

	
3GPP TSG-CT WG4 Meeting #89	C4-190261
[bookmark: _GoBack]Montreal, Canada; 25th Feb - 1st March 2019

Source:	Ericsson
Title:	Pseudo-CR on Section 6 due to IETF progress in QUIC Standardization
Spec:	3GPP TR 29.893 v.0.4.0
Agenda item:	6.1.3
Document for:	Decision

1. Introduction
<Introduction part (optional)>
2. Reason for Change
The proposed changes are to update the text to reflect the current draft versions of QUIC and changes that has occurred in the IETF standardization process.
3. Conclusions
<Conclusion part (optional)>
4. Proposal
It is proposed to agree the following changes to 3GPP TS 29.893 v.0.4.0.

* * * First Change * * * *
[bookmark: _Toc531930755]HTTP/23 Over QUIC
[bookmark: _Toc531930785]6.1	Introduction
This clause will contain description about the mapping and usage of HTTP/23 over QUIC including some of the not so well understood/documented aspects.
[bookmark: _Toc531930786]6.2	HTTP/32 Over QUIC Proxies
[bookmark: _Toc531930787]6.2.1	General
HTTP clients can be configured to route their outgoing HTTP requests via a HTTP proxy. If the NF service consumer (i.e HTTP client) is configured to route its message via a HTTP proxy, the NF service consumer will try to setup a transport connection towards the proxy. If the NF service consumer knows that the proxy supports QUIC based on configuration or other offline means, the transport connection towards the HTTP proxy may use QUIC. Thereafter how the HTTP/23 over QUIC proxy further communicates with the NF service producer for various scenarios are explained in the subclauses below.

Figure 6.2.1-1 NF Service Consumer to NF Service Producer Communication with HTTP/2 Over QUIC Proxy on Path
[bookmark: _Toc531930788]6.2.2	When NF Service Consumer Side Uses QUIC
[bookmark: _Toc531930789]6.2.2.1	Case A: Invoking http API Supporting Only TCP Transport
This case is not describe in IETF draft-ietf-quic-http-13 [7].
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports only TCP.
-	The URI scheme of the API exposed by the NF service producer is http
In this case, the NF service consumer has the following options:
-	Option#1: The NF service consumer uses TCP transport towards the proxy as well. This implies the proxy also supports TCP transport (which is a reasonable assumption considering that during the migration from TCP to QUIC many HTTP entities will support both transports).
-	Option#2: The NF service consumer uses QUIC transport towards the HTTP proxy and the proxy uses TCP transport towards the NF service producer. The HTTP proxy discovers whether the NF service producer supports TCP or QUIC based on apriori connection setup. For example, in the case of SEPP all NFs in a PLMN connect to the SEPP and establish a HTTP/2 or HTTP/3 connection using depending on whatever transport is supported by both the SEPP and the NF service producer. IETF draft-ietf-quic-http-13 [7], clause 2.3 specifies that HTTP/QUIC clients shall indicate the target domain name during the TLS handshake of QUIC connection setup. The certificate provided at connection setup shall be valid for the target domain name.
Editor's Notes: It is unclear what domain name shall be used for the target domain name when the connection is with a proxy (proxy domain name or the origin server one).
The draft also says in clause 2.4 that a connection to a server endpoint may be reused for requests with multiple different URI authority components. The client may send any requests for which the client considers the server (the one at the existing connection endpoint) authoritative.
Editor's Notes: In our case the client knows that existing QUIC connection ends at a proxy and not at a server. So it is unclear if we can reuse an existing QUIC connection to a proxy endpoint. Also it is unclear if a client can consider a proxy as an authoritative server as proxies and servers are essentially different HTTP entities.
The draft loosely specifies in clause 2.4 how the client knows that the server at the endpoint of the reused QUIC connection (the proxy in our case) is authoritative for requests directed to other domains. It mentions that typically the client discovers that a particular server is the authoritative HTTP/QUIC endpoint based on the client having received Alt-Svc HTTP response header or the HTTP/2 ALTSVC frame (see IETF RFC 7838 [20]).
Editor's Note:	Whether other mechanisms other than use of IETF RFC 7838 [20] can be considered to discover a particular HTTP/QUIC endpoint is the authoritative endpoint for a URI authoritative component is FFS.
Finally, the clients shall check that the nominated server can present a valid certificate for the Origin Server before considering it authoritative. Therefore, the HTTP proxy has to present a certificate to the HTTP/3 QUIC client on behalf of the HTTP Origin Server (NF service producer) that is valid for multiple domain names and signed by the client network's own certificate authority. In roaming, the client network owner (the VPLMN) and the origin server network owner (the HPLMN) are different authorities and such a certificate is impossible to issue by a regular certification authority (e.g Verisign). The only possibility is that the HTTP client should be configured to trust the HTTP proxy as the certificate authority. Only then this option#2 will work.
-	Option#3: The NF service consumer uses QUIC transport towards the HTTP proxy. The proxy provides a certificate only valid for itself at QUIC connection setup. When the NF service consumer needs to send a request to an NF Service producer it first establishes a tunnel through the proxy by sending an HTTP CONNECT message in a new stream with an ":authority" pseudo-header field identifying the NF Service producer. The proxy then creates a TCP connection towards the NF service producer. Once the TCP connection is completed, a tunnel is created between the NF service consumer and producer. This tunnel is used by the NF service consumer to create a direct HTTP/2 connection (without an end to end TLS) with the NF service producer. HTTP/2 messages can now flow between the two entities. This is illustrated by the figure below.

