エラー! 指定したスタイルは使われていません。
13
エラー! 指定したスタイルは使われていません。

[bookmark: _Toc525374006]3GPP TSG CT WG4 Meeting #87	C4-188636
West Palm Beach, US, 26-30 November 2018
	CR-Form-v11.2

	CHANGE REQUEST

	

	
	29.571
	CR
	0071
	rev
	1
	Current version:
	15.1.0
	

	

	For HELP on using this form: comprehensive instructions can be found at
http://www.3gpp.org/Change-Requests.

	

	Proposed change affects:
	UICC apps
	
	ME
	
	Radio Access Network
	
	Core Network
	X

	

	Title:	
	DateTime in UTC

	
	

	Source to WG:
	NTT DOCOMO

	Source to TSG:
	CT4

	
	

	Work item code:
	5GS_Ph1-CT
	
	Date:
	2018-11-29

	
	
	
	
	

	Category:
	F
	
	Release:
	Rel-15

	
	Use one of the following categories:
F (correction)
A (mirror corresponding to a change in an earlier release)
B (addition of feature),
C (functional modification of feature)
D (editorial modification)
Detailed explanations of the above categories can
be found in 3GPP TR 21.900.
	Use one of the following releases:
Rel-8	(Release 8)
Rel-9	(Release 9)
Rel-10	(Release 10)
Rel-11	(Release 11)
Rel-12	(Release 12)
Rel-13	(Release 13)
Rel-14	(Release 14)
Rel-15	(Release 15)
Rel-16	(Release 16)

	
	

	Reason for change:
	Data type ‘DateTime’ allows to use any time offset to express the time, according to OpenAPI specification.

This implies that each entity can use any time offset independent from each other, and in some cases this could lead to unexpected behavior.

One example is the use of ‘lastActTime’ specified in TS 29.518 which use data type ‘DateTime’.
The value of ‘lastActTime’ may be sent to IMS via Sh from UDM/HSS, similar to the “Last UE Activity Time” from MME or SGSN which is based on UTC.
Unless ‘lastActTime’ uses UTC, then:
· 	T-ADS (UDM/HSS) will need to convert time offset prior to evaluation with corresponding values from AMF, MME, and/or SGSN.
· 	IMS can receive multiple time offset if the time indicating the last UE activity time is transparently sent from AMF (any time offset), MME (UTC), SGSN (UTC), and needs additional treatment for time offset from receiving entity’s point of view.

In order to avoid impact or additional consideration on various entities by using multiple time offset, it is proposed to use UTC as the time offset for data type ‘DateTime’ unless specified otherwise per attribute.

	
	

	Summary of change:
	Specify to use UTC as the time offset for data type ‘DateTime’ unless specified otherwise per attribute.

	
	

	Consequences if not approved:
	Use of multiple time offset leads to unexpected behavior.

	
	

	Clauses affected:
	5.2.2

	
	

	
	Y
	N
	
	

	Other specs
	
	X
	 Other core specifications	
	TS/TR ... CR ...

	affected:
	
	X
	 Test specifications
	TS/TR ... CR ...

	(show related CRs)
	
	X
	 O&M Specifications
	TS/TR ... CR ...

	
	

	Other comments:
	

* * * First Change * * * *
[bookmark: _Toc525374697]5.2	Data Types for Generic Usage
[bookmark: _Toc525374698]5.2.1	Introduction
This clause defines common data types for generic usage.
[bookmark: _Toc525374699]5.2.2	Simple Data Types
This subclause specifies common simple data types.
Table 5.2.2-1: Simple Data Types
	Type Name
	Type Definition
	Description

	Binary
	string
	String with format "binary" as defined in OpenAPI Specification [3]

	BinaryRm
	string
	This data type is defined in the same way as the "Binary" data type, but with the OpenAPI "nullable: true" property.

	Bytes
	string
	String with format "byte" as defined in OpenAPI Specification [3], i.e, base64-encoded characters,

	BytesRm
	string
	This data type is defined in the same way as the "Bytes" data type, but with the OpenAPI "nullable: true" property.

