Transport Offline

image3.emf
UDPQUIC Transport SecurityQUIC StreamHTTP/QUIC ClientHTTP/QUIC ProxyHTTP/TCP ServerCONNECT nf-producer.comTCPHTTP/2 ConnectionHTTP/2 StreamHTTP GET/PUT/POST/DELETE

Microsoft_Visio_Drawing3.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/QUIC Client
HTTP/QUIC Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
HTTP/2 Connection
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image4.emf
UDPQUIC Transport SecurityQUIC StreamHTTP/3 ClientHTTP/3 ProxyHTTP/TCP ServerCONNECT nf-producer.comTCPHTTP/2 ConnectionHTTP/2 StreamHTTP GET/PUT/POST/DELETE

Microsoft_Visio_Drawing4.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/3 Client
HTTP/3 Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
HTTP/2 Connection
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image5.emf
Domaine name A

HTTP Server A1

HTTP Server A2

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

HTTP ClientHTTP Proxy

QUIC connections

Microsoft_Visio_2003-2010_Drawing1.vsd
HTTP Client

HTTP Proxy

HTTP Server A1

HTTP Server A2

Domaine name A

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

QUIC connections

image6.emf
UDPQUIC Transport SecurityQUIC StreamHTTP/QUIC ClientHTTP/QUIC ProxyHTTP/TCP ServerCONNECT nf-producer.comTCPTLSHTTP/2 StreamHTTP GET/PUT/POST/DELETE

Microsoft_Visio_Drawing5.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/QUIC Client
HTTP/QUIC Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
TLS
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image7.emf
UDPQUIC Transport SecurityQUIC StreamHTTP/3 ClientHTTP/3 ProxyHTTP/TCP ServerCONNECT nf-producer.comTCPTLSHTTP/2 StreamHTTP GET/PUT/POST/DELETE

Microsoft_Visio_Drawing6.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/3 Client
HTTP/3 Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
TLS
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image1.emf
NRFHTTP ProxyHTTP Server – NF Service ProducerHTTP Client – NF Service ConsumerDiscover NF Service Producer ProfileHTTP Over QUICHTTP over TCP or QUIC?Discover HTTP Proxy Transport Offline

Microsoft_Visio_Drawing1.vsdx
NRF
HTTP Proxy
HTTP Server – NF Service Producer
HTTP Client – NF Service Consumer
Discover NF Service Producer Profile
HTTP Over QUIC
HTTP over TCP or QUIC?
Discover HTTP Proxy Transport Offline

image2.emf
NRFHTTP ProxyHTTP Server – NF Service ProducerHTTP Client – NF Service ConsumerDiscover NF Service Producer ProfileHTTP/3HTTP over TCP or QUIC?Discover HTTP Proxy Transport Offline