Figure 6.2.2.1-1: http via HTTP/QUIC Proxy to NF Service Producer Supporting TCP
NOTE 1:	Option 3 is not described by IETF draft-ietf-quic-http-13 [7] which only describes the use of the CONNECT method to setup a TLS session between an HTTP/3 client and an Origin server. Most of the existing implementation also restricts the usage of CONNECT to https URIs. This option excludes the use of current implementations available on the market. However for 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way to use HTTP CONNECT via a proxy for http URI too.
NOTE 2: IETF draft-ietf-quic-http-13 [7] doesn't explicitly say if the verifications listed in clause 2.4 of the draft that authorize the reuse of an existing QUIC connection are applicable to the CONNECT method.
[bookmark: _Toc531930790]6.2.2.2	Case B: Invoking http API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is http
In this case the NF service consumer uses QUIC transport towards the HTTP proxy and the HTTP proxy also uses QUIC transport towards the NF service producer.
The figure below illustrates the case where the HTTP client and server are connected with two QUIC connections through an HTTP proxy.
The connection with the HTTP proxy would be reused for requests sent to multiple domains. When the proxy needs to forward a message to a new HTTP server, it establishes a new QUIC connection with it. The server provides a valid certificate for itself.

Figure 6.2.2.2-1: http via HTTP/QUIC Proxy to NF Service Producer Supporting QUIC

Case B is not described in IETF draft-ietf-quic-http-13 [7] and the same questions regarding the QUIC connection with the proxy rose for Case A remains open with Case B.
As per IETF draft-ietf-quic-http-13 [7], clause 2.3, a HTTP client MUST verify if the nominated HTTP server it is communicating with (i.e HTTP proxy in this case) can present a valid certificate for the origin before considering it authoritative. Hence in order to setup an end to end QUIC connection between the HTTP client and the HTTP server via a HTTP/QUIC proxy, an equivalent of HTTP CONNECT to setup a tunnel is required. Currently such an option does not exist. HTTP CONNECT is used only when the URI scheme is https.
NOTE:	The use of HTTP CONNECT by HTTP clients when accessing https URI via a proxy is not mandated in IETF RFC 7231 [22]. However many browsers by default use HTTP CONNECT when accessing https URIs via a proxy. For 3GPP NF services, the HTTP clients will be the HTTP client libraries supported in various programming languages. One could program in such a way not to use HTTP CONNECT via a proxy and trust the certificates issued by the proxy effectively allowing the proxy to act as man in the middle.
IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] tries to provide a solution that permits a UDP-based HTTP/3 over QUIC client behind an HTTP proxy to establish an HTTP/QUIC session with the origin. But at this moment this is an individual draft and is in very early stage.
[bookmark: _Toc531930791]6.2.2.3	Case C: Invoking https API Supporting Only TCP Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports only TCP.
-	The URI scheme of the API exposed by the NF service producer is https
In this case the following sequence of events happen
-	HTTP client establishes a QUIC connection with the HTTP proxy, if not setup earlier.
-	HTTP client sends a HTTP CONNECT request to the proxy with ":authority" pseudo-header set to the NF service producer FQDN or IP address.
-	HTTP proxy sets up a TCP connection with NF service producer (HTTP server).
-	HTTP proxy sends a HTTP CONNECT response to the HTTP client.
-	HTTP client does end to end TLS connection setup with the NF service producer. An encrypted tunnel between the client and the server is now setup and HTTP/2 connection can be setup on top.
NOTE 1:	The HTTP client has to do encryption twice - one for the TLS tunnel and one for the QUIC connection with proxy.
NOTE 2:	The current design of CONNECT-based tunnelling reserves an ordered byte stream (HTTP/2 and HTTP/3QUIC) for the client-to-proxy hop. This is subject to head of-line (HoL) blocking. See IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] subclause 3.6.
This scenario is illustrated in the figure below