	Date
	string
	String with format "date" as defined in OpenAPI Specification [3]

	DateRm
	string
	This data type is defined in the same way as the "Date" data type, but with the OpenAPI "nullable: true" property.

	DateTime
	string
	String with format "date-time" as defined in OpenAPI Specification [3], but with the time offset set to UTC unless specified otherwise for a particular attribute.

	DateTimeRm
	string
	This data type is defined in the same way as the "DateTime" data type, but with the OpenAPI "nullable: true" property.

	DiameterIdentity
	string
	String containing a Diameter Identity, according to clause 4.3 of IETF RFC 6733 [18].
Pattern: '^([A-Za-z0-9]+(-[A-Za-z0-9]+).)+[a-z]{2,}$'

	DiameterIdentityRm
	string
	This data type is defined in the same way as the "DiameterIdentity" data type, but with the OpenAPI "nullable: true" property.

	Double
	number
	Number with format "double" as defined in OpenAPI Specification [3]

	DoubleRm
	number
	This data type is defined in the same way as the "Double" data type, but with the OpenAPI "nullable: true" property.

	DurationSec
	integer
	Unsigned integer identifying a period of time in units of seconds.

	DurationSecRm
	integer
	This data type is defined in the same way as the "DurationSec" data type, but with the OpenAPI "nullable: true" property.

	Float
	number
	Number with format "float" as defined in OpenAPI Specification [3]

	FloatRm
	number
	This data type is defined in the same way as the "Float" data type, but with the OpenAPI "nullable: true" property.

	Uint16
	integer
	Unsigned 16-bit integers, i.e. only value between 0 and 65535 are permissible.

	Uint16Rm
	integer
	This data type is defined in the same way as the "Uint16" data type, but with the OpenAPI "nullable: true" property.

	Int32
	integer
	Integer with format "int32" as defined in OpenAPI Specification [3]

	Int32Rm
	integer
	This data type is defined in the same way as the "Int32" data type, but with the OpenAPI "nullable: true" property.

	Int64
	integer
	Integer with format "int64" as defined in OpenAPI Specification [3]

	Int64Rm
	integer
	This data type is defined in the same way as the "Int64" data type, but with the OpenAPI "nullable: true" property.

	Ipv4Addr
	string
	String identifying a IPv4 address formatted in the "dotted decimal" notation as defined in in IETF RFC 1166 [4].

	Ipv4AddrRm
	string
	This data type is defined in the same way as the "Ipv4Addr" data type, but with the OpenAPI "nullable: true" property.

	Ipv6Addr
	string
	String identifying an IPv6 address formatted according to clause 4 of IETF RFC 5952 [5]. The mixed IPv4 IPv6 notation according to clause 5 of IETF RFC 5952 [5] shall not be used.

	Ipv6AddrRm
	string
	This data type is defined in the same way as the "Ipv6Addr" data type, but with the OpenAPI "nullable: true" property.

	Ipv6Prefix
	string
	String identifying an IPv6 address prefix formatted according to clause 4 of IETF RFC 5952 [5]. In an OpenAPI Specification [3] schema, the format shall be designated as "Ipv6Prefix".

	Ipv6PrefixRm
	string
	This data type is defined in the same way as the "Ipv6Prefix" data type, but with the OpenAPI "nullable: true" property.

	MacAddr48
	string
	String identifying a MAC address formatted in the hexadecimal notation according to subclause 1.1 and subclause 2.1 of IETF RFC 7042 [17].
Pattern: '^([0-9a-fA-F]{2})((-[0-9a-fA-F]{2}){5})$'

	MacAddr48Rm
	string
	This data type is defined in the same way as the "MacAddr48" data type, but with the OpenAPI "nullable: true" property.

	SupportedFeatures
	string
	A string used to indicate the features supported by an API that is used as defined in subclause 6.6 in 3GPP TS 29.501 [2].
The string shall contain a bitmask indicating supported features in hexadecimal representation:
Each character in the string shall take a value of "0" to "9" or "A" to "F" and shall represent the support of 4 features as described in table 5.2.2-3. The most significant character representing the highest-numbered features shall appear first in the string, and the character representing features 1 to 4 shall appear last in the string. The list of features and their numbering (starting with 1) are defined separately for each API. If the string contains a lower number of characters than there are defined features for an API, all features that would be represented by characters that are not present in the string are not supported.

