

	
3GPP TSG-CT WG4 Meeting #89	C4-190515
Montreal, Canada; 25th Feb - 1st March 2019	was C4-190258

Source:	Ericsson
Title:	Pseudo-CR on QUIC’s current implementation status
Spec:						3GPP TR 29.893 v0.4.0
Agenda item:	6.1.3
Document for:	Decision

1. Introduction
<Introduction part (optional)>
2. Reason for Change
Describe the current status of QUIC protocol implementation and deployment.
3. Conclusions
<Conclusion part (optional)>
4. Proposal
It is proposed to agree the following changes to 3GPP TS 29.893 v0.4.0.

* * * First Change * * * *
[bookmark: _Toc531930746]2	References
The following documents contain provisions which, through reference in this text, constitute provisions of the present document.
-	References are either specific (identified by date of publication, edition number, version number, etc.) or non‑specific.
-	For a specific reference, subsequent revisions do not apply.
-	For a non-specific reference, the latest version applies. In the case of a reference to a 3GPP document (including a GSM document), a non-specific reference implicitly refers to the latest version of that document in the same Release as the present document.
[1]	3GPP TR 21.905: "Vocabulary for 3GPP Specifications".
[2]	3GPP TS 23.501: "System Architecture for the 5G System; Stage 2".
[3]	3GPP TS 23.502: "Procedures for the 5G System; Stage 2".
[4]	3GPP TS 29.500: "5G System; Technical Realization of Service Based Architecture; Stage 3".
[5]	IETF draft-ietf-quic-transport-13: "QUIC: A UDP-Based Multiplexed and Secure Transport".
[6]	IETF draft-ietf-quic-tls-13: "Using Transport Layer Security (TLS) to Secure QUIC".
[7]	IETF draft-ietf-quic-http-18: "Hypertext Transfer Protocol (HTTP) over QUIC".
[8]	IETF draft-ietf-quic-recovery-13: "QUIC Loss Detection and Congestion Control".
[9]	IETF draft-ietf-quic-invariants-01: "Version-Independent Properties of QUIC"
[10]	IETF draft-ietf-quic-qpack-06: "QPACK: Header Compression for HTTP over QUIC"
[11]	IETF RFC 5246: "The Transport Layer Security (TLS) Protocol Version 1.2".
[12]	IETF draft-ietf-tls-tls13-28: "The Transport Layer Security (TLS) Protocol Version 1.3".
[13]	IETF RFC 7540: "Hypertext Transfer Protocol Version 2 (HTTP/2)".
[14]	IETF RFC 7541: "HPACK: Header Compression for HTTP/2".
[15]	IETF draft-ietf-quic-spin-exp-00: "The QUIC Latency Spin Bit".
[16]	IETF RFC 5682: "Forward RTO-Recovery (F-RTO): An Algorithm for Detecting Spurious Retransmission Timeouts with TCP".
[17]	IETF draft-dukkipati-tcpm-tcp-loss-probe-01: "Tail Loss Probe (TLP): An Algorithm for Fast Recovery of Tail Losses".
[18]	IETF RFC 6582: "The NewReno Modification to TCP's Fast Recovery Algorithm".
[19]	3GPP TS 29.510: "Network Function Repository Services".
[20]	IETF RFC 7838: "HTTP Alternative Services".
[21]	IETF draft-pardue-httpbis-http-network-tunnelling-00: "HTTP-initiated Network Tunnelling (HiNT)".
[22]	IETF RFC 7231: " Hypertext Transfer Protocol (HTTP/1.1): Semantics and Content".
[23]	IETF RFC 7230: "Hypertext Transfer Protocol (HTTP/1.1): Message Syntax and Routing".
[24]	3GPP TS 33.210: "3G security; Network Domain Security (NDS); IP network layer security".
[25]	GSMA NG.113: "5GS Roaming Guidelines".
[a]	IETF RFC 5288: "AES Galois Counter Mode (GCM) Cipher Suits for TLS"
[b]	Developing and deploying a TCP replacement for the Web: "https://www.netdevconf.org/0x12/session.html?developing-and-deploying-a-tcp-replacement-for-the-web"
[c]	Optimizing UDP for content delivery: "http://vger.kernel.org/lpc_net2018_talks/willemdebruijn-lpc2018-udpgso-paper-DRAFT-1.pdf"
[d]	UDP segmentation offload: "https://www.netdevconf.org/0x12/session.html?udp-segmentation-offload"