Figure 6.2.2.3-1: https via HTTP/QUIC Proxy to NF Service Producer Supporting TCP
According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.
When an HTTP proxy is deployed, end-to-end security is ensured by setting-up a tunnel between the client and the Origin server using the HTTP CONNECT method which is then secured with TLS.
A HTTP client implementation may decide not to enforce E2E security with TLS though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] subclause 2.7.3.
Alternatively the NF service consumer may decide to use TCP transport towards the HTTP/proxy similar to option#1 provided in subclause 6.2.2.1. In this case, the NF service consumer avoids double ciphering.
[bookmark: _Toc531930792]6.2.2.4	Case D: Invoking https API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports QUIC and has established a QUIC transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer also supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is https
In this case the following sequence of events happen
-	HTTP client establishes a QUIC connection with the HTTP proxy
-	HTTP client sends a HTTP CONNECT to the proxy with URI set to the NF service producer API URI.
-	As specified in IETF draft-ietf-quic-http -13 [7] clause 3.1.25.2, the proxy establishes a TCP connection to the HTTP server. However it is desired to that the HTTP/QUIC proxy is instructed to use a QUIC connection to a HTTP server instead of TCP.
-	Currently there is no mechanism that exists in IETF draft-ietf-quic-http-13 [7] where a HTTP/QUIC proxy is instructed to use a QUIC connection to a HTTP server instead of TCP.
IETF draft-pardue-httpbis-http-network-tunnelling-00 [21] tries to provide a solution that permits a UDP-based HTTP/QUIC 3 client behind an HTTP proxy to establish an HTTP/QUIC 3 session with the origin. But at this moment this is an individual draft and is in very early stage.
According to RFC 7230 [23] clause 2.7.3, the client shall ensure that its connection to the origin server is secured through the use of strong encryption, end-to-end, prior to sending the first HTTP request when the https URI scheme is used.
A HTTP client implementation may decide not to enforce E2E security though the https URI scheme is used and connection to the Origin server is done via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC 3 proxy on behalf of the HTTP/QUIC 3 server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC 3 proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] clause 2.7.3.
[bookmark: _Toc531930793]6.2.3	When NF Service Consumer Side Uses TCP
[bookmark: _Toc531930794]6.2.3.1	Invoking http API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is http
In this case the HTTP proxy has to act as a HTTP/TCP proxy on one side and as a HTTP/QUIC 3 client on the other side. The proxy simply relays the message received on TCP connection to the QUIC connection. But in order for the proxy to setup a QUIC connection with the NF service producer, the proxy has to discover that the NF service producer supports QUIC. This can be achieved by using solution described in subclause 8.2.2. This means the NF service producer also should support TCP.
[bookmark: _Toc531930795]6.2.3.2	Invoking https API Supporting QUIC Transport
In this scenario:
-	NF service consumer supports only TCP and has established a TCP transport connection with its next hop HTTP proxy;
-	NF service consumer discovers that NF service producer supports QUIC.
-	The URI scheme of the API exposed by the NF service producer is https
When https scheme is used, the HTTP client first sends a HTTP CONNECT request to the HTTP proxy. However as per IETF draft-ietf-quic-http-13 [7], subclause 3.1.25.2 and IETF RFC 7231 [22], subclause 4.3.6, when a HTTP proxy receives a HTTP CONNECT method, it establishes a TCP based tunnel towards the NF service producer (the HTTP destination origin server) so that a TLS connection end to end from the HTTP client to the HTTP destination origin server can be setup. Since the semantics of HTTP CONNECT demands this, the HTTP proxy will not use QUIC towards the HTTP server (NF service producer) even if it supports QUIC.
A HTTP client implementation may decide not to use HTTP CONNECT to access a https URI via a proxy. IETF RFC 7231 [22] does not mandate the use of HTTP CONNECT for accessing https URI via a proxy. If a HTTP client decides not to use CONNECT, then it may trust the certificates issued by the HTTP/QUIC proxy on behalf of the HTTP/TCP server signed by the proxy's certificate authority, thus allowing the HTTP/QUIC proxy to act as man in the middle. This would violate the requirement for the HTTP client in RFC 7230 [23] subclause 2.7.3.
[bookmark: _Toc531930796]6.3	Considerations for HTTP/32 Over QUIC
[bookmark: _Toc531930797]6.3.1	General
3GPP TS 29.500 [4] mandates HTTP/2 over TCP as protocols to be use for SBI. Running HTTP/32 over QUIC requires special consideration as many of the HTTP/2 features can be taken care of by QUIC. HTTP/2 and QUIC contains similar features like stream, framing, multiplexing. Moving from HTTP/2 over TCP to HTTP/32 over QUIC will require the application layer protocol behavior and implementation to be changed. Hence, it is important to identify the changes required both in HTTP/2 and QUIC implementations. This section details the features and properties need special attention when HTTP/23 is transported oover QUIC is to be used.
[bookmark: _Toc531930798]6.3.2	Connection setup and management
To use HTTP over QUIC requires explicit discovery of HTTP/3 and QUIC protocol support in the client and server. The server can advertise the support for the QUIC as a transport protocol then client can use some explicit information provided by the server or prior knowledge of the previous contact to the server to select QUIC as a transport protocol. Different alternatives to do the discovery of QUIC support in the NFs are discussed in section 7.2.