	Uinteger
	integer
	Unsigned Integer, i.e. only value 0 and integers above 0 are permissible.

	UintegerRm
	integer
	This data type is defined in the same way as the "Uinteger" data type, but with the OpenAPI "nullable: true" property.

	Uint32
	integer
	Unsigned 32-bit integers, i.e. only value 0 and 32-bit integers above 0 are permissible.

	Uint32Rm
	integer
	This data type is defined in the same way as the "UInt32" data type, but with the OpenAPI "nullable: true" property.

	Uint64
	integer
	Unsigned 64-bit integers, i.e. only value 0 and 64-bit integers above 0 are permissible.

	Uint64Rm
	integer
	This data type is defined in the same way as the "Uint64" data type, but with the OpenAPI "nullable: true" property.

	Uri
	string
	String providing an URI formatted according to IETF RFC 3986 [6].

	UriRm
	string
	This data type is defined in the same way as the "Uri" data type, but with the OpenAPI "nullable: true" property.

	VarUeId
	string
	String represents the SUPI or GPSI.
Pattern: "^(imsi-[0-9]{5,15}|nai-.+|msisdn-[0-9]{5,15}|extid-.+|.+)$".

	TimeZone
	string
	String with format "<time-numoffset>" optionally appended by "<daylightSavingTime>", where:

- <time-numoffset> shall represent the time zone adjusted for daylight saving time and be encoded as time-numoffset as defined in subclause 5.6 of IETF RFC 3339 [10];

- <daylightSavingTime> shall represent the adjustment that has been made and shall be encoded as "+1" or "+2" for a +1 or +2 hours adjustment.

In an OpenAPI Specification [3] schema, the format shall be designated as "TimeZone".

Example: "-08:00+1" (for 8 hours behind UTC, +1 hour adjustment for Daylight Saving Time).

	TimeZoneRm
	string
	This data type is defined in the same way as the "TimeZone" data type, but with the OpenAPI "nullable: true" property.

Table 5.2.2-2: Reused OpenAPI data types
	Type Name
	Description

	boolean
	As defined in OpenAPI Specification [3]

	integer
	As defined in OpenAPI Specification [3]

	number
	As defined in OpenAPI Specification [3]

	string
	As defined in OpenAPI Specification [3]

	NOTE	Data types defined in OpenAPI Specification [3] do not follow the UpperCamel convention for data types in 3GPP TS 29.501 [2]

Table 5.2.2-3: Meaning of a Hexadecimal Character in SupportedFeatures Type
	Character
	Feature n+3
supported
	Feature n+2
supported
	Feature n+1
supported
	Feature n
supported

	"0"
	no
	no
	no
	no

	"1"
	no
	no
	no
	yes

	"2"
	no
	no
	yes
	no

	"3"
	no
	no
	yes
	yes

	"4"
	no
	yes
	no
	no

	"5"
	no
	yes
	no
	yes

	"6"
	no
	yes
	yes
	no

	"7"
	no
	yes
	yes
	yes

	"8"
	yes
	no
	no
	no

	"9"
	yes
	no
	no
	yes

	"A"
	yes
	no
	yes
	no

	"B"
	yes
	no
	yes
	yes

	"C"
	yes
	yes
	no
	no

	"D"
	yes
	yes
	no
	yes

	"E"
	yes
	yes
	yes
	no

	"F"
	yes
	yes
	yes
	yes

	NOTE 1	"n" shall be i * 4 + 1, where "i" is zero or a natural number, i.e permissible values of "n" are 1, 5, 9, …
NOTE 2	If a feature is not defined, it shall be indicated with value "no".

For example, if only the first feature defined in the feature list is set to 1, the corresponding SupportedFeatures attribute would have a value of "1", or "001" (any amount of 0's to the left of the 1 would result into an equivalent feature list). If we have 32 features defined, and only the last feature in a feature list is set to 1, the corresponding SupportedFeatures attribute would have a value of "80000000".
[bookmark: _Toc525374700]* * * End of Change * * * *
3GPP