* * * Next Change * * * *
10	Current Implementation and Maturity Status
10.1	Introduction
Being a newly developed transport protocol the viability of considering QUIC in 5GC service based interfaces has to be gauged by the current implementation and maturity status. This clause describes the current stats of QUIC from the best of the knowledge point of the view.
10.2	Implementation maturity
TCP implementations are very mature. Most of the features has been widely used and issues has been resolved in the implementations and standards. Right now, this cannot be said for QUIC implementations and standard. As the specification has not been finished yet, the QUIC implementations will be very new. IETF QUIC working group has given lots of emphasis on interoperability testing on QUIC features. Number of opensource projects of implementing QUIC has passed the interoperability testing. However, those opensource projects usually put emphasis on particular features of interest from the implementer hence cannot be treated as production ready or assuming to have all the featured required. It is expected that QUIC implementations will have a higher degree of issues caused by mistakes and errors in implementation.

10.3	Hardware offload support
A server's capability to handle certain amount of load can be improved by having protocol off-load function in network interfaces (NIC). For TCP, this include checksum off-loading, segmentation offloading, and crypto offloading. These functions improve the performance of the server. TCP sending operation’s CPU utilization can be reduced 50 times if TCP segmentation offloading (TSO) is used compared to standard TCP configuration. While TCP offload functions are existing and available in numerous NICs, there is significant uncertainty about what functions that are possible to implement for QUIC and according to which road-maps they will be implemented in server hardware.

When it comes to crypto acceleration via hardware offload there are both large commonalities and differences between TCP and QUIC. Both are based on TLS, but QUICs protection of its frames are using a QUIC specific format, but for modern implementations both are likely to use the same crypto primitives, i.e. most likely AES-GCM (see IETF RFC 5288 [a]) that is highly performant in a number of more capable CPUs due optimized functions. However, any more dedicated crypto off-load may be missing for QUIC.

There has also been significant discussion in the QUIC working group mailing list about the cost of doing the packet number encryption and decryption. An encrypted packet number requires to be first decrypted before the correct initialization vector for the rest of the packet can be produced. This has been criticized in the QUIC WG for making off-load processing more difficult and require multiple stages.

10.4	UDP Performance in Operating System
The current QUIC implementation uses UDP socket APIs to send and receive QUIC traffic. Compared to TCP implementation in different operating systems, UDP implementation is not that performant. It has been reported in IETF QUIC working group mailing list that for the UDP send cost the CPU consumption could be up to 50% while crypto operation is less than 10%. Google has also reported that with possible optimization, they were able to reduce QUIC’s CPU cost from 3.5 to 2 times that required for TLS/TCP when serving YouTube traffic (see "Developing and deploying a TCP replacement for the Web" [b]).
[bookmark: _GoBack]Experiments show that a standard TCP configuration gains almost 5x speed-up over UDP in terms of cycle cost (see "Optimizing UDP for content delivery" [c]). Such gains for TCP come from the support of TCP segmentation offload (TSO) that allows the application to send larger data packet than the path Maximum Transmission Unit (MTU). TSO requires hardware support from the NICs. However, Generic Segmentation (GSO) can also perform segmentation to emulate TSO. TCP has support from both TSO and GSO. Recent experiments show promising results for UDP segmentation offloading with hardware support (see "UDP segmentation offload" [d]). UDP GSO is also available for Linux kernel and can be used via interfaces but need extensive configurations and understanding of link layer properties. The TSO operates on sender side and create a specific profile of traffic in the network. Because of that optimization can be achieved at the receiver side by consolidating multiple MTU packet side into fewer large one. Large receive offload (LRO) and generic receive offload (GRO) is used to achieve this optimization for TCP. The same is not available for UDP now. There are reports on work in progress on UDP GRO. To achieve high performance over UDP socket for SBI (some of the SBI message sizes may be large, potentially up to a maximum of 2 MB), different optimized configurations are needed and those optimizations need to be available in different operating system.
This UDP performance issues can eventually be overcame. There are already several techniques like UDP GSO, GRO (Generic receive offload), zero copy that can help achieving performant UDP operation and networking. As these techniques are at their early stage, the UDP performance issues need to take into consideration when selecting transport protocol for service based interfaces.
* * * Next Change * * * *
[bookmark: _Toc528335272][bookmark: _Toc531682969]1011	Evaluation and Conclusion

* * * End of Changes * * * *