QUIC connection level settings are communicated between client and server at the crypto handshake. However, the HTTP/QUIC 3 specific settings (see IETF draft-ietf-quic-http-13 [7]) are set via SETTINGs frame sent by the client and server via the HTTP/3 control stream after QUIC connection is established.
As QUIC allows stream multiplexing the HTTP/3 clients can multiplex multiple HTTP2 requests on to same QUIC connection as long as the server has the authority to serve the request. This reduces the need for multiple connections and improves performance by avoiding the time it takes to establish new connections. In case of SBI, every consuming NF will originate request to a specific provider NF. Hence, there will be one to one mapping between the server and origin. However, it is also possible to install a frontend proxy to hide a number of provider NFs that is managed by one administration. In this case the NF consumer will establish single connection towards the frontend proxy and multiplex request towards different NF providers over a single QUIC connection, treating the frontend proxy as a server endpoint.
[bookmark: _Toc531930799]6.3.3	Streams, framing and multiplexing
The QUIC stream number space is larger than that of HTTP/2. When transported over QUIC, HTTP/32 does not need to duplicate the HTTP/2 use all the framing concepts present in QUIC, for example – it does not need to only use the QUIC streams number.
Another important difference is the HTTP/QUIC 3 only guarantee ordered delivery on the stream level while HTTP/2 expects absolute ordering on the frames across multiple streams. HTTP/QUIC 3 will break any such ordering assumption.
When HTTP runs over QUIC the HTTP/3 layer does not require to do any stream multiplexing. An HTTP/3 transaction maps its parts, request, response and any push frames, to multiple QUIC streamsmaps each of its streams to a HTTP transaction. Each HTTP/3 transaction consumes 4 QUIC streams. The additional difference is that in tThe current specification, HTTP/QUIC 3 does not use server initiated bidirectional stream. This means unidirectional streams are created from both the client and server with indication of the purpose of the stream as stream header at the beginning of the streams. All client initiated bi-directional streams are used for requests and responses.
Editor's Note:	Some aspects of connection management are still not clearly defined in the IETF drafts, such as the usage of client-initiated vs. server-initiated streams, and bi-directional vs. unidirectional streams. A more accurate description and analysis of these aspects is FFS, once the IETF drafts are further developed.
The HTTP/QUIC 3 frame type definition follows QUIC encoding concept. QUIC uses a variable length integer encoding which allows a larger number of stream IDs compared to HTTP/2 encoding. This change results in different HTTP/QUIC 3 frame types and requires a mapping from HTTP/2 to HTTP/3QUIC frame types. HTTP/QUIC 3 (see IETF draft-ietf-quic-http-13 [7]) defines this mapping of HTTP/2 over HTTP/QUIC3.
[bookmark: _Toc531930800]6.3.4	Prioritization
In case of HTTP/QUIC 3 the clients can set stream priority as defined in IETF RFC 7540 [13], at the creation of the stream and update the priority using PRIORITY frame. However, in case of HTTP/QUIC3, only the client is allowed send PRIORITY frames over control stream. The priority section on the HEADER frame is removed.
[bookmark: _Toc531930801]6.3.5	Server Push
HTTP/QUIC 3 uses a different server push mechanism than what is defined for HTTP/2 in IETF RFC 7540 [13]. HTTP/QUIC 3 uses two new frames to accomplish server push – a) a modified PUSH_PROMISE frame and b) a MAX_PUSH_ID. The modified PUSH_PROMISE frame does not refer to a stream as originally designed in IETF RFC 7540 [13], it uses as PUSH_ID that uniquely identifies a server push. HTTP/QUIC 3 defines 3 types of PUSH_IDs for now. The server can only push, and it can initiate pushing only once it receives a MAX_PUSH_ID frame from the corresponding client. Details of the modified server push mechanism is described in IETF draft-ietf-quic-http-13 [7].
[bookmark: _Toc531930802]6.3.6	Compression (HPACK vs QPACK)
The Header Compression for HTTP/2, HPACK (see IETF RFC 7541 [14]), provides compression of HTTP header fields. Significantly reducing the headers, especially for sequential HTTP/2 request responses to the same server, where repeated and redundant information is efficiently compressed. The use of HPACK in HTTP/2 is one of the more significant performance improvements compared to HTTP 1.0 or 1.1. HPACK was defined based on one important assumption, namely the TCP in-order delivery of the different HTTP/2 frame types across all the streams. Thus, the encoder knows in which order the decoder will receive and process the various frames, and how the decoder state will be updated. HTTP/32 over QUIC does not provide the same deterministic and guaranteed in order delivery mechanism between different HTTP requests. HTTP2/3QUIC can avoid this head of line blocking and provide improved performance by delivering to higher layers the HTTP messages in the order they are successfully delivered to the peer. However, if one would use HPACK without modifications, this could result in the decoder blocking or producing the wrong output. Therefore, header Compression for HTTP over QUIC, QPACK (see IETF draft-ietf-quic-qpack-01 [10]), is being defined.
QPACK is a redesigned version of HPACK that can support out-of-order delivery. It allows flexibility in the encoder to perform trade-offs between compression ratios and likelihood of head of line blocking due to out of order delivery. The changes in QPACK allows for much reduced head of line blocking at similar compression efficiency for a given packet loss rate. It also provides the implementation freedom to select how robust the transaction should be against packet loss. This at the cost of requiring HTTP/23 servers to implement the new QPACK mechanism, even if some reuse of the HPACK implementation is possible.

* * * End of Changes * * * *

Microsoft_Visio_Drawing1.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/QUIC Client
HTTP/QUIC Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
HTTP/2 Connection
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image3.emf
Domaine name A

HTTP Server A1

HTTP Server A2

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

HTTP Client HTTP Proxy

QUIC connections

Microsoft_Visio_2003-2010_Drawing.vsd
HTTP Client

HTTP Proxy

HTTP Server A1

HTTP Server A2

Domaine name A

Domaine name B

HTTP Server B1

HTTP Server B2

Domaine name C

QUIC connections

image4.emf
UDP

QUIC Transport Security

QUIC Stream

HTTP/QUIC

Client

HTTP/QUIC

Proxy

HTTP/TCP

Server

CONNECT nf-

producer.com

TCP

TLS

HTTP/2 Stream

HTTP GET/PUT/POST/DELETE

Microsoft_Visio_Drawing2.vsdx
UDP
QUIC Transport Security
QUIC Stream
HTTP/QUIC Client
HTTP/QUIC Proxy
HTTP/TCP Server
CONNECT nf-producer.com
TCP
TLS
HTTP/2 Stream
HTTP GET/PUT/POST/DELETE

image1.emf
NRF

HTTP

Proxy

HTTP Server – NF

Service Producer

HTTP Client – NF

Service Consumer

Discover NF Service

Producer Profile

HTTP Over QUIC

HTTP over TCP or

QUIC?

Discover HTTP

Proxy Transport

Offline

Microsoft_Visio_Drawing.vsdx
NRF
HTTP Proxy
HTTP Server – NF Service Producer
HTTP Client – NF Service Consumer
Discover NF Service Producer Profile
HTTP Over QUIC
HTTP over TCP or QUIC?
Discover HTTP Proxy Transport Offline

image2.emf
UDP

QUIC Transport Security

QUIC Stream

HTTP/QUIC

Client

HTTP/QUIC

Proxy

HTTP/TCP

Server

CONNECT nf-

producer.com

TCP

HTTP/2 Connection

HTTP/2 Stream

HTTP GET/PUT/POST/DELETE

